three
Version:
JavaScript 3D library
2,026 lines (1,229 loc) • 83.5 kB
JavaScript
/**
* @author Kyle-Larson https://github.com/Kyle-Larson
* @author Takahiro https://github.com/takahirox
* @author Lewy Blue https://github.com/looeee
*
* Loader loads FBX file and generates Group representing FBX scene.
* Requires FBX file to be >= 7.0 and in ASCII or to be any version in Binary format.
*
* Supports:
* Mesh Generation (Positional Data)
* Normal Data (Per Vertex Drawing Instance)
* UV Data (Per Vertex Drawing Instance)
* Skinning
* Animation
* - Separated Animations based on stacks.
* - Skeletal & Non-Skeletal Animations
* NURBS (Open, Closed and Periodic forms)
*
* Needs Support:
* Euler rotation order
*
*
* FBX format references:
* https://wiki.blender.org/index.php/User:Mont29/Foundation/FBX_File_Structure
*
* Binary format specification:
* https://code.blender.org/2013/08/fbx-binary-file-format-specification/
* https://wiki.rogiken.org/specifications/file-format/fbx/ (more detail but Japanese)
*/
( function () {
THREE.FBXLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
Object.assign( THREE.FBXLoader.prototype, {
load: function ( url, onLoad, onProgress, onError ) {
var self = this;
var resourceDirectory = THREE.LoaderUtils.extractUrlBase( url );
var loader = new THREE.FileLoader( this.manager );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( buffer ) {
try {
var scene = self.parse( buffer, resourceDirectory );
onLoad( scene );
} catch ( error ) {
window.setTimeout( function () {
if ( onError ) onError( error );
self.manager.itemError( url );
}, 0 );
}
}, onProgress, onError );
},
parse: function ( FBXBuffer, resourceDirectory ) {
var FBXTree;
if ( isFbxFormatBinary( FBXBuffer ) ) {
FBXTree = new BinaryParser().parse( FBXBuffer );
} else {
var FBXText = convertArrayBufferToString( FBXBuffer );
if ( ! isFbxFormatASCII( FBXText ) ) {
throw new Error( 'THREE.FBXLoader: Unknown format.' );
}
if ( getFbxVersion( FBXText ) < 7000 ) {
throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + getFbxVersion( FBXText ) );
}
FBXTree = new TextParser().parse( FBXText );
}
// console.log( FBXTree );
var connections = parseConnections( FBXTree );
var images = parseImages( FBXTree );
var textures = parseTextures( FBXTree, new THREE.TextureLoader( this.manager ).setPath( resourceDirectory ), images, connections );
var materials = parseMaterials( FBXTree, textures, connections );
var skeletons = parseDeformers( FBXTree, connections );
var geometryMap = parseGeometries( FBXTree, connections, skeletons );
var sceneGraph = parseScene( FBXTree, connections, skeletons, geometryMap, materials );
return sceneGraph;
}
} );
// Parses FBXTree.Connections which holds parent-child connections between objects (e.g. material -> texture, model->geometry )
// and details the connection type
function parseConnections( FBXTree ) {
var connectionMap = new Map();
if ( 'Connections' in FBXTree ) {
var rawConnections = FBXTree.Connections.connections;
rawConnections.forEach( function ( rawConnection ) {
var fromID = rawConnection[ 0 ];
var toID = rawConnection[ 1 ];
var relationship = rawConnection[ 2 ];
if ( ! connectionMap.has( fromID ) ) {
connectionMap.set( fromID, {
parents: [],
children: []
} );
}
var parentRelationship = { ID: toID, relationship: relationship };
connectionMap.get( fromID ).parents.push( parentRelationship );
if ( ! connectionMap.has( toID ) ) {
connectionMap.set( toID, {
parents: [],
children: []
} );
}
var childRelationship = { ID: fromID, relationship: relationship };
connectionMap.get( toID ).children.push( childRelationship );
} );
}
return connectionMap;
}
// Parse FBXTree.Objects.Video for embedded image data
// These images are connected to textures in FBXTree.Objects.Textures
// via FBXTree.Connections.
function parseImages( FBXTree ) {
var images = {};
var blobs = {};
if ( 'Video' in FBXTree.Objects ) {
var videoNodes = FBXTree.Objects.Video;
for ( var nodeID in videoNodes ) {
var videoNode = videoNodes[ nodeID ];
var id = parseInt( nodeID );
images[ id ] = videoNode.Filename;
// raw image data is in videoNode.Content
if ( 'Content' in videoNode ) {
var arrayBufferContent = ( videoNode.Content instanceof ArrayBuffer ) && ( videoNode.Content.byteLength > 0 );
var base64Content = ( typeof videoNode.Content === 'string' ) && ( videoNode.Content !== '' );
if ( arrayBufferContent || base64Content ) {
var image = parseImage( videoNodes[ nodeID ] );
blobs[ videoNode.Filename ] = image;
}
}
}
}
for ( var id in images ) {
var filename = images[ id ];
if ( blobs[ filename ] !== undefined ) images[ id ] = blobs[ filename ];
else images[ id ] = images[ id ].split( '\\' ).pop();
}
return images;
}
// Parse embedded image data in FBXTree.Video.Content
function parseImage( videoNode ) {
var content = videoNode.Content;
var fileName = videoNode.RelativeFilename || videoNode.Filename;
var extension = fileName.slice( fileName.lastIndexOf( '.' ) + 1 ).toLowerCase();
var type;
switch ( extension ) {
case 'bmp':
type = 'image/bmp';
break;
case 'jpg':
case 'jpeg':
type = 'image/jpeg';
break;
case 'png':
type = 'image/png';
break;
case 'tif':
type = 'image/tiff';
break;
default:
console.warn( 'FBXLoader: Image type "' + extension + '" is not supported.' );
return;
}
if ( typeof content === 'string' ) { // ASCII format
return 'data:' + type + ';base64,' + content;
} else { // Binary Format
var array = new Uint8Array( content );
return window.URL.createObjectURL( new Blob( [ array ], { type: type } ) );
}
}
// Parse nodes in FBXTree.Objects.Texture
// These contain details such as UV scaling, cropping, rotation etc and are connected
// to images in FBXTree.Objects.Video
function parseTextures( FBXTree, loader, images, connections ) {
var textureMap = new Map();
if ( 'Texture' in FBXTree.Objects ) {
var textureNodes = FBXTree.Objects.Texture;
for ( var nodeID in textureNodes ) {
var texture = parseTexture( textureNodes[ nodeID ], loader, images, connections );
textureMap.set( parseInt( nodeID ), texture );
}
}
return textureMap;
}
// Parse individual node in FBXTree.Objects.Texture
function parseTexture( textureNode, loader, images, connections ) {
var texture = loadTexture( textureNode, loader, images, connections );
texture.ID = textureNode.id;
texture.name = textureNode.attrName;
