UNPKG

three

Version:

JavaScript 3D library

1,175 lines (717 loc) 26.9 kB
import { Box3, Color, DoubleSide, Frustum, Matrix3, Matrix4, Vector2, Vector3, Vector4 } from 'three'; class RenderableObject { constructor() { this.id = 0; this.object = null; this.z = 0; this.renderOrder = 0; } } // class RenderableFace { constructor() { this.id = 0; this.v1 = new RenderableVertex(); this.v2 = new RenderableVertex(); this.v3 = new RenderableVertex(); this.normalModel = new Vector3(); this.vertexNormalsModel = [ new Vector3(), new Vector3(), new Vector3() ]; this.vertexNormalsLength = 0; this.color = new Color(); this.material = null; this.uvs = [ new Vector2(), new Vector2(), new Vector2() ]; this.z = 0; this.renderOrder = 0; } } // class RenderableVertex { constructor() { this.position = new Vector3(); this.positionWorld = new Vector3(); this.positionScreen = new Vector4(); this.visible = true; } copy( vertex ) { this.positionWorld.copy( vertex.positionWorld ); this.positionScreen.copy( vertex.positionScreen ); } } // class RenderableLine { constructor() { this.id = 0; this.v1 = new RenderableVertex(); this.v2 = new RenderableVertex(); this.vertexColors = [ new Color(), new Color() ]; this.material = null; this.z = 0; this.renderOrder = 0; } } // class RenderableSprite { constructor() { this.id = 0; this.object = null; this.x = 0; this.y = 0; this.z = 0; this.rotation = 0; this.scale = new Vector2(); this.material = null; this.renderOrder = 0; } } /** * This class can project a given scene in 3D space into a 2D representation * used for rendering with a 2D API. `Projector` is currently used by {@link SVGRenderer} * and was previously used by the legacy `CanvasRenderer`. * * @three_import import { Projector } from 'three/addons/renderers/Projector.js'; */ class Projector { /** * Constructs a new projector. */ constructor() { let _object, _objectCount, _objectPoolLength = 0, _vertex, _vertexCount, _vertexPoolLength = 0, _face, _faceCount, _facePoolLength = 0, _line, _lineCount, _linePoolLength = 0, _sprite, _spriteCount, _spritePoolLength = 0, _modelMatrix, _clipInput = [], _clipOutput = []; const _renderData = { objects: [], lights: [], elements: [] }, _vector3 = new Vector3(), _vector4 = new Vector4(), _clipBox = new Box3( new Vector3( - 1, - 1, - 1 ), new Vector3( 1, 1, 1 ) ), _boundingBox = new Box3(), _points3 = new Array( 3 ), _viewMatrix = new Matrix4(), _viewProjectionMatrix = new Matrix4(), _modelViewProjectionMatrix = new Matrix4(), _frustum = new Frustum(), _objectPool = [], _vertexPool = [], _facePool = [], _linePool = [], _spritePool = [], _clipVertexPool = [], _clipPos1 = new Vector4(), _clipPos2 = new Vector4(), _clipPos3 = new Vector4(), _screenVertexPool = [], _clipInputVertices = [ null, null, null ], _clipPlanes = [ { sign: + 1 }, { sign: - 1 } ]; // function RenderList() { const normals = []; const colors = []; const uvs = []; let object = null; const normalMatrix = new Matrix3(); function setObject( value ) { object = value; normalMatrix.getNormalMatrix( object.matrixWorld ); normals.length = 0; colors.length = 0; uvs.length = 0; } function projectVertex( vertex ) { const position = vertex.position; const positionWorld = vertex.positionWorld; const positionScreen = vertex.positionScreen; positionWorld.copy( position ).applyMatrix4( _modelMatrix ); positionScreen.copy( positionWorld ).applyMatrix4( _viewProjectionMatrix ); const invW = 1 / positionScreen.w; positionScreen.x *= invW; positionScreen.y *= invW; positionScreen.z *= invW; vertex.visible = positionScreen.x >= - 1 && positionScreen.x <= 1 && positionScreen.y >= - 1 && positionScreen.y <= 1 && positionScreen.z >= - 1 && positionScreen.z <= 1; } function pushVertex( x, y, z ) { _vertex = getNextVertexInPool(); _vertex.position.set( x, y, z ); projectVertex( _vertex ); } function pushNormal( x, y, z ) { normals.push( x, y, z ); } function pushColor( r, g, b ) { colors.push( r, g, b ); } function pushUv( x, y ) { uvs.push( x, y ); } function checkTriangleVisibility( v1, v2, v3 ) { if ( v1.visible === true || v2.visible === true || v3.visible === true ) return true; _points3[ 0 ] = v1.positionScreen; _points3[ 1 ] = v2.positionScreen; _points3[ 2 ] = v3.positionScreen; return _clipBox.intersectsBox( _boundingBox.setFromPoints( _points3 ) ); } function checkBackfaceCulling( v1, v2, v3 ) { return ( ( v3.positionScreen.x - v1.positionScreen.x ) * ( v2.positionScreen.y - v1.positionScreen.y ) - ( v3.positionScreen.y - v1.positionScreen.y ) * ( v2.positionScreen.x - v1.positionScreen.x ) ) < 0; } function pushLine( a, b ) { const v1 = _vertexPool[ a ]; const v2 = _vertexPool[ b ]; // Clip v1.positionScreen.copy( v1.position ).applyMatrix4( _modelViewProjectionMatrix ); v2.positionScreen.copy( v2.position ).applyMatrix4( _modelViewProjectionMatrix ); if ( clipLine( v1.positionScreen, v2.positionScreen ) === true ) { // Perform the perspective divide v1.positionScreen.multiplyScalar( 1 / v1.positionScreen.w ); v2.positionScreen.multiplyScalar( 1 / v2.positionScreen.w ); _line = getNextLineInPool(); _line.id = object.id; _line.v1.copy( v1 ); _line.v2.copy( v2 ); _line.z = Math.max( v1.positionScreen.z, v2.positionScreen.z ); _line.renderOrder = object.renderOrder; _line.material = object.material; if ( object.material.vertexColors ) { _line.vertexColors[ 0 ].fromArray( colors, a * 3 ); _line.vertexColors[ 1 ].fromArray( colors, b * 3 ); } _renderData.elements.push( _line ); } } function pushTriangle( a, b, c, material ) { const v1 = _vertexPool[ a ]; const v2 = _vertexPool[ b ]; const v3 = _vertexPool[ c ]; // Get homogeneous clip space positions (before perspective divide) _clipPos1.copy( v1.positionWorld ).applyMatrix4( _viewProjectionMatrix ); _clipPos2.copy( v2.positionWorld ).applyMatrix4( _viewProjectionMatrix ); _clipPos3.copy( v3.positionWorld ).applyMatrix4( _viewProjectionMatrix ); // Check if triangle needs clipping const nearDist1 = _clipPos1.z + _clipPos1.w; const nearDist2 = _clipPos2.z + _clipPos2.w; const nearDist3 = _clipPos3.z + _clipPos3.w; const farDist1 = - _clipPos1.z + _clipPos1.w; const farDist2 = - _clipPos2.z + _clipPos2.w; const farDist3 = - _clipPos3.z + _clipPos3.w; // Check if completely outside if ( ( nearDist1 < 0 && nearDist2 < 0 && nearDist3 < 0 ) || ( farDist1 < 0 && farDist2 < 0 && farDist3 < 0 ) ) { return; // Triangle completely clipped } // Check if completely inside (no clipping needed) if ( nearDist1 >= 0 && nearDist2 >= 0 && nearDist3 >= 0 && farDist1 >= 0 && farDist2 >= 0 && farDist3 >= 0 ) { // No clipping needed - use original path if ( checkTriangleVisibility( v1, v2, v3 ) === false ) return; if ( material.side === DoubleSide || checkBackfaceCulling( v1, v2, v3 ) === true ) { _face = getNextFaceInPool(); _face.id = object.id; _face.v1.copy( v1 ); _face.v2.copy( v2 ); _face.v3.copy( v3 ); _face.z = ( v1.positionScreen.z + v2.positionScreen.z + v3.positionScreen.z ) / 3; _face.renderOrder = object.renderOrder; // face normal _vector3.subVectors( v3.position, v2.position ); _vector4.subVectors( v1.position, v2.position ); _vector3.cross( _vector4 ); _face.normalModel.copy( _vector3 ); _face.normalModel.applyMatrix3( normalMatrix ).normalize(); for ( let i = 0; i < 3; i ++ ) { const normal = _face.vertexNormalsModel[ i ]; normal.fromArray( normals, arguments[ i ] * 3 ); normal.applyMatrix3( normalMatrix ).normalize(); const uv = _face.uvs[ i ]; uv.fromArray( uvs, arguments[ i ] * 2 ); } _face.vertexNormalsLength = 3; _face.material = material; if ( material.vertexColors ) { _face.color.fromArray( colors, a * 3 ); } _renderData.elements.push( _face ); } return; } // Triangle needs clipping _clipInputVertices[ 0 ] = _clipPos1; _clipInputVertices[ 1 ] = _clipPos2; _clipInputVertices[ 2 ] = _clipPos3; const clippedCount = clipTriangle( _clipInputVertices ); if ( clippedCount < 3 ) return; // Triangle completely clipped // Perform perspective divide on clipped vertices and create screen vertices for ( let i = 0; i < clippedCount; i ++ ) { const cv = _clipInput[ i ]; // Get or create renderable vertex from pool let sv = _screenVertexPool[ i ]; if ( ! sv ) { sv = new RenderableVertex(); _screenVertexPool[ i ] = sv; } // Perform perspective divide const invW = 1 / cv.w; sv.positionScreen.set( cv.x * invW, cv.y * invW, cv.z * invW, 1 ); // Interpolate world position (simplified - using weighted average based on barycentric-like coords) // For a proper implementation, we'd need to track interpolation weights sv.positionWorld.copy( v1.positionWorld ); sv.visible = true; } // Triangulate the clipped polygon (simple fan triangulation) for ( let i = 1; i < clippedCount - 1; i ++ ) { const tv1 = _screenVertexPool[ 0 ]; const tv2 = _screenVertexPool[ i ]; const tv3 = _screenVertexPool[ i + 1 ]; if ( material.side === DoubleSide || checkBackfaceCulling( tv1, tv2, tv3 ) === true ) { _face = getNextFaceInPool(); _face.id = object.id; _face.v1.copy( tv1 ); _face.v2.copy( tv2 ); _face.v3.copy( tv3 ); _face.z = ( tv1.positionScreen.z + tv2.positionScreen.z + tv3.positionScreen.z ) / 3; _face.renderOrder = object.renderOrder; // face normal - use original triangle's normal _vector3.subVectors( v3.position, v2.position ); _vector4.subVectors( v1.position, v2.position ); _vector3.cross( _vector4 ); _face.normalModel.copy( _vector3 ); _face.normalModel.applyMatrix3( normalMatrix ).normalize(); // Use original vertex normals and UVs (simplified - proper impl would interpolate) for ( let j = 0; j < 3; j ++ ) { const normal = _face.vertexNormalsModel[ j ]; normal.fromArray( normals, arguments[ j ] * 3 ); normal.applyMatrix3( normalMatrix ).normalize(); const uv = _face.uvs[ j ]; uv.fromArray( uvs, arguments[ j ] * 2 ); } _face.vertexNormalsLength = 3; _face.material = material; if ( material.vertexColors ) { _face.color.fromArray( colors, a * 3 ); } _renderData.elements.push( _face ); } } } return { setObject: setObject, projectVertex: projectVertex, checkTriangleVisibility: checkTriangleVisibility, checkBackfaceCulling: checkBackfaceCulling, pushVertex: pushVertex, pushNormal: pushNormal, pushColor: pushColor, pushUv: pushUv, pushLine: pushLine, pushTriangle: pushTriangle }; } const renderList = new RenderList(); function projectObject( object ) { if ( object.visible === false ) return; if ( object.isLight ) { _renderData.lights.push( object ); } else if ( object.isMesh || object.isLine || object.isPoints ) { if ( object.material.visible === false ) return; if ( object.frustumCulled === true && _frustum.intersectsObject( object ) === false ) return; addObject( object ); } else if ( object.isSprite ) { if ( object.material.visible === false ) return; if ( object.frustumCulled === true && _frustum.intersectsSprite( object ) === false ) return; addObject( object ); } const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { projectObject( children[ i ] ); } } function addObject( object ) { _object = getNextObjectInPool(); _object.id = object.id; _object.object = object; _vector3.setFromMatrixPosition( object.matrixWorld ); _vector3.applyMatrix4( _viewProjectionMatrix ); _object.z = _vector3.z; _object.renderOrder = object.renderOrder; _renderData.objects.push( _object ); } /** * Projects the given scene in 3D space into a 2D