three
Version:
JavaScript 3D library
1,007 lines (703 loc) • 24.9 kB
JavaScript
/**
* @author Richard M. / https://github.com/richardmonette
*
* OpenEXR loader which, currently, supports reading 16 bit half data, in either
* uncompressed or PIZ wavelet compressed form.
*
* Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
* implementation, so I have preserved their copyright notices.
*/
// /*
// Copyright (c) 2014 - 2017, Syoyo Fujita
// All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the Syoyo Fujita nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// */
// // TinyEXR contains some OpenEXR code, which is licensed under ------------
// ///////////////////////////////////////////////////////////////////////////
// //
// // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// // Digital Ltd. LLC
// //
// // All rights reserved.
// //
// // Redistribution and use in source and binary forms, with or without
// // modification, are permitted provided that the following conditions are
// // met:
// // * Redistributions of source code must retain the above copyright
// // notice, this list of conditions and the following disclaimer.
// // * Redistributions in binary form must reproduce the above
// // copyright notice, this list of conditions and the following disclaimer
// // in the documentation and/or other materials provided with the
// // distribution.
// // * Neither the name of Industrial Light & Magic nor the names of
// // its contributors may be used to endorse or promote products derived
// // from this software without specific prior written permission.
// //
// // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// //
// ///////////////////////////////////////////////////////////////////////////
// // End of OpenEXR license -------------------------------------------------
THREE.EXRLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.EXRLoader.prototype = Object.create( THREE.DataTextureLoader.prototype );
THREE.EXRLoader.prototype._parser = function ( buffer ) {
const USHORT_RANGE = (1 << 16);
const BITMAP_SIZE = (USHORT_RANGE >> 3);
const HUF_ENCBITS = 16; // literal (value) bit length
const HUF_DECBITS = 14; // decoding bit size (>= 8)
const HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size
const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
const HUF_DECMASK = HUF_DECSIZE - 1;
const SHORT_ZEROCODE_RUN = 59;
const LONG_ZEROCODE_RUN = 63;
const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
const LONGEST_LONG_RUN = 255 + SHORTEST_LONG_RUN;
const BYTES_PER_HALF = 2;
const ULONG_SIZE = 8;
const FLOAT32_SIZE = 4;
const INT32_SIZE = 4;
const INT16_SIZE = 2;
const INT8_SIZE = 1;
function reverseLutFromBitmap(bitmap, lut) {
var k = 0;
for (var i = 0; i < USHORT_RANGE; ++i) {
if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) {
lut[k++] = i;
}
}
var n = k - 1;
while (k < USHORT_RANGE) lut[k++] = 0;
return n;
}
function hufClearDecTable(hdec) {
for (var i = 0; i < HUF_DECSIZE; i++) {
hdec[i] = {}
hdec[i].len = 0;
hdec[i].lit = 0;
hdec[i].p = null;
}
}
const getBitsReturn = { l: 0, c: 0, lc: 0 };
function getBits(nBits, c, lc, uInt8Array, inOffset) {
while (lc < nBits) {
c = (c << 8) | parseUint8Array(uInt8Array, inOffset);
lc += 8;
}
lc -= nBits;
getBitsReturn.l = (c >> lc) & ((1 << nBits) - 1);
getBitsReturn.c = c;
getBitsReturn.lc = lc;
}
const hufTableBuffer = new Array(59);
function hufCanonicalCodeTable(hcode) {