var wrapModeU = textureNode.WrapModeU;
var wrapModeV = textureNode.WrapModeV;
var valueU = wrapModeU !== undefined ? wrapModeU.value : 0;
var valueV = wrapModeV !== undefined ? wrapModeV.value : 0;
// http://download.autodesk.com/us/fbx/SDKdocs/FBX_SDK_Help/files/fbxsdkref/class_k_fbx_texture.html#889640e63e2e681259ea81061b85143a
// 0: repeat(default), 1: clamp
texture.wrapS = valueU === 0 ? THREE.RepeatWrapping : THREE.ClampToEdgeWrapping;
texture.wrapT = valueV === 0 ? THREE.RepeatWrapping : THREE.ClampToEdgeWrapping;
if ( 'Scaling' in textureNode ) {
var values = textureNode.Scaling.value;
texture.repeat.x = values[ 0 ];
texture.repeat.y = values[ 1 ];
}
return texture;
}
// load a texture specified as a blob or data URI, or via an external URL using THREE.TextureLoader
function loadTexture( textureNode, loader, images, connections ) {
var fileName;
var currentPath = loader.path;
var children = connections.get( textureNode.id ).children;
if ( children !== undefined && children.length > 0 && images[ children[ 0 ].ID ] !== undefined ) {
fileName = images[ children[ 0 ].ID ];
if ( fileName.indexOf( 'blob:' ) === 0 || fileName.indexOf( 'data:' ) === 0 ) {
loader.setPath( undefined );
}
}
var texture = loader.load( fileName );
loader.setPath( currentPath );
return texture;
}
// Parse nodes in FBXTree.Objects.Material
function parseMaterials( FBXTree, textureMap, connections ) {
var materialMap = new Map();
if ( 'Material' in FBXTree.Objects ) {
var materialNodes = FBXTree.Objects.Material;
for ( var nodeID in materialNodes ) {
var material = parseMaterial( FBXTree, materialNodes[ nodeID ], textureMap, connections );
if ( material !== null ) materialMap.set( parseInt( nodeID ), material );
}
}
return materialMap;
}
// Parse single node in FBXTree.Objects.Material
// Materials are connected to texture maps in FBXTree.Objects.Textures
// FBX format currently only supports Lambert and Phong shading models
function parseMaterial( FBXTree, materialNode, textureMap, connections ) {
var ID = materialNode.id;
var name = materialNode.attrName;
var type = materialNode.ShadingModel;
//Case where FBX wraps shading model in property object.
if ( typeof type === 'object' ) {
type = type.value;
}
// Ignore unused materials which don't have any connections.
if ( ! connections.has( ID ) ) return null;
var parameters = parseParameters( FBXTree, materialNode, textureMap, ID, connections );
var material;
switch ( type.toLowerCase() ) {
case 'phong':
material = new THREE.MeshPhongMaterial();
break;
case 'lambert':
material = new THREE.MeshLambertMaterial();
break;
default:
console.warn( 'THREE.FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type );
material = new THREE.MeshPhongMaterial( { color: 0x3300ff } );
break;
}
material.setValues( parameters );
material.name = name;
return material;
}
// Parse FBX material and return parameters suitable for a three.js material
// Also parse the texture map and return any textures associated with the material
function parseParameters( FBXTree, properties, textureMap, ID, connections ) {
var parameters = {};
if ( properties.BumpFactor ) {
parameters.bumpScale = properties.BumpFactor.value;
}
if ( properties.Diffuse ) {
parameters.color = new THREE.Color().fromArray( properties.Diffuse.value );
} else if ( properties.DiffuseColor && properties.DiffuseColor.type === 'Color' ) {
// The blender exporter exports diffuse here instead of in properties.Diffuse
parameters.color = new THREE.Color().fromArray( properties.DiffuseColor.value );
}
if ( properties.DisplacementFactor ) {
parameters.displacementScale = properties.DisplacementFactor.value;
}
if ( properties.ReflectionFactor ) {
parameters.reflectivity = properties.ReflectionFactor.value;
}
if ( properties.Specular ) {
parameters.specular = new THREE.Color().fromArray( properties.Specular.value );
} else if ( properties.SpecularColor && properties.SpecularColor.type === 'Color' ) {
// The blender exporter exports specular color here instead of in properties.Specular
parameters.emissive = new THREE.Color().fromArray( properties.SpecularColor.value );
}
if ( properties.Shininess ) {
parameters.shininess = properties.Shininess.value;
}
if ( properties.Emissive ) {
parameters.emissive = new THREE.Color().fromArray( properties.Emissive.value );
} else if ( properties.EmissiveColor && properties.EmissiveColor.type === 'Color' ) {
// The blender exporter exports emissive color here instead of in properties.Emissive
parameters.emissive = new THREE.Color().fromArray( properties.EmissiveColor.value );
}
if ( properties.EmissiveFactor ) {
parameters.emissiveIntensity = parseFloat( properties.EmissiveFactor.value );
}
if ( properties.Opacity ) {
parameters.opacity = parseFloat( properties.Opacity.value );
}
if ( parameters.opacity < 1.0 ) {
parameters.transparent = true;
}
connections.get( ID ).children.forEach( function ( child ) {
var type = child.relationship;
switch ( type ) {
case 'Bump':
parameters.bumpMap = textureMap.get( child.ID );
break;
case 'DiffuseColor':
parameters.map = getTexture( FBXTree, textureMap, child.ID, connections );
break;
case 'DisplacementColor':
parameters.displacementMap = getTexture( FBXTree, textureMap, child.ID, connections );
break;
case 'EmissiveColor':
parameters.emissiveMap = getTexture( FBXTree, textureMap, child.ID, connections );
break;
case 'NormalMap':
parameters.normalMap = getTexture( FBXTree, textureMap, child.ID, connections );
break;
case 'ReflectionColor':
parameters.envMap = getTexture( FBXTree, textureMap, child.ID, connections );
parameters.envMap.mapping = THREE.EquirectangularReflectionMapping;
break;
case 'SpecularColor':
parameters.specularMap = getTexture( FBXTree, textureMap, child.ID, connections );
break;
case 'TransparentColor':
parameters.alphaMap = getTexture( FBXTree, textureMap, child.ID, connections );
parameters.transparent = true;
break;
case 'AmbientColor':
case 'ShininessExponent': // AKA glossiness map
case 'SpecularFactor': // AKA specularLevel
case 'VectorDisplacementColor': // NOTE: Seems to be a copy of DisplacementColor
default:
console.warn( 'THREE.FBXLoader: %s map is not supported in three.js, skipping texture.', type );
break;
}
} );
return parameters;
}
// get a texture from the textureMap for use by a material.
