UNPKG

three

Version:

JavaScript 3D library

165 lines (116 loc) 4.96 kB
/** * @author Mugen87 / https://github.com/Mugen87 * * see: http://www.blackpawn.com/texts/pqtorus/ */ THREE.TorusKnotBufferGeometry = function ( radius, tube, tubularSegments, radialSegments, p, q ) { THREE.BufferGeometry.call( this ); this.type = 'TorusKnotBufferGeometry'; this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q }; radius = radius || 100; tube = tube || 40; tubularSegments = Math.floor( tubularSegments ) || 64; radialSegments = Math.floor( radialSegments ) || 8; p = p || 2; q = q || 3; // used to calculate buffer length var vertexCount = ( ( radialSegments + 1 ) * ( tubularSegments + 1 ) ); var indexCount = radialSegments * tubularSegments * 2 * 3; // buffers var indices = new THREE.BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ) , 1 ); var vertices = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var normals = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 ); var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 ); // helper variables var i, j, index = 0, indexOffset = 0; var vertex = new THREE.Vector3(); var normal = new THREE.Vector3(); var uv = new THREE.Vector2(); var P1 = new THREE.Vector3(); var P2 = new THREE.Vector3(); var B = new THREE.Vector3(); var T = new THREE.Vector3(); var N = new THREE.Vector3(); // generate vertices, normals and uvs for ( i = 0; i <= tubularSegments; ++ i ) { // the radian "u" is used to calculate the position on the torus curve of the current tubular segement var u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions calculatePositionOnCurve( u, p, q, radius, P1 ); calculatePositionOnCurve( u + 0.01, p, q, radius, P2 ); // calculate orthonormal basis T.subVectors( P2, P1 ); N.addVectors( P2, P1 ); B.crossVectors( T, N ); N.crossVectors( B, T ); // normalize B, N. T can be ignored, we don't use it B.normalize(); N.normalize(); for ( j = 0; j <= radialSegments; ++ j ) { // now calculate the vertices. they are nothing more than an extrusion of the torus curve. // because we extrude a shape in the xy-plane, there is no need to calculate a z-value. var v = j / radialSegments * Math.PI * 2; var cx = - tube * Math.cos( v ); var cy = tube * Math.sin( v ); // now calculate the final vertex position. // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve vertex.x = P1.x + ( cx * N.x + cy * B.x ); vertex.y = P1.y + ( cx * N.y + cy * B.y ); vertex.z = P1.z + ( cx * N.z + cy * B.z ); // vertex vertices.setXYZ( index, vertex.x, vertex.y, vertex.z ); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal) normal.subVectors( vertex, P1 ).normalize(); normals.setXYZ( index, normal.x, normal.y, normal.z ); // uv uv.x = i / tubularSegments; uv.y = j / radialSegments; uvs.setXY( index, uv.x, uv.y ); // increase index index ++; } } // generate indices for ( j = 1; j <= tubularSegments; j ++ ) { for ( i = 1; i <= radialSegments; i ++ ) { // indices var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); var b = ( radialSegments + 1 ) * j + ( i - 1 ); var c = ( radialSegments + 1 ) * j + i; var d = ( radialSegments + 1 ) * ( j - 1 ) + i; // face one indices.setX( indexOffset, a ); indexOffset++; indices.setX( indexOffset, b ); indexOffset++; indices.setX( indexOffset, d ); indexOffset++; // face two indices.setX( indexOffset, b ); indexOffset++; indices.setX( indexOffset, c ); indexOffset++; indices.setX( indexOffset, d ); indexOffset++; } } // build geometry this.setIndex( indices ); this.addAttribute( 'position', vertices ); this.addAttribute( 'normal', normals ); this.addAttribute( 'uv', uvs ); // this function calculates the current position on the torus curve function calculatePositionOnCurve( u, p, q, radius, position ) { var cu = Math.cos( u ); var su = Math.sin( u ); var quOverP = q / p * u; var cs = Math.cos( quOverP ); position.x = radius * ( 2 + cs ) * 0.5 * cu; position.y = radius * ( 2 + cs ) * su * 0.5; position.z = radius * Math.sin( quOverP ) * 0.5; } }; THREE.TorusKnotBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype ); THREE.TorusKnotBufferGeometry.prototype.constructor = THREE.TorusKnotBufferGeometry;