three
Version:
JavaScript 3D library
165 lines (116 loc) • 4.96 kB
JavaScript
/**
* @author Mugen87 / https://github.com/Mugen87
*
* see: http://www.blackpawn.com/texts/pqtorus/
*/
THREE.TorusKnotBufferGeometry = function ( radius, tube, tubularSegments, radialSegments, p, q ) {
THREE.BufferGeometry.call( this );
this.type = 'TorusKnotBufferGeometry';
this.parameters = {
radius: radius,
tube: tube,
tubularSegments: tubularSegments,
radialSegments: radialSegments,
p: p,
q: q
};
radius = radius || 100;
tube = tube || 40;
tubularSegments = Math.floor( tubularSegments ) || 64;
radialSegments = Math.floor( radialSegments ) || 8;
p = p || 2;
q = q || 3;
// used to calculate buffer length
var vertexCount = ( ( radialSegments + 1 ) * ( tubularSegments + 1 ) );
var indexCount = radialSegments * tubularSegments * 2 * 3;
// buffers
var indices = new THREE.BufferAttribute( new ( indexCount > 65535 ? Uint32Array : Uint16Array )( indexCount ) , 1 );
var vertices = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var normals = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3 );
var uvs = new THREE.BufferAttribute( new Float32Array( vertexCount * 2 ), 2 );
// helper variables
var i, j, index = 0, indexOffset = 0;
var vertex = new THREE.Vector3();
var normal = new THREE.Vector3();
var uv = new THREE.Vector2();
var P1 = new THREE.Vector3();
var P2 = new THREE.Vector3();
var B = new THREE.Vector3();
var T = new THREE.Vector3();
var N = new THREE.Vector3();
// generate vertices, normals and uvs
for ( i = 0; i <= tubularSegments; ++ i ) {
// the radian "u" is used to calculate the position on the torus curve of the current tubular segement
var u = i / tubularSegments * p * Math.PI * 2;
// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
calculatePositionOnCurve( u, p, q, radius, P1 );
calculatePositionOnCurve( u + 0.01, p, q, radius, P2 );
// calculate orthonormal basis
T.subVectors( P2, P1 );
N.addVectors( P2, P1 );
B.crossVectors( T, N );
N.crossVectors( B, T );
// normalize B, N. T can be ignored, we don't use it
B.normalize();
N.normalize();
for ( j = 0; j <= radialSegments; ++ j ) {
// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
var v = j / radialSegments * Math.PI * 2;
var cx = - tube * Math.cos( v );
var cy = tube * Math.sin( v );
// now calculate the final vertex position.
// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve
vertex.x = P1.x + ( cx * N.x + cy * B.x );
vertex.y = P1.y + ( cx * N.y + cy * B.y );
vertex.z = P1.z + ( cx * N.z + cy * B.z );
// vertex
vertices.setXYZ( index, vertex.x, vertex.y, vertex.z );
// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
normal.subVectors( vertex, P1 ).normalize();
normals.setXYZ( index, normal.x, normal.y, normal.z );
// uv
uv.x = i / tubularSegments;
uv.y = j / radialSegments;
uvs.setXY( index, uv.x, uv.y );
// increase index
index ++;
}
}
// generate indices
for ( j = 1; j <= tubularSegments; j ++ ) {
for ( i = 1; i <= radialSegments; i ++ ) {
// indices
var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
var b = ( radialSegments + 1 ) * j + ( i - 1 );
var c = ( radialSegments + 1 ) * j + i;
var d = ( radialSegments + 1 ) * ( j - 1 ) + i;
// face one
indices.setX( indexOffset, a ); indexOffset++;
indices.setX( indexOffset, b ); indexOffset++;
indices.setX( indexOffset, d ); indexOffset++;
// face two
indices.setX( indexOffset, b ); indexOffset++;
indices.setX( indexOffset, c ); indexOffset++;
indices.setX( indexOffset, d ); indexOffset++;
}
}
// build geometry
this.setIndex( indices );
this.addAttribute( 'position', vertices );
this.addAttribute( 'normal', normals );
this.addAttribute( 'uv', uvs );
// this function calculates the current position on the torus curve
function calculatePositionOnCurve( u, p, q, radius, position ) {
var cu = Math.cos( u );
var su = Math.sin( u );
var quOverP = q / p * u;
var cs = Math.cos( quOverP );
position.x = radius * ( 2 + cs ) * 0.5 * cu;
position.y = radius * ( 2 + cs ) * su * 0.5;
position.z = radius * Math.sin( quOverP ) * 0.5;
}
};
THREE.TorusKnotBufferGeometry.prototype = Object.create( THREE.BufferGeometry.prototype );
THREE.TorusKnotBufferGeometry.prototype.constructor = THREE.TorusKnotBufferGeometry;