three
Version:
JavaScript 3D library
600 lines (367 loc) • 16.9 kB
JavaScript
import { FrontSide, BackSide, DoubleSide, NearestFilter, LinearFilter, PCFShadowMap, VSMShadowMap, NoBlending, LessEqualCompare, GreaterEqualCompare, DepthFormat, UnsignedIntType, RGFormat, HalfFloatType, FloatType, PCFSoftShadowMap } from '../../constants.js';
import { WebGLRenderTarget } from '../WebGLRenderTarget.js';
import { WebGLCubeRenderTarget } from '../WebGLCubeRenderTarget.js';
import { MeshDepthMaterial } from '../../materials/MeshDepthMaterial.js';
import { MeshDistanceMaterial } from '../../materials/MeshDistanceMaterial.js';
import { ShaderMaterial } from '../../materials/ShaderMaterial.js';
import { BufferAttribute } from '../../core/BufferAttribute.js';
import { BufferGeometry } from '../../core/BufferGeometry.js';
import { Mesh } from '../../objects/Mesh.js';
import { Vector4 } from '../../math/Vector4.js';
import { Vector2 } from '../../math/Vector2.js';
import { Matrix4 } from '../../math/Matrix4.js';
import { Frustum } from '../../math/Frustum.js';
import { DepthTexture } from '../../textures/DepthTexture.js';
import { CubeDepthTexture } from '../../textures/CubeDepthTexture.js';
import * as vsm from '../shaders/ShaderLib/vsm.glsl.js';
import { warn } from '../../utils.js';
import { Vector3 } from '../../math/Vector3.js';
const _cubeDirections = [
/*@__PURE__*/ new Vector3( 1, 0, 0 ), /*@__PURE__*/ new Vector3( - 1, 0, 0 ), /*@__PURE__*/ new Vector3( 0, 1, 0 ),
/*@__PURE__*/ new Vector3( 0, - 1, 0 ), /*@__PURE__*/ new Vector3( 0, 0, 1 ), /*@__PURE__*/ new Vector3( 0, 0, - 1 )
];
const _cubeUps = [
/*@__PURE__*/ new Vector3( 0, - 1, 0 ), /*@__PURE__*/ new Vector3( 0, - 1, 0 ), /*@__PURE__*/ new Vector3( 0, 0, 1 ),
/*@__PURE__*/ new Vector3( 0, 0, - 1 ), /*@__PURE__*/ new Vector3( 0, - 1, 0 ), /*@__PURE__*/ new Vector3( 0, - 1, 0 )
];
const _projScreenMatrix = /*@__PURE__*/ new Matrix4();
const _lightPositionWorld = /*@__PURE__*/ new Vector3();
const _lookTarget = /*@__PURE__*/ new Vector3();
function WebGLShadowMap( renderer, objects, capabilities ) {
let _frustum = new Frustum();
const _shadowMapSize = new Vector2(),
_viewportSize = new Vector2(),
_viewport = new Vector4(),
_depthMaterial = new MeshDepthMaterial(),
_distanceMaterial = new MeshDistanceMaterial(),
_materialCache = {},
_maxTextureSize = capabilities.maxTextureSize;
const shadowSide = { [ FrontSide ]: BackSide, [ BackSide ]: FrontSide, [ DoubleSide ]: DoubleSide };
const shadowMaterialVertical = new ShaderMaterial( {
defines: {
VSM_SAMPLES: 8
},
uniforms: {
shadow_pass: { value: null },
resolution: { value: new Vector2() },
radius: { value: 4.0 }
},
vertexShader: vsm.vertex,
fragmentShader: vsm.fragment
} );
const shadowMaterialHorizontal = shadowMaterialVertical.clone();
shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1;
const fullScreenTri = new BufferGeometry();
fullScreenTri.setAttribute(
'position',
new BufferAttribute(
new Float32Array( [ - 1, - 1, 0.5, 3, - 1, 0.5, - 1, 3, 0.5 ] ),
3
)
);
const fullScreenMesh = new Mesh( fullScreenTri, shadowMaterialVertical );
const scope = this;
this.enabled = false;
this.autoUpdate = true;
this.needsUpdate = false;
this.type = PCFShadowMap;
let _previousType = this.type;
this.render = function ( lights, scene, camera ) {
if ( scope.enabled === false ) return;
if ( scope.autoUpdate === false && scope.needsUpdate === false ) return;
if ( lights.length === 0 ) return;
if ( lights.type === PCFSoftShadowMap ) {
warn( 'WebGLShadowMap: PCFSoftShadowMap has been deprecated. Using PCFShadowMap instead.' );
lights.type = PCFShadowMap;
}
const currentRenderTarget = renderer.getRenderTarget();
const activeCubeFace = renderer.getActiveCubeFace();
const activeMipmapLevel = renderer.getActiveMipmapLevel();
const _state = renderer.state;
// Set GL state for depth map.