for (var i = 0; i <= 58; ++i) hufTableBuffer[i] = 0;
for (var i = 0; i < HUF_ENCSIZE; ++i) hufTableBuffer[hcode[i]] += 1;
var c = 0;
for (var i = 58; i > 0; --i) {
var nc = ((c + hufTableBuffer[i]) >> 1);
hufTableBuffer[i] = c;
c = nc;
}
for (var i = 0; i < HUF_ENCSIZE; ++i) {
var l = hcode[i];
if (l > 0) hcode[i] = l | (hufTableBuffer[l]++ << 6);
}
}
function hufUnpackEncTable(uInt8Array, inDataView, inOffset, ni, im, iM, hcode) {
var p = inOffset;
var c = 0;
var lc = 0;
for (; im <= iM; im++) {
if (p.value - inOffset.value > ni) {
return false;
}
getBits(6, c, lc, uInt8Array, p);
var l = getBitsReturn.l;
c = getBitsReturn.c;
lc = getBitsReturn.lc;
hcode[im] = l;
if (l == LONG_ZEROCODE_RUN) {
if (p.value - inOffset.value > ni) {
throw 'Something wrong with hufUnpackEncTable';
}
getBits(8, c, lc, uInt8Array, p);
var zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
c = getBitsReturn.c;
lc = getBitsReturn.lc;
if (im + zerun > iM + 1) {
throw 'Something wrong with hufUnpackEncTable';
}
while (zerun--) hcode[im++] = 0;
im--;
} else if (l >= SHORT_ZEROCODE_RUN) {
var zerun = l - SHORT_ZEROCODE_RUN + 2;
if (im + zerun > iM + 1) {
throw 'Something wrong with hufUnpackEncTable';
}
while (zerun--) hcode[im++] = 0;
im--;
}
}
hufCanonicalCodeTable(hcode);
}
function hufLength(code) { return code & 63; }
function hufCode(code) { return code >> 6; }
function hufBuildDecTable(hcode, im, iM, hdecod) {
for (; im <= iM; im++) {
var c = hufCode(hcode[im]);
var l = hufLength(hcode[im]);
if (c >> l) {
throw 'Invalid table entry';
}
if (l > HUF_DECBITS) {
var pl = hdecod[(c >> (l - HUF_DECBITS))];
if (pl.len) {
throw 'Invalid table entry';
}
pl.lit++;
if (pl.p) {
var p = pl.p;
pl.p = new Array(pl.lit);
for (var i = 0; i < pl.lit - 1; ++i) {
pl.p[i] = p[i];
}
} else {
pl.p = new Array(1);
}
pl.p[pl.lit - 1] = im;
} else if (l) {
var plOffset = 0;
for (var i = 1 << (HUF_DECBITS - l); i > 0; i--) {
var pl = hdecod[(c << (HUF_DECBITS - l)) + plOffset];
if (pl.len || pl.p) {
throw 'Invalid table entry';
}
pl.len = l;
pl.lit = im;
plOffset++;
}
}
}
return true;
}
const getCharReturn = { c: 0, lc: 0 };
function getChar(c, lc, uInt8Array, inOffset) {
c = (c << 8) | parseUint8Array(uInt8Array, inOffset);
lc += 8;
getCharReturn.c = c;
getCharReturn.lc = lc;
}
const getCodeReturn = { c: 0, lc: 0 };
function getCode(po, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset) {
if (po == rlc) {
if (lc < 8) {
getChar(c, lc, uInt8Array, inOffset);
c = getCharReturn.c;
lc = getCharReturn.lc;
}
lc -= 8;
var cs = (c >> lc);
if (out + cs > oe) {
throw 'Issue with getCode';
}
var s = out[-1];
while (cs-- > 0) {
outBuffer[outBufferOffset.value++] = s;
}
} else if (outBufferOffset.value < outBufferEndOffset) {
outBuffer[outBufferOffset.value++] = po;
} else {
throw 'Issue with getCode';
}
getCodeReturn.c = c;
getCodeReturn.lc = lc;
}
var NBITS = 16;
var A_OFFSET = 1 << (NBITS - 1);
var M_OFFSET = 1 << (NBITS - 1);
var MOD_MASK = (1 << NBITS) - 1;
function UInt16(value) {
return (value & 0xFFFF);
};
function Int16(value) {
var ref = UInt16(value);
return (ref > 0x7FFF) ? ref - 0x10000 : ref;
};
const wdec14Return = { a: 0, b: 0 };
function wdec14(l, h) {
var ls = Int16(l);
var hs = Int16(h);
var hi = hs;
var ai = ls + (hi & 1) + (hi >> 1);
var as = ai;
var bs = ai - hi;
wdec14Return.a = as;
wdec14Return.b = bs;
}
function wav2Decode(j, buffer, nx, ox, ny, oy, mx) {