function getTexture( FBXTree, textureMap, id, connections ) {
// if the texture is a layered texture, just use the first layer and issue a warning
if ( 'LayeredTexture' in FBXTree.Objects && id in FBXTree.Objects.LayeredTexture ) {
console.warn( 'THREE.FBXLoader: layered textures are not supported in three.js. Discarding all but first layer.' );
id = connections.get( id ).children[ 0 ].ID;
}
return textureMap.get( id );
}
// Parse nodes in FBXTree.Objects.Deformer
// Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here
// Generates map of Skeleton-like objects for use later when generating and binding skeletons.
function parseDeformers( FBXTree, connections ) {
var skeletons = {};
if ( 'Deformer' in FBXTree.Objects ) {
var DeformerNodes = FBXTree.Objects.Deformer;
for ( var nodeID in DeformerNodes ) {
var deformerNode = DeformerNodes[ nodeID ];
if ( deformerNode.attrType === 'Skin' ) {
var relationships = connections.get( parseInt( nodeID ) );
var skeleton = parseSkeleton( relationships, DeformerNodes );
skeleton.ID = nodeID;
if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: skeleton attached to more than one geometry is not supported.' );
skeleton.geometryID = relationships.parents[ 0 ].ID;
skeletons[ nodeID ] = skeleton;
}
}
}
return skeletons;
}
// Parse single nodes in FBXTree.Objects.Deformer
// The top level deformer nodes have type 'Skin' and subDeformer nodes have type 'Cluster'
// Each skin node represents a skeleton and each cluster node represents a bone
function parseSkeleton( connections, deformerNodes ) {
var rawBones = [];
connections.children.forEach( function ( child ) {
var subDeformerNode = deformerNodes[ child.ID ];
if ( subDeformerNode.attrType !== 'Cluster' ) return;
var rawBone = {
ID: child.ID,
indices: [],
weights: [],
transform: new THREE.Matrix4().fromArray( subDeformerNode.Transform.a ),
transformLink: new THREE.Matrix4().fromArray( subDeformerNode.TransformLink.a ),
linkMode: subDeformerNode.Mode,
};
if ( 'Indexes' in subDeformerNode ) {
rawBone.indices = subDeformerNode.Indexes.a;
rawBone.weights = subDeformerNode.Weights.a;
}
rawBones.push( rawBone );
} );
return {
rawBones: rawBones,
bones: []
};
}
// Parse nodes in FBXTree.Objects.Geometry
function parseGeometries( FBXTree, connections, skeletons ) {
var geometryMap = new Map();
if ( 'Geometry' in FBXTree.Objects ) {
var geometryNodes = FBXTree.Objects.Geometry;
for ( var nodeID in geometryNodes ) {
var relationships = connections.get( parseInt( nodeID ) );
var geo = parseGeometry( FBXTree, relationships, geometryNodes[ nodeID ], skeletons );
geometryMap.set( parseInt( nodeID ), geo );
}
}
return geometryMap;
}
// Parse single node in FBXTree.Objects.Geometry
function parseGeometry( FBXTree, relationships, geometryNode, skeletons ) {
switch ( geometryNode.attrType ) {
case 'Mesh':
return parseMeshGeometry( FBXTree, relationships, geometryNode, skeletons );
break;
case 'NurbsCurve':
return parseNurbsGeometry( geometryNode );
break;
}
}
// Parse single node mesh geometry in FBXTree.Objects.Geometry
function parseMeshGeometry( FBXTree, relationships, geometryNode, skeletons ) {
var modelNodes = relationships.parents.map( function ( parent ) {
return FBXTree.Objects.Model[ parent.ID ];
} );
// don't create geometry if it is not associated with any models
if ( modelNodes.length === 0 ) return;
var skeleton = relationships.children.reduce( function ( skeleton, child ) {
if ( skeletons[ child.ID ] !== undefined ) skeleton = skeletons[ child.ID ];
return skeleton;
}, null );
var preTransform = new THREE.Matrix4();
// TODO: if there is more than one model associated with the geometry, AND the models have
// different geometric transforms, then this will cause problems
// if ( modelNodes.length > 1 ) { }
// For now just assume one model and get the preRotations from that
var modelNode = modelNodes[ 0 ];
if ( 'GeometricRotation' in modelNode ) {
var array = modelNode.GeometricRotation.value.map( THREE.Math.degToRad );
array[ 3 ] = 'ZYX';
preTransform.makeRotationFromEuler( new THREE.Euler().fromArray( array ) );
}
if ( 'GeometricTranslation' in modelNode ) {
preTransform.setPosition( new THREE.Vector3().fromArray( modelNode.GeometricTranslation.value ) );
}
if ( 'GeometricScaling' in modelNode ) {
preTransform.scale( new THREE.Vector3().fromArray( modelNode.GeometricScaling.value ) );
}
return genGeometry( FBXTree, relationships, geometryNode, skeleton, preTransform );
}
// Generate a THREE.BufferGeometry from a node in FBXTree.Objects.Geometry
function genGeometry( FBXTree, relationships, geometryNode, skeleton, preTransform ) {
var vertexPositions = geometryNode.Vertices.a;
var vertexIndices = geometryNode.PolygonVertexIndex.a;
// create arrays to hold the final data used to build the buffergeometry
var vertexBuffer = [];