_state.setBlending( NoBlending );
if ( _state.buffers.depth.getReversed() === true ) {
_state.buffers.color.setClear( 0, 0, 0, 0 );
} else {
_state.buffers.color.setClear( 1, 1, 1, 1 );
}
_state.buffers.depth.setTest( true );
_state.setScissorTest( false );
// check for shadow map type changes
const typeChanged = _previousType !== this.type;
// When shadow map type changes, materials need recompilation because sampler types change
// (sampler2DShadow for PCF vs sampler2D for Basic)
if ( typeChanged ) {
scene.traverse( function ( object ) {
if ( object.material ) {
if ( Array.isArray( object.material ) ) {
object.material.forEach( mat => mat.needsUpdate = true );
} else {
object.material.needsUpdate = true;
}
}
} );
}
// render depth map
for ( let i = 0, il = lights.length; i < il; i ++ ) {
const light = lights[ i ];
const shadow = light.shadow;
if ( shadow === undefined ) {
warn( 'WebGLShadowMap:', light, 'has no shadow.' );
continue;
}
if ( shadow.autoUpdate === false && shadow.needsUpdate === false ) continue;
_shadowMapSize.copy( shadow.mapSize );
const shadowFrameExtents = shadow.getFrameExtents();
_shadowMapSize.multiply( shadowFrameExtents );
_viewportSize.copy( shadow.mapSize );
if ( _shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize ) {
if ( _shadowMapSize.x > _maxTextureSize ) {
_viewportSize.x = Math.floor( _maxTextureSize / shadowFrameExtents.x );
_shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x;
shadow.mapSize.x = _viewportSize.x;
}
if ( _shadowMapSize.y > _maxTextureSize ) {
_viewportSize.y = Math.floor( _maxTextureSize / shadowFrameExtents.y );
_shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y;
shadow.mapSize.y = _viewportSize.y;
}
}
if ( shadow.map === null || typeChanged === true ) {
if ( shadow.map !== null ) {
if ( shadow.map.depthTexture !== null ) {
shadow.map.depthTexture.dispose();
shadow.map.depthTexture = null;
}
shadow.map.dispose();
}
if ( this.type === VSMShadowMap ) {
if ( light.isPointLight ) {
warn( 'WebGLShadowMap: VSM shadow maps are not supported for PointLights. Use PCF or BasicShadowMap instead.' );
continue;
}
shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, {
format: RGFormat,
type: HalfFloatType,
minFilter: LinearFilter,
magFilter: LinearFilter,
generateMipmaps: false
} );
shadow.map.texture.name = light.name + '.shadowMap';
// Native depth texture for VSM - depth is captured here, then blurred into the color texture
shadow.map.depthTexture = new DepthTexture( _shadowMapSize.x, _shadowMapSize.y, FloatType );
shadow.map.depthTexture.name = light.name + '.shadowMapDepth';
shadow.map.depthTexture.format = DepthFormat;
shadow.map.depthTexture.compareFunction = null; // For regular sampling (not shadow comparison)
shadow.map.depthTexture.minFilter = NearestFilter;
shadow.map.depthTexture.magFilter = NearestFilter;
} else {
if ( light.isPointLight ) {
shadow.map = new WebGLCubeRenderTarget( _shadowMapSize.x );
shadow.map.depthTexture = new CubeDepthTexture( _shadowMapSize.x, UnsignedIntType );
} else {
shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y );
shadow.map.depthTexture = new DepthTexture( _shadowMapSize.x, _shadowMapSize.y, UnsignedIntType );
}
shadow.map.depthTexture.name = light.name + '.shadowMap';
shadow.map.depthTexture.format = DepthFormat;
const reversedDepthBuffer = renderer.state.buffers.depth.getReversed();
if ( this.type === PCFShadowMap ) {
shadow.map.depthTexture.compareFunction = reversedDepthBuffer ? GreaterEqualCompare : LessEqualCompare;
shadow.map.depthTexture.minFilter = LinearFilter;
shadow.map.depthTexture.magFilter = LinearFilter;
} else {
shadow.map.depthTexture.compareFunction = null;
shadow.map.depthTexture.minFilter = NearestFilter;
shadow.map.depthTexture.magFilter = NearestFilter;
}
}
shadow.camera.updateProjectionMatrix();
}
// For cube render targets (PointLights), render all 6 faces. Otherwise, render once.