var n = (nx > ny) ? ny : nx;
var p = 1;
var p2;
while (p <= n) p <<= 1;
p >>= 1;
p2 = p;
p >>= 1;
while (p >= 1) {
var py = 0;
var ey = py + oy * (ny - p2);
var oy1 = oy * p;
var oy2 = oy * p2;
var ox1 = ox * p;
var ox2 = ox * p2;
var i00, i01, i10, i11;
for (; py <= ey; py += oy2) {
var px = py;
var ex = py + ox * (nx - p2);
for (; px <= ex; px += ox2) {
var p01 = px + ox1;
var p10 = px + oy1;
var p11 = p10 + ox1;
wdec14(buffer[px + j], buffer[p10 + j]);
i00 = wdec14Return.a;
i10 = wdec14Return.b;
wdec14(buffer[p01 + j], buffer[p11 + j]);
i01 = wdec14Return.a;
i11 = wdec14Return.b;
wdec14(i00, i01);
buffer[px + j] = wdec14Return.a;
buffer[p01 + j] = wdec14Return.b;
wdec14(i10, i11);
buffer[p10 + j] = wdec14Return.a;
buffer[p11 + j] = wdec14Return.b;
}
if (nx & p) {
var p10 = px + oy1;
wdec14(buffer[px + j], buffer[p10 + j]);
i00 = wdec14Return.a;
buffer[p10 + j] = wdec14Return.b;
buffer[px + j] = i00;
}
}
if (ny & p) {
var px = py;
var ex = py + ox * (nx - p2);
for (; px <= ex; px += ox2) {
var p01 = px + ox1;
wdec14(buffer[px + j], buffer[p01 + j]);
i00 = wdec14Return.a;
buffer[p01 + j] = wdec14Return.b;
buffer[px + j] = i00;
}
}
p2 = p;
p >>= 1;
}
return py;
}
function hufDecode(encodingTable, decodingTable, uInt8Array, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset) {
var c = 0;
var lc = 0;
var outBufferEndOffset = no;
var inOffsetEnd = Math.trunc(inOffset.value + (ni + 7) / 8);
while (inOffset.value < inOffsetEnd) {
getChar(c, lc, uInt8Array, inOffset);
c = getCharReturn.c;
lc = getCharReturn.lc;
while (lc >= HUF_DECBITS) {
var index = (c >> (lc - HUF_DECBITS)) & HUF_DECMASK;
var pl = decodingTable[index];
if (pl.len) {
lc -= pl.len;
getCode(pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset);
c = getCodeReturn.c;
lc = getCodeReturn.lc;
} else {
if (!pl.p) {
throw 'hufDecode issues';
}
var j;
for (j = 0; j < pl.lit; j++) {
var l = hufLength(encodingTable[pl.p[j]]);
while (lc < l && inOffset.value < inOffsetEnd) {
getChar(c, lc, uInt8Array, inOffset);
c = getCharReturn.c;
lc = getCharReturn.lc;
}
if (lc >= l) {
if (hufCode(encodingTable[pl.p[j]]) ==
((c >> (lc - l)) & ((1 << l) - 1))) {
lc -= l;
getCode(pl.p[j], rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset);
c = getCodeReturn.c;
lc = getCodeReturn.lc;
break;
}
}
}
if (j == pl.lit) {
throw 'hufDecode issues';
}
}
}
}
var i = (8 - ni) & 7;
c >>= i;
lc -= i;
while (lc > 0) {
var pl = decodingTable[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
if (pl.len) {
lc -= pl.len;
getCode(pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset);
c = getCodeReturn.c;
lc = getCodeReturn.lc;
} else {
throw 'hufDecode issues';
}
}
return true;
}
function hufUncompress(uInt8Array, inDataView, inOffset, nCompressed, outBuffer, outOffset, nRaw) {
var initialInOffset = inOffset.value;
var im = parseUint32(inDataView, inOffset);
var iM = parseUint32(inDataView, inOffset);
inOffset.value += 4;
var nBits = parseUint32(inDataView, inOffset);
inOffset.value += 4;
if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) {
throw 'Something wrong with HUF_ENCSIZE';
}
var freq = new Array(HUF_ENCSIZE);
var hdec = new Array(HUF_DECSIZE);
hufClearDecTable(hdec);
var ni = nCompressed - (inOffset.value - initialInOffset);
hufUnpackEncTable(uInt8Array, inDataView, inOffset, ni, im, iM, freq);
if (nBits > 8 * (nCompressed - (inOffset.value - initialInOffset))) {
throw 'Something wrong with hufUncompress';