var normalBuffer = [];
var colorsBuffer = [];
var uvsBuffer = [];
var materialIndexBuffer = [];
var vertexWeightsBuffer = [];
var weightsIndicesBuffer = [];
if ( geometryNode.LayerElementColor ) {
var colorInfo = getColors( geometryNode.LayerElementColor[ 0 ] );
}
if ( geometryNode.LayerElementMaterial ) {
var materialInfo = getMaterials( geometryNode.LayerElementMaterial[ 0 ] );
}
if ( geometryNode.LayerElementNormal ) {
var normalInfo = getNormals( geometryNode.LayerElementNormal[ 0 ] );
}
if ( geometryNode.LayerElementUV ) {
var uvInfo = [];
var i = 0;
while ( geometryNode.LayerElementUV[ i ] ) {
uvInfo.push( getUVs( geometryNode.LayerElementUV[ i ] ) );
i ++;
}
}
var weightTable = {};
if ( skeleton !== null ) {
skeleton.rawBones.forEach( function ( rawBone, i ) {
// loop over the bone's vertex indices and weights
rawBone.indices.forEach( function ( index, j ) {
if ( weightTable[ index ] === undefined ) weightTable[ index ] = [];
weightTable[ index ].push( {
id: i,
weight: rawBone.weights[ j ],
} );
} );
} );
}
var polygonIndex = 0;
var faceLength = 0;
var displayedWeightsWarning = false;
// these will hold data for a single face
var vertexPositionIndexes = [];
var faceNormals = [];
var faceColors = [];
var faceUVs = [];
var faceWeights = [];
var faceWeightIndices = [];
vertexIndices.forEach( function ( vertexIndex, polygonVertexIndex ) {
var endOfFace = false;
// Face index and vertex index arrays are combined in a single array
// A cube with quad faces looks like this:
// PolygonVertexIndex: *24 {
// a: 0, 1, 3, -3, 2, 3, 5, -5, 4, 5, 7, -7, 6, 7, 1, -1, 1, 7, 5, -4, 6, 0, 2, -5
// }
// Negative numbers mark the end of a face - first face here is 0, 1, 3, -3
// to find index of last vertex multiply by -1 and subtract 1: -3 * - 1 - 1 = 2
if ( vertexIndex < 0 ) {
vertexIndex = vertexIndex ^ - 1; // equivalent to ( x * -1 ) - 1
vertexIndices[ polygonVertexIndex ] = vertexIndex;
endOfFace = true;
}
var weightIndices = [];
var weights = [];
vertexPositionIndexes.push( vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2 );
if ( colorInfo ) {
var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, colorInfo );
faceColors.push( data[ 0 ], data[ 1 ], data[ 2 ] );
}
if ( skeleton ) {
if ( weightTable[ vertexIndex ] !== undefined ) {
weightTable[ vertexIndex ].forEach( function ( wt ) {
weights.push( wt.weight );
weightIndices.push( wt.id );
} );
}
if ( weights.length > 4 ) {
if ( ! displayedWeightsWarning ) {
console.warn( 'THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights.' );
displayedWeightsWarning = true;
}
var wIndex = [ 0, 0, 0, 0 ];
var Weight = [ 0, 0, 0, 0 ];
weights.forEach( function ( weight, weightIndex ) {
var currentWeight = weight;
var currentIndex = weightIndices[ weightIndex ];
Weight.forEach( function ( comparedWeight, comparedWeightIndex, comparedWeightArray ) {
if ( currentWeight > comparedWeight ) {
comparedWeightArray[ comparedWeightIndex ] = currentWeight;
currentWeight = comparedWeight;
var tmp = wIndex[ comparedWeightIndex ];
wIndex[ comparedWeightIndex ] = currentIndex;
currentIndex = tmp;
}
} );
} );
weightIndices = wIndex;
weights = Weight;
}
// if the weight array is shorter than 4 pad with 0s
while ( weights.length < 4 ) {
weights.push( 0 );
weightIndices.push( 0 );
}
for ( var i = 0; i < 4; ++ i ) {
faceWeights.push( weights[ i ] );
faceWeightIndices.push( weightIndices[ i ] );
}
}
if ( normalInfo ) {
var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, normalInfo );
faceNormals.push( data[ 0 ], data[ 1 ], data[ 2 ] );
}
if ( materialInfo && materialInfo.mappingType !== 'AllSame' ) {
var materialIndex = getData( polygonVertexIndex, polygonIndex, vertexIndex, materialInfo )[ 0 ];
}
if ( uvInfo ) {
uvInfo.forEach( function ( uv, i ) {
var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, uv );
if ( faceUVs[ i ] === undefined ) {
faceUVs[ i ] = [];
}
faceUVs[ i ].push( data[ 0 ] );
faceUVs[ i ].push( data[ 1 ] );
} );
}
faceLength ++;
// we have reached the end of a face - it may have 4 sides though
// in which case the data is split to represent two 3 sided faces
if ( endOfFace ) {
for ( var i = 2; i < faceLength; i ++ ) {
vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ 0 ] ] );
vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ 1 ] ] );
vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ 2 ] ] );
vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ ( i - 1 ) * 3 ] ] );
vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ ( i - 1 ) * 3 + 1 ] ] );
vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ ( i - 1 ) * 3 + 2 ] ] );
vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ i * 3 ] ] );
vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ i * 3 + 1 ] ] );
vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ i * 3 + 2 ] ] );