const faceCount = shadow.map.isWebGLCubeRenderTarget ? 6 : 1;
for ( let face = 0; face < faceCount; face ++ ) {
// For cube render targets, render to each face separately
if ( shadow.map.isWebGLCubeRenderTarget ) {
renderer.setRenderTarget( shadow.map, face );
renderer.clear();
} else {
// For 2D render targets, use viewports
if ( face === 0 ) {
renderer.setRenderTarget( shadow.map );
renderer.clear();
}
const viewport = shadow.getViewport( face );
_viewport.set(
_viewportSize.x * viewport.x,
_viewportSize.y * viewport.y,
_viewportSize.x * viewport.z,
_viewportSize.y * viewport.w
);
_state.viewport( _viewport );
}
if ( light.isPointLight ) {
const camera = shadow.camera;
const shadowMatrix = shadow.matrix;
const far = light.distance || camera.far;
if ( far !== camera.far ) {
camera.far = far;
camera.updateProjectionMatrix();
}
_lightPositionWorld.setFromMatrixPosition( light.matrixWorld );
camera.position.copy( _lightPositionWorld );
_lookTarget.copy( camera.position );
_lookTarget.add( _cubeDirections[ face ] );
camera.up.copy( _cubeUps[ face ] );
camera.lookAt( _lookTarget );
camera.updateMatrixWorld();
shadowMatrix.makeTranslation( - _lightPositionWorld.x, - _lightPositionWorld.y, - _lightPositionWorld.z );
_projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
shadow._frustum.setFromProjectionMatrix( _projScreenMatrix, camera.coordinateSystem, camera.reversedDepth );
} else {
shadow.updateMatrices( light );
}
_frustum = shadow.getFrustum();
renderObject( scene, camera, shadow.camera, light, this.type );
}
// do blur pass for VSM
if ( shadow.isPointLightShadow !== true && this.type === VSMShadowMap ) {
VSMPass( shadow, camera );
}
shadow.needsUpdate = false;
}
_previousType = this.type;
scope.needsUpdate = false;
renderer.setRenderTarget( currentRenderTarget, activeCubeFace, activeMipmapLevel );
};
function VSMPass( shadow, camera ) {
const geometry = objects.update( fullScreenMesh );
if ( shadowMaterialVertical.defines.VSM_SAMPLES !== shadow.blurSamples ) {
shadowMaterialVertical.defines.VSM_SAMPLES = shadow.blurSamples;
shadowMaterialHorizontal.defines.VSM_SAMPLES = shadow.blurSamples;
shadowMaterialVertical.needsUpdate = true;
shadowMaterialHorizontal.needsUpdate = true;
}
if ( shadow.mapPass === null ) {
shadow.mapPass = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, {
format: RGFormat,
type: HalfFloatType
} );
}
// vertical pass - read from native depth texture
shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.depthTexture;
shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize;
shadowMaterialVertical.uniforms.radius.value = shadow.radius;
renderer.setRenderTarget( shadow.mapPass );
renderer.clear();
renderer.renderBufferDirect( camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null );
// horizontal pass
shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture;
shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize;
shadowMaterialHorizontal.uniforms.radius.value = shadow.radius;
renderer.setRenderTarget( shadow.map );
renderer.clear();
renderer.renderBufferDirect( camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null );
}
function getDepthMaterial( object, material, light, type ) {
let result = null;
const customMaterial = ( light.isPointLight === true ) ? object.customDistanceMaterial : object.customDepthMaterial;
if ( customMaterial !== undefined ) {
result = customMaterial;
} else {
result = ( light.isPointLight === true ) ? _distanceMaterial : _depthMaterial;
if ( ( renderer.localClippingEnabled && material.clipShadows === true && Array.isArray( material.clippingPlanes ) && material.clippingPlanes.length !== 0 ) ||
( material.displacementMap && material.displacementScale !== 0 ) ||
( material.alphaMap && material.alphaTest > 0 ) ||
( material.map && material.alphaTest > 0 ) ||