}
hufBuildDecTable(freq, im, iM, hdec);
hufDecode(freq, hdec, uInt8Array, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset);
}
function applyLut(lut, data, nData) {
for (var i = 0; i < nData; ++i) {
data[i] = lut[data[i]];
}
}
function decompressPIZ(outBuffer, outOffset, uInt8Array, inDataView, inOffset, tmpBufSize, num_channels, exrChannelInfos, dataWidth, num_lines) {
var bitmap = new Uint8Array(BITMAP_SIZE);
var minNonZero = parseUint16(inDataView, inOffset);
var maxNonZero = parseUint16(inDataView, inOffset);
if (maxNonZero >= BITMAP_SIZE) {
throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE'
}
if (minNonZero <= maxNonZero) {
for (var i = 0; i < maxNonZero - minNonZero + 1; i++) {
bitmap[i + minNonZero] = parseUint8(inDataView, inOffset);
}
}
var lut = new Uint16Array(USHORT_RANGE);
var maxValue = reverseLutFromBitmap(bitmap, lut);
var length = parseUint32(inDataView, inOffset);
hufUncompress(uInt8Array, inDataView, inOffset, length, outBuffer, outOffset, tmpBufSize);
var pizChannelData = new Array(num_channels);
var outBufferEnd = 0
for (var i = 0; i < num_channels; i++) {
var exrChannelInfo = exrChannelInfos[i];
var pixelSize = 2; // assumes HALF_FLOAT
pizChannelData[i] = {};
pizChannelData[i]['start'] = outBufferEnd;
pizChannelData[i]['end'] = pizChannelData[i]['start'];
pizChannelData[i]['nx'] = dataWidth;
pizChannelData[i]['ny'] = num_lines;
pizChannelData[i]['size'] = 1;
outBufferEnd += pizChannelData[i].nx * pizChannelData[i].ny * pizChannelData[i].size;
}
var fooOffset = 0;
for (var i = 0; i < num_channels; i++) {
for (var j = 0; j < pizChannelData[i].size; ++j) {
fooOffset += wav2Decode(
j + fooOffset,
outBuffer,
pizChannelData[i].nx,
pizChannelData[i].size,
pizChannelData[i].ny,
pizChannelData[i].nx * pizChannelData[i].size,
maxValue
);
}
}
applyLut(lut, outBuffer, outBufferEnd);
return true;
}
function parseNullTerminatedString( buffer, offset ) {
var uintBuffer = new Uint8Array( buffer );
var endOffset = 0;
while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
endOffset += 1;
}
var stringValue = new TextDecoder().decode(
uintBuffer.slice( offset.value, offset.value + endOffset )
);
offset.value = offset.value + endOffset + 1;
return stringValue;
}
function parseFixedLengthString( buffer, offset, size ) {
var stringValue = new TextDecoder().decode(
new Uint8Array( buffer ).slice( offset.value, offset.value + size )
);
offset.value = offset.value + size;
return stringValue;
}
function parseUlong( dataView, offset ) {
var uLong = dataView.getUint32( 0, true );
offset.value = offset.value + ULONG_SIZE;
return uLong;
}
function parseUint32( dataView, offset ) {
var Uint32 = dataView.getUint32(offset.value, true);
offset.value = offset.value + INT32_SIZE;
return Uint32;
}
function parseUint8Array( uInt8Array, offset ) {
var Uint8 = uInt8Array[offset.value];
offset.value = offset.value + INT8_SIZE;
return Uint8;
}
function parseUint8( dataView, offset ) {
var Uint8 = dataView.getUint8(offset.value);
offset.value = offset.value + INT8_SIZE;
return Uint8;
}
function parseFloat32( dataView, offset ) {
var float = dataView.getFloat32(offset.value, true);
offset.value += FLOAT32_SIZE;
return float;
}
// https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
function decodeFloat16( binary ) {
var exponent = ( binary & 0x7C00 ) >> 10,
fraction = binary & 0x03FF;
return ( binary >> 15 ? - 1 : 1 ) * (
exponent ?