if ( skeleton ) {
vertexWeightsBuffer.push( faceWeights[ 0 ] );
vertexWeightsBuffer.push( faceWeights[ 1 ] );
vertexWeightsBuffer.push( faceWeights[ 2 ] );
vertexWeightsBuffer.push( faceWeights[ 3 ] );
vertexWeightsBuffer.push( faceWeights[ ( i - 1 ) * 4 ] );
vertexWeightsBuffer.push( faceWeights[ ( i - 1 ) * 4 + 1 ] );
vertexWeightsBuffer.push( faceWeights[ ( i - 1 ) * 4 + 2 ] );
vertexWeightsBuffer.push( faceWeights[ ( i - 1 ) * 4 + 3 ] );
vertexWeightsBuffer.push( faceWeights[ i * 4 ] );
vertexWeightsBuffer.push( faceWeights[ i * 4 + 1 ] );
vertexWeightsBuffer.push( faceWeights[ i * 4 + 2 ] );
vertexWeightsBuffer.push( faceWeights[ i * 4 + 3 ] );
weightsIndicesBuffer.push( faceWeightIndices[ 0 ] );
weightsIndicesBuffer.push( faceWeightIndices[ 1 ] );
weightsIndicesBuffer.push( faceWeightIndices[ 2 ] );
weightsIndicesBuffer.push( faceWeightIndices[ 3 ] );
weightsIndicesBuffer.push( faceWeightIndices[ ( i - 1 ) * 4 ] );
weightsIndicesBuffer.push( faceWeightIndices[ ( i - 1 ) * 4 + 1 ] );
weightsIndicesBuffer.push( faceWeightIndices[ ( i - 1 ) * 4 + 2 ] );
weightsIndicesBuffer.push( faceWeightIndices[ ( i - 1 ) * 4 + 3 ] );
weightsIndicesBuffer.push( faceWeightIndices[ i * 4 ] );
weightsIndicesBuffer.push( faceWeightIndices[ i * 4 + 1 ] );
weightsIndicesBuffer.push( faceWeightIndices[ i * 4 + 2 ] );
weightsIndicesBuffer.push( faceWeightIndices[ i * 4 + 3 ] );
}
if ( colorInfo ) {
colorsBuffer.push( faceColors[ 0 ] );
colorsBuffer.push( faceColors[ 1 ] );
colorsBuffer.push( faceColors[ 2 ] );
colorsBuffer.push( faceColors[ ( i - 1 ) * 3 ] );
colorsBuffer.push( faceColors[ ( i - 1 ) * 3 + 1 ] );
colorsBuffer.push( faceColors[ ( i - 1 ) * 3 + 2 ] );
colorsBuffer.push( faceColors[ i * 3 ] );
colorsBuffer.push( faceColors[ i * 3 + 1 ] );
colorsBuffer.push( faceColors[ i * 3 + 2 ] );
}
if ( materialInfo && materialInfo.mappingType !== 'AllSame' ) {
materialIndexBuffer.push( materialIndex );
materialIndexBuffer.push( materialIndex );
materialIndexBuffer.push( materialIndex );
}
if ( normalInfo ) {
normalBuffer.push( faceNormals[ 0 ] );
normalBuffer.push( faceNormals[ 1 ] );
normalBuffer.push( faceNormals[ 2 ] );
normalBuffer.push( faceNormals[ ( i - 1 ) * 3 ] );
normalBuffer.push( faceNormals[ ( i - 1 ) * 3 + 1 ] );
normalBuffer.push( faceNormals[ ( i - 1 ) * 3 + 2 ] );
normalBuffer.push( faceNormals[ i * 3 ] );
normalBuffer.push( faceNormals[ i * 3 + 1 ] );
normalBuffer.push( faceNormals[ i * 3 + 2 ] );
}
if ( uvInfo ) {
uvInfo.forEach( function ( uv, j ) {
if ( uvsBuffer[ j ] === undefined ) uvsBuffer[ j ] = [];
uvsBuffer[ j ].push( faceUVs[ j ][ 0 ] );
uvsBuffer[ j ].push( faceUVs[ j ][ 1 ] );
uvsBuffer[ j ].push( faceUVs[ j ][ ( i - 1 ) * 2 ] );
uvsBuffer[ j ].push( faceUVs[ j ][ ( i - 1 ) * 2 + 1 ] );
uvsBuffer[ j ].push( faceUVs[ j ][ i * 2 ] );
uvsBuffer[ j ].push( faceUVs[ j ][ i * 2 + 1 ] );
} );
}
}
polygonIndex ++;
faceLength = 0;
// reset arrays for the next face
vertexPositionIndexes = [];
faceNormals = [];
faceColors = [];
faceUVs = [];
faceWeights = [];
faceWeightIndices = [];
}
} );
var geo = new THREE.BufferGeometry();
geo.name = geometryNode.name;
var positionAttribute = new THREE.Float32BufferAttribute( vertexBuffer, 3 );
preTransform.applyToBufferAttribute( positionAttribute );
geo.addAttribute( 'position', positionAttribute );
if ( colorsBuffer.length > 0 ) {
geo.addAttribute( 'color', new THREE.Float32BufferAttribute( colorsBuffer, 3 ) );
}
if ( skeleton ) {
geo.addAttribute( 'skinIndex', new THREE.Float32BufferAttribute( weightsIndicesBuffer, 4 ) );
geo.addAttribute( 'skinWeight', new THREE.Float32BufferAttribute( vertexWeightsBuffer, 4 ) );
// used later to bind the skeleton to the model
geo.FBX_Deformer = skeleton;
}
if ( normalBuffer.length > 0 ) {
var normalAttribute = new THREE.Float32BufferAttribute( normalBuffer, 3 );
var normalMatrix = new THREE.Matrix3().getNormalMatrix( preTransform );
normalMatrix.applyToBufferAttribute( normalAttribute );
geo.addAttribute( 'normal', normalAttribute );
}
uvsBuffer.forEach( function ( uvBuffer, i ) {
// subsequent uv buffers are called 'uv1', 'uv2', ...
var name = 'uv' + ( i + 1 ).toString();
// the first uv buffer is just called 'uv'
if ( i === 0 ) {
name = 'uv';
}
geo.addAttribute( name, new THREE.Float32BufferAttribute( uvsBuffer[ i ], 2 ) );
} );
if ( materialInfo && materialInfo.mappingType !== 'AllSame' ) {
// Convert the material indices of each vertex into rendering groups on the geometry.
var prevMaterialIndex = materialIndexBuffer[ 0 ];
var startIndex = 0;
materialIndexBuffer.forEach( function ( currentIndex, i ) {
if ( currentIndex !== prevMaterialIndex ) {
geo.addGroup( startIndex, i - startIndex, prevMaterialIndex );
prevMaterialIndex = currentIndex;
startIndex = i;
}
} );
// the loop above doesn't add the last group, do that here.