( material.alphaToCoverage === true ) ) {
// in this case we need a unique material instance reflecting the
// appropriate state
const keyA = result.uuid, keyB = material.uuid;
let materialsForVariant = _materialCache[ keyA ];
if ( materialsForVariant === undefined ) {
materialsForVariant = {};
_materialCache[ keyA ] = materialsForVariant;
}
let cachedMaterial = materialsForVariant[ keyB ];
if ( cachedMaterial === undefined ) {
cachedMaterial = result.clone();
materialsForVariant[ keyB ] = cachedMaterial;
material.addEventListener( 'dispose', onMaterialDispose );
}
result = cachedMaterial;
}
}
result.visible = material.visible;
result.wireframe = material.wireframe;
if ( type === VSMShadowMap ) {
result.side = ( material.shadowSide !== null ) ? material.shadowSide : material.side;
} else {
result.side = ( material.shadowSide !== null ) ? material.shadowSide : shadowSide[ material.side ];
}
result.alphaMap = material.alphaMap;
result.alphaTest = ( material.alphaToCoverage === true ) ? 0.5 : material.alphaTest; // approximate alphaToCoverage by using a fixed alphaTest value
result.map = material.map;
result.clipShadows = material.clipShadows;
result.clippingPlanes = material.clippingPlanes;
result.clipIntersection = material.clipIntersection;
result.displacementMap = material.displacementMap;
result.displacementScale = material.displacementScale;
result.displacementBias = material.displacementBias;
result.wireframeLinewidth = material.wireframeLinewidth;
result.linewidth = material.linewidth;
if ( light.isPointLight === true && result.isMeshDistanceMaterial === true ) {
const materialProperties = renderer.properties.get( result );
materialProperties.light = light;
}
return result;
}
function renderObject( object, camera, shadowCamera, light, type ) {
if ( object.visible === false ) return;
const visible = object.layers.test( camera.layers );
if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) {
if ( ( object.castShadow || ( object.receiveShadow && type === VSMShadowMap ) ) && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) {
object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld );
const geometry = objects.update( object );
const material = object.material;
if ( Array.isArray( material ) ) {
const groups = geometry.groups;
for ( let k = 0, kl = groups.length; k < kl; k ++ ) {
const group = groups[ k ];
const groupMaterial = material[ group.materialIndex ];
if ( groupMaterial && groupMaterial.visible ) {
const depthMaterial = getDepthMaterial( object, groupMaterial, light, type );
object.onBeforeShadow( renderer, object, camera, shadowCamera, geometry, depthMaterial, group );
renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group );
object.onAfterShadow( renderer, object, camera, shadowCamera, geometry, depthMaterial, group );
}
}
} else if ( material.visible ) {
const depthMaterial = getDepthMaterial( object, material, light, type );
object.onBeforeShadow( renderer, object, camera, shadowCamera, geometry, depthMaterial, null );
renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null );
object.onAfterShadow( renderer, object, camera, shadowCamera, geometry, depthMaterial, null );
}
}
}
const children = object.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
renderObject( children[ i ], camera, shadowCamera, light, type );
}
}
function onMaterialDispose( event ) {
const material = event.target;
material.removeEventListener( 'dispose', onMaterialDispose );
// make sure to remove the unique distance/depth materials used for shadow map rendering
for ( const id in _materialCache ) {
const cache = _materialCache[ id ];
const uuid = event.target.uuid;
if ( uuid in cache ) {
const shadowMaterial = cache[ uuid ];
shadowMaterial.dispose();
delete cache[ uuid ];
}
}
}
}
export { WebGLShadowMap };