(
exponent === 0x1F ?
fraction ? NaN : Infinity :
Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 )
) :
6.103515625e-5 * ( fraction / 0x400 )
);
}
function parseUint16( dataView, offset ) {
var Uint16 = dataView.getUint16( offset.value, true );
offset.value += INT16_SIZE;
return Uint16;
}
function parseFloat16( buffer, offset ) {
return decodeFloat16( parseUint16( buffer, offset) );
}
function parseChlist( dataView, buffer, offset, size ) {
var startOffset = offset.value;
var channels = [];
while ( offset.value < ( startOffset + size - 1 ) ) {
var name = parseNullTerminatedString( buffer, offset );
var pixelType = parseUint32( dataView, offset ); // TODO: Cast this to UINT, HALF or FLOAT
var pLinear = parseUint8( dataView, offset );
offset.value += 3; // reserved, three chars
var xSampling = parseUint32( dataView, offset );
var ySampling = parseUint32( dataView, offset );
channels.push( {
name: name,
pixelType: pixelType,
pLinear: pLinear,
xSampling: xSampling,
ySampling: ySampling
} );
}
offset.value += 1;
return channels;
}
function parseChromaticities( dataView, offset ) {
var redX = parseFloat32( dataView, offset );
var redY = parseFloat32( dataView, offset );
var greenX = parseFloat32( dataView, offset );
var greenY = parseFloat32( dataView, offset );
var blueX = parseFloat32( dataView, offset );
var blueY = parseFloat32( dataView, offset );
var whiteX = parseFloat32( dataView, offset );
var whiteY = parseFloat32( dataView, offset );
return { redX: redX, redY: redY, greenX, greenY, blueX, blueY, whiteX, whiteY };
}
function parseCompression( dataView, offset ) {
var compressionCodes = [
'NO_COMPRESSION',
'RLE_COMPRESSION',
'ZIPS_COMPRESSION',
'ZIP_COMPRESSION',
'PIZ_COMPRESSION'
];
var compression = parseUint8( dataView, offset );
return compressionCodes[ compression ];
}
function parseBox2i( dataView, offset ) {
var xMin = parseUint32( dataView, offset );
var yMin = parseUint32( dataView, offset );
var xMax = parseUint32( dataView, offset );
var yMax = parseUint32( dataView, offset );
return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax };
}
function parseLineOrder( dataView, offset ) {
var lineOrders = [
'INCREASING_Y'
];
var lineOrder = parseUint8( dataView, offset );
return lineOrders[ lineOrder ];
}
function parseV2f( dataView, offset ) {
var x = parseFloat32( dataView, offset );
var y = parseFloat32( dataView, offset );
return [ x, y ];
}
function parseValue( dataView, buffer, offset, type, size ) {
if ( type == 'string' || type == 'iccProfile' ) {
return parseFixedLengthString( buffer, offset, size );
} else if ( type == 'chlist' ) {
return parseChlist( dataView, buffer, offset, size );
} else if ( type == 'chromaticities' ) {
return parseChromaticities( buffer, offset );
} else if ( type == 'compression' ) {
return parseCompression( dataView, offset );
} else if ( type == 'box2i' ) {
return parseBox2i( dataView, offset );
} else if ( type == 'lineOrder' ) {
return parseLineOrder( dataView, offset );
} else if ( type == 'float' ) {
return parseFloat32( dataView, offset );
} else if ( type == 'v2f' ) {
return parseV2f( dataView, offset );
} else {
throw 'Cannot parse value for unsupported type: ' + type;
}
}
var bufferDataView = new DataView(buffer);