if ( geo.groups.length > 0 ) {
var lastGroup = geo.groups[ geo.groups.length - 1 ];
var lastIndex = lastGroup.start + lastGroup.count;
if ( lastIndex !== materialIndexBuffer.length ) {
geo.addGroup( lastIndex, materialIndexBuffer.length - lastIndex, prevMaterialIndex );
}
}
// case where there are multiple materials but the whole geometry is only
// using one of them
if ( geo.groups.length === 0 ) {
geo.addGroup( 0, materialIndexBuffer.length, materialIndexBuffer[ 0 ] );
}
}
return geo;
}
// Parse normal from FBXTree.Objects.Geometry.LayerElementNormal if it exists
function getNormals( NormalNode ) {
var mappingType = NormalNode.MappingInformationType;
var referenceType = NormalNode.ReferenceInformationType;
var buffer = NormalNode.Normals.a;
var indexBuffer = [];
if ( referenceType === 'IndexToDirect' ) {
if ( 'NormalIndex' in NormalNode ) {
indexBuffer = NormalNode.NormalIndex.a;
} else if ( 'NormalsIndex' in NormalNode ) {
indexBuffer = NormalNode.NormalsIndex.a;
}
}
return {
dataSize: 3,
buffer: buffer,
indices: indexBuffer,
mappingType: mappingType,
referenceType: referenceType
};
}
// Parse UVs from FBXTree.Objects.Geometry.LayerElementUV if it exists
function getUVs( UVNode ) {
var mappingType = UVNode.MappingInformationType;
var referenceType = UVNode.ReferenceInformationType;
var buffer = UVNode.UV.a;
var indexBuffer = [];
if ( referenceType === 'IndexToDirect' ) {
indexBuffer = UVNode.UVIndex.a;
}
return {
dataSize: 2,
buffer: buffer,
indices: indexBuffer,
mappingType: mappingType,
referenceType: referenceType
};
}
// Parse Vertex Colors from FBXTree.Objects.Geometry.LayerElementColor if it exists
function getColors( ColorNode ) {
var mappingType = ColorNode.MappingInformationType;
var referenceType = ColorNode.ReferenceInformationType;
var buffer = ColorNode.Colors.a;
var indexBuffer = [];
if ( referenceType === 'IndexToDirect' ) {
indexBuffer = ColorNode.ColorIndex.a;
}
return {
dataSize: 4,
buffer: buffer,
indices: indexBuffer,
mappingType: mappingType,
referenceType: referenceType
};
}
// Parse mapping and material data in FBXTree.Objects.Geometry.LayerElementMaterial if it exists
function getMaterials( MaterialNode ) {
var mappingType = MaterialNode.MappingInformationType;
var referenceType = MaterialNode.ReferenceInformationType;
if ( mappingType === 'NoMappingInformation' ) {
return {
dataSize: 1,
buffer: [ 0 ],
indices: [ 0 ],
mappingType: 'AllSame',
referenceType: referenceType
};
}
var materialIndexBuffer = MaterialNode.Materials.a;
// Since materials are stored as indices, there's a bit of a mismatch between FBX and what
// we expect.So we create an intermediate buffer that points to the index in the buffer,
// for conforming with the other functions we've written for other data.
var materialIndices = [];
for ( var i = 0; i < materialIndexBuffer.length; ++ i ) {
materialIndices.push( i );
}
return {
dataSize: 1,
buffer: materialIndexBuffer,
indices: materialIndices,
mappingType: mappingType,
referenceType: referenceType
};
}
// Functions use the infoObject and given indices to return value array of geometry.
// Parameters:
// - polygonVertexIndex - Index of vertex in draw order (which index of the index buffer refers to this vertex).
// - polygonIndex - Index of polygon in geometry.
// - vertexIndex - Index of vertex inside vertex buffer (used because some data refers to old index buffer that we don't use anymore).
// - infoObject: can be materialInfo, normalInfo, UVInfo or colorInfo
// Index type:
// - Direct: index is same as polygonVertexIndex
// - IndexToDirect: infoObject has it's own set of indices
var dataArray = [];
var GetData = {
ByPolygonVertex: {
Direct: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) {
var from = ( polygonVertexIndex * infoObject.dataSize );
var to = ( polygonVertexIndex * infoObject.dataSize ) + infoObject.dataSize;
return slice( dataArray, infoObject.buffer, from, to );
},
IndexToDirect: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) {
var index = infoObject.indices[ polygonVertexIndex ];
var from = ( index * infoObject.dataSize );
var to = ( index * infoObject.dataSize ) + infoObject.dataSize;
return slice( dataArray, infoObject.buffer, from, to );
}
},
ByPolygon: {
Direct: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) {
var from = polygonIndex * infoObject.dataSize;
var to = polygonIndex * infoObject.dataSize + infoObject.dataSize;
return slice( dataArray, infoObject.buffer, from, to );
},
IndexToDirect: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) {
var index = infoObject.indices[ polygonIndex ];
var from = index * infoObject.dataSize;
var to = index * infoObject.dataSize + infoObject.dataSize;
return slice( dataArray, infoObject.buffer, from, to );
}
},
ByVertice: {
Direct: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) {
var from = ( vertexIndex * infoObject.dataSize );
var to = ( vertexIndex * infoObject.dataSize ) + infoObject.dataSize;
return slice( dataArray, infoObject.buffer, from, to );
}
},
AllSame: {
IndexToDirect: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) {
var from = infoObject.indices[ 0 ] * infoObject.dataSize;
var to = infoObject.indices[ 0 ] * infoObject.dataSize + infoObject.dataSize;
return slice( dataArray, infoObject.buffer, from, to );
}
}
};
function getData( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) {
return GetData[ infoObject.mappingType ][ infoObject.referenceType ]( polygonVertexIndex, polygonIndex, vertexIndex, infoObject );
}
// Generate a NurbGeometry from a node in FBXTree.Objects.Geometry
function parseNurbsGeometry( geometryNode ) {
if ( THREE.NURBSCurve === undefined ) {
console.error( 'THREE.FBXLoader: The loader relies on THREE.NURBSCurve for any nurbs present in the model. Nurbs will show up as empty geometry.' );
return new THREE.BufferGeometry();
}
var order = parseInt( geometryNode.Order );
if ( isNaN( order ) ) {
console.error( 'THREE.FBXLoader: Invalid Order %s given for geometry ID: %s', geometryNode.Order, geometryNode.id );
return new THREE.BufferGeometry();
}
var degree = order - 1;
var knots = geometryNode.KnotVector.a;
var controlPoints = [];
var pointsValues = geometryNode.Points.a;
for ( var i = 0, l = pointsValues.length; i < l; i += 4 ) {
controlPoints.push( new THREE.Vector4().fromArray( pointsValues, i ) );
}
var startKnot, endKnot;
if ( geometryNode.Form === 'Closed' ) {
controlPoints.push( controlPoints[ 0 ] );
} else if ( geometryNode.Form === 'Periodic' ) {
startKnot = degree;
endKnot = knots.length - 1 - startKnot;
for ( var i = 0; i < degree; ++ i ) {
controlPoints.push( controlPoints[ i ] );
}
}
var curve = new THREE.NURBSCurve( degree, knots, controlPoints, startKnot, endKnot );
var vertices = curve.getPoints( controlPoints.length * 7 );
var positions = new Float32Array( vertices.length * 3 );
vertices.forEach( function ( vertex, i ) {
vertex.toArray( positions, i * 3 );
} );
var geometry = new THREE.BufferGeometry();
geometry.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) );
return geometry;
}
// create the main THREE.Group() to be returned by the loader
function parseScene( FBXTree, connections, skeletons, geometryMap, materialMap ) {
var sceneGraph = new THREE.Group();
var modelMap = parseModels( FBXTree, skeletons, geometryMap, materialMap, connections );
var modelNodes = FBXTree.Objects.Model;
modelMap.forEach( function ( model ) {
var modelNode = modelNodes[ model.ID ];
setLookAtProperties( FBXTree, model, modelNode, connections, sceneGraph );
var parentConnections = connections.get( model.ID ).parents;
parentConnections.forEach( function ( connection ) {
var parent = modelMap.get( connection.ID );
if ( parent !== undefined ) parent.add( model );
} );
if ( model.parent === null ) {
sceneGraph.add( model );
}
} );
bindSkeleton( FBXTree, skeletons, geometryMap, modelMap, connections );
addAnimations( FBXTree, connections, sceneGraph );
createAmbientLight( FBXTree, sceneGraph );
return sceneGraph;
}
// parse nodes in FBXTree.Objects.Model
function parseModels( FBXTree, skeletons, geometryMap, materialMap, connections ) {
var modelMap = new Map();
var modelNodes = FBXTree.Objects.Model;
for ( var nodeID in modelNodes ) {
var id = parseInt( nodeID );
var node = modelNodes[ nodeID ];
var relationships = connections.get( id );
var model = buildSkeleton( relationships, skeletons, id, node.attrName );
if ( ! model ) {
switch ( node.attrType ) {
case 'Camera':
model = createCamera( FBXTree, relationships );
break;
case 'Light':
model = createLight( FBXTree, relationships );
break;
case 'Mesh':
model = createMesh( FBXTree, relationships, geometryMap, materialMap );
break;
case 'NurbsCurve':
model = createCurve( relationships, geometryMap );
break;
case 'LimbNode': // usually associated with a Bone, however if a Bone was not created we'll make a Group instead
case 'Null':
default:
model = new THREE.Group();
break;
}
model.name = THREE.PropertyBinding.sanitizeNodeName( node.attrName );
model.ID = id;
}
setModelTransforms( FBXTree, model, node );
modelMap.set( id, model );
}
return modelMap;
}
function buildSkeleton( relationships, skeletons, id, name ) {
var bone = null;
relationships.parents.forEach( function ( parent ) {
for ( var ID in skeletons ) {
var skeleton = skeletons[ ID ];
skeleton.rawBones.forEach( function ( rawBone, i ) {
if ( rawBone.ID === parent.ID ) {
var subBone = bone;
bone = new THREE.Bone();
bone.matrixWorld.copy( rawBone.transformLink );
// set name and id here - otherwise in cases where "subBone" is created it will not have a name / id
bone.name = THREE.PropertyBinding.sanitizeNodeName( name );
bone.ID = id;
skeleton.bones[ i ] = bone;
// In cases where a bone is shared between multiple meshes
// duplicate the bone here and and it as a child of the first bone
if ( subBone !== null ) {
bone.add( subBone );
}
}
} );
}
} );
return bone;
}
// create a THREE.PerspectiveCamera or THREE.OrthographicCamera
function createCamera( FBXTree, relationships ) {
var model;
var cameraAttribute;
relationships.children.forEach( function ( child ) {
var attr = FBXTree.Objects.NodeAttribute[ child.ID ];
if ( attr !== undefined ) {
cameraAttribute = attr;
}
} );
if ( cameraAttribute === undefined ) {
model = new THREE.Object3D();
} else {
var type = 0;
if ( cameraAttribute.CameraProjectionType !== undefined && cameraAttribute.CameraProjectionType.value === 1 ) {
type = 1;
}
var nearClippingPlane = 1;
if ( cameraAttribute.NearPlane !== undefined ) {
nearClippingPlane = cameraAttribute.NearPlane.value / 1000;
}
var farClippingPlane = 1000;
if ( cameraAttribute.FarPlane !== undefined ) {
farClippingPlane = cameraAttribute.FarPlane.value / 1000;
}
var width = window.innerWidth;
var height = window.innerHeight;
if ( cameraAttribute.AspectWidth !== undefined && cameraAttribute.AspectHeight !== undefined ) {
width = cameraAttribute.AspectWidth.value;
height = cameraAttribute.AspectHeight.value;
}
var aspect = width / height;
var fov = 45;
if ( cameraAttribute.FieldOfView !== undefined ) {
fov = cameraAttribute.FieldOfView.value;
}
var focalLength = cameraAttribute.FocalLength ? cameraAttribute.FocalLength.value : null;
switch ( type ) {
case 0: // Perspective
model = new THREE.PerspectiveCamera( fov, aspect, nearClippingPlane, farClippingPlane );
if ( focalLength !== null ) model.setFocalLength( focalLength );
break;
case 1: // Orthographic
model = new THREE.OrthographicCamera( - width / 2, width / 2, height / 2, - height / 2, nearClippingPlane, farClippingPlane );
break;
default:
console.warn( 'THREE.FBXLoader: Unknown camera type ' + type + '.' );
model = new THREE.Object3D();
break;
}
}
return model;
}
// Create a THREE.DirectionalLight, THREE.PointLight or THREE.SpotLight
function createLight( FBXTree, relationships ) {
var model;
var lightAttribute;
relationships.children.forEach( function ( child ) {
var attr = FBXTree.Objects.NodeAttribute[ child.ID ];
if ( attr !== undefined ) {
lightAttribute = attr;
}
} );
if ( lightAttribute === undefined ) {
model = new THREE.Object3D();
} else {
var type;
// LightType can be undefined for Point lights
if ( lightAttribute.LightType === undefined ) {
type = 0;
} else {
type = lightAttribute.LightType.value;
}
var color = 0xffffff;
if ( lightAttribute.Color !== undefined ) {
color = new THREE.Color().fromArray( lightAttribute.Color.value );
}
var intensity = ( lightAttribute.Intensity === undefined ) ? 1 : lightAttribute.Intensity.value / 100;
// light disabled
if ( lightAttribute.CastLightOnObject !== undefined && lightAttribute.CastLightOnObject.value === 0 ) {
intensity = 0;
}
var distance = 0;
if ( lightAttribute.FarAttenuationEnd !== undefined ) {
if ( lightAttribute.EnableFarAttenuation !== undefined && lightAttribute.EnableFarAttenuation.value === 0 ) {
distance = 0;
} else {
distance = lightAttribute.FarAttenuationEnd.value;
}
}
// TODO: could this be calculated linearly from FarAttenuationStart to FarAttenuationEnd?