var uInt8Array = new Uint8Array(buffer);
var EXRHeader = {};
var magic = bufferDataView.getUint32( 0, true );
var versionByteZero = bufferDataView.getUint8( 4, true );
var fullMask = bufferDataView.getUint8( 5, true );
// start of header
var offset = { value: 8 }; // start at 8, after magic stuff
var keepReading = true;
while ( keepReading ) {
var attributeName = parseNullTerminatedString( buffer, offset );
if ( attributeName == 0 ) {
keepReading = false;
} else {
var attributeType = parseNullTerminatedString( buffer, offset );
var attributeSize = parseUint32( bufferDataView, offset );
var attributeValue = parseValue( bufferDataView, buffer, offset, attributeType, attributeSize );
EXRHeader[ attributeName ] = attributeValue;
}
}
// offsets
var dataWindowHeight = EXRHeader.dataWindow.yMax + 1;
var scanlineBlockSize = 1; // 1 for NO_COMPRESSION
if (EXRHeader.compression == 'PIZ_COMPRESSION') {
scanlineBlockSize = 32;
}
var numBlocks = dataWindowHeight / scanlineBlockSize;
for ( var i = 0; i < numBlocks; i ++ ) {
var scanlineOffset = parseUlong( bufferDataView, offset );
}
// we should be passed the scanline offset table, start reading pixel data
var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1;
var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1;
var numChannels = EXRHeader.channels.length;
var byteArray = new Float32Array( width * height * numChannels );
var channelOffsets = {
R: 0,
G: 1,
B: 2,
A: 3
};
if (EXRHeader.compression == 'NO_COMPRESSION') {
for ( var y = 0; y < height; y ++ ) {
var y_scanline = parseUint32( buffer, offset );
var dataSize = parseUint32( buffer, offset );
for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
if ( EXRHeader.channels[ channelID ].pixelType == 1 ) {
// HALF
for ( var x = 0; x < width; x ++ ) {
var val = parseFloat16( buffer, offset );
byteArray[ ( ( ( width - y_scanline ) * ( height * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
}
} else {
throw 'Only supported pixel format is HALF';
}
}
}
} else if (EXRHeader.compression == 'PIZ_COMPRESSION') {
for ( var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx++ ) {
var line_no = parseUint32( bufferDataView, offset );
var data_len = parseUint32( bufferDataView, offset );
var tmpBufferSize = width * scanlineBlockSize * (EXRHeader.channels.length * BYTES_PER_HALF);
var tmpBuffer = new Uint16Array(tmpBufferSize);
var tmpOffset = { value: 0 };
decompressPIZ(tmpBuffer, tmpOffset, uInt8Array, bufferDataView, offset, tmpBufferSize, numChannels, EXRHeader.channels, width, scanlineBlockSize);
for ( var line_y = 0; line_y < scanlineBlockSize; line_y ++ ) {
for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
if ( EXRHeader.channels[ channelID ].pixelType == 1 ) {
// HALF
for ( var x = 0; x < width; x ++ ) {
var val = decodeFloat16(tmpBuffer[ (channelID * (scanlineBlockSize * width)) + (line_y * width) + x ]);
var true_y = line_y + (scanlineBlockIdx * scanlineBlockSize);
byteArray[ ( ( (height - true_y) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
}
} else {
throw 'Only supported pixel format is HALF';
}
}
}
}
} else {
throw 'Cannot decompress unsupported compression';
}
return {
header: EXRHeader,
width: width,
height: height,
data: byteArray,
format: THREE.RGBFormat,
type: THREE.FloatType
};
};