var decay = 1;
switch ( type ) {
case 0: // Point
model = new THREE.PointLight( color, intensity, distance, decay );
break;
case 1: // Directional
model = new THREE.DirectionalLight( color, intensity );
break;
case 2: // Spot
var angle = Math.PI / 3;
if ( lightAttribute.InnerAngle !== undefined ) {
angle = THREE.Math.degToRad( lightAttribute.InnerAngle.value );
}
var penumbra = 0;
if ( lightAttribute.OuterAngle !== undefined ) {
// TODO: this is not correct - FBX calculates outer and inner angle in degrees
// with OuterAngle > InnerAngle && OuterAngle <= Math.PI
// while three.js uses a penumbra between (0, 1) to attenuate the inner angle
penumbra = THREE.Math.degToRad( lightAttribute.OuterAngle.value );
penumbra = Math.max( penumbra, 1 );
}
model = new THREE.SpotLight( color, intensity, distance, angle, penumbra, decay );
break;
default:
console.warn( 'THREE.FBXLoader: Unknown light type ' + lightAttribute.LightType.value + ', defaulting to a THREE.PointLight.' );
model = new THREE.PointLight( color, intensity );
break;
}
if ( lightAttribute.CastShadows !== undefined && lightAttribute.CastShadows.value === 1 ) {
model.castShadow = true;
}
}
return model;
}
function createMesh( FBXTree, relationships, geometryMap, materialMap ) {
var model;
var geometry = null;
var material = null;
var materials = [];
// get geometry and materials(s) from connections
relationships.children.forEach( function ( child ) {
if ( geometryMap.has( child.ID ) ) {
geometry = geometryMap.get( child.ID );
}
if ( materialMap.has( child.ID ) ) {
materials.push( materialMap.get( child.ID ) );
}
} );
if ( materials.length > 1 ) {
material = materials;
} else if ( materials.length > 0 ) {
material = materials[ 0 ];
} else {
material = new THREE.MeshPhongMaterial( { color: 0xcccccc } );
materials.push( material );
}
if ( 'color' in geometry.attributes ) {
materials.forEach( function ( material ) {
material.vertexColors = THREE.VertexColors;
} );
}
if ( geometry.FBX_Deformer ) {
materials.forEach( function ( material ) {
material.skinning = true;
} );
model = new THREE.SkinnedMesh( geometry, material );
} else {
model = new THREE.Mesh( geometry, material );
}
return model;
}
function createCurve( relationships, geometryMap ) {
var geometry = relationships.children.reduce( function ( geo, child ) {
if ( geometryMap.has( child.ID ) ) geo = geometryMap.get( child.ID );
return geo;
}, null );
// FBX does not list materials for Nurbs lines, so we'll just put our own in here.
var material = new THREE.LineBasicMaterial( { color: 0x3300ff, linewidth: 1 } );
return new THREE.Line( geometry, material );
}
// Parse ambient color in FBXTree.GlobalSettings - if it's not set to black (default), create an ambient light
function createAmbientLight( FBXTree, sceneGraph ) {
if ( 'GlobalSettings' in FBXTree && 'AmbientColor' in FBXTree.GlobalSettings ) {
var ambientColor = FBXTree.GlobalSettings.AmbientColor.value;
var r = ambientColor[ 0 ];
var g = ambientColor[ 1 ];
var b = ambientColor[ 2 ];
if ( r !== 0 || g !== 0 || b !== 0 ) {
var color = new THREE.Color( r, g, b );
sceneGraph.add( new THREE.AmbientLight( color, 1 ) );
}
}
}
function setLookAtProperties( FBXTree, model, modelNode, connections, sceneGraph ) {
if ( 'LookAtProperty' in modelNode ) {
var children = connections.get( model.ID ).children;
children.forEach( function ( child ) {
if ( child.relationship === 'LookAtProperty' ) {
var lookAtTarget = FBXTree.Objects.Model[ child.ID ];
if ( 'Lcl_Translation' in lookAtTarget ) {
var pos = lookAtTarget.Lcl_Translation.value;
// DirectionalLight, SpotLight
if ( model.target !== undefined ) {
model.target.position.fromArray( pos );
sceneGraph.add( model.target );
} else { // Cameras and other Object3Ds
model.lookAt( new THREE.Vector3().fromArray( pos ) );
}
}
}
} );
}
}
// parse the model node for transform details and apply them to the model
function setModelTransforms( FBXTree, model, modelNode ) {
// http://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_euler_html
if ( 'RotationOrder' in modelNode ) {
var enums = [
'XYZ', // default
'XZY',
'YZX',
'ZXY',
'YXZ',
'ZYX',
'SphericXYZ',
];
var value = parseInt( modelNode.RotationOrder.value, 10 );
if ( value > 0 && value < 6 ) {
// model.rotation.order = enums[ value ];
// Note: Euler order other than XYZ is currently not supported, so just display a warning for now
console.warn( 'THREE.FBXLoader: unsupported Euler Order: %s. Currently only XYZ order is supported. Animations and rotations may be incorrect.', enums[ value ] );
} else if ( value === 6 ) {
console.warn( 'THREE.FBXLoader: unsupported Euler Order: Spherical XYZ. Animations and rotations may be incorrect.' );
}
}
if ( 'Lcl_Translation' in modelNode ) {
model.position.fromArray( modelNode.Lcl_Translation.value );
}
if ( 'Lcl_Rotation' in modelNode ) {
var rotation = modelNode.Lcl_Rotation.value.map( THREE.Math.degToRad );
rotation.push( 'ZYX' );
model.quaternion.setFromEuler( new THREE.Euler().fromArray( rotation ) );
}
if ( 'Lcl_Scaling' in modelNode ) {
model.scale.fromArray( modelNode.Lcl_Scaling.value );
}
if ( 'PreRotation' in modelNode ) {
var array = modelNode.PreRotation.value.