representation. The result * is an object with renderable items. * * @param {Object3D} scene - A scene or any other type of 3D object. * @param {Camera} camera - The camera. * @param {boolean} sortObjects - Whether to sort objects or not. * @param {boolean} sortElements - Whether to sort elements (faces, lines and sprites) or not. * @return {{objects:Array<Objects>,lights:Array<Objects>,elements:Array<Objects>}} The projected scene as renderable objects. */ this.projectScene = function ( scene, camera, sortObjects, sortElements ) { _faceCount = 0; _lineCount = 0; _spriteCount = 0; _renderData.elements.length = 0; if ( scene.matrixWorldAutoUpdate === true ) scene.updateMatrixWorld(); if ( camera.parent === null && camera.matrixWorldAutoUpdate === true ) camera.updateMatrixWorld(); _viewMatrix.copy( camera.matrixWorldInverse ); _viewProjectionMatrix.multiplyMatrices( camera.projectionMatrix, _viewMatrix ); _frustum.setFromProjectionMatrix( _viewProjectionMatrix ); // _objectCount = 0; _renderData.objects.length = 0; _renderData.lights.length = 0; projectObject( scene ); if ( sortObjects === true ) { painterSortStable( _renderData.objects, 0, _renderData.objects.length ); } // const objects = _renderData.objects; for ( let o = 0, ol = objects.length; o < ol; o ++ ) { const object = objects[ o ].object; const geometry = object.geometry; renderList.setObject( object ); _modelMatrix = object.matrixWorld; _vertexCount = 0; if ( object.isMesh ) { let material = object.material; const isMultiMaterial = Array.isArray( material ); const attributes = geometry.attributes; const groups = geometry.groups; if ( attributes.position === undefined ) continue; const positions = attributes.position.array; for ( let i = 0, l = positions.length; i < l; i += 3 ) { let x = positions[ i ]; let y = positions[ i + 1 ]; let z = positions[ i + 2 ]; const morphTargets = geometry.morphAttributes.position; if ( morphTargets !== undefined ) { const morphTargetsRelative = geometry.morphTargetsRelative; const morphInfluences = object.morphTargetInfluences; for ( let t = 0, tl = morphTargets.length; t < tl; t ++ ) { const influence = morphInfluences[ t ]; if ( influence === 0 ) continue; const target = morphTargets[ t ]; if ( morphTargetsRelative ) { x += target.getX( i / 3 ) * influence; y += target.getY( i / 3 ) * influence; z += target.getZ( i / 3 ) * influence; } else { x += ( target.getX( i / 3 ) - positions[ i ] ) * influence; y += ( target.getY( i / 3 ) - positions[ i + 1 ] ) * influence; z += ( target.getZ( i / 3 ) - positions[ i + 2 ] ) * influence; } } } renderList.pushVertex( x, y, z ); } if ( attributes.normal !== undefined ) { const normals = attributes.normal.array; for ( let i = 0, l = normals.length; i < l; i += 3 ) { renderList.pushNormal( normals[ i ], normals[ i + 1 ], normals[ i + 2 ] ); } } if ( attributes.color !== undefined ) { const colors = attributes.color.array; for ( let i = 0, l = colors.length; i < l; i += 3 ) { renderList.pushColor( colors[ i ], colors[ i + 1 ], colors[ i + 2 ] ); } } if ( attributes.uv !== undefined ) { const uvs = attributes.uv.array; for ( let i = 0, l = uvs.length; i < l; i += 2 ) { renderList.pushUv( uvs[ i ], uvs[ i + 1 ] ); } } if ( geometry.index !== null ) { const indices = geometry.index.array; if ( groups.length > 0 ) { for ( let g = 0; g < groups.length; g ++ ) { const group = groups[ g ]; material = isMultiMaterial === true ? object.material[ group.materialIndex ] : object.material; if ( material === undefined ) continue; for ( let i = group.start, l = group.start + group.count; i < l; i += 3 ) { renderList.pushTriangle( indices[ i ], indices[ i + 1 ], indices[ i + 2 ], material ); } } } else { for ( let i = 0, l = indices.length; i < l; i += 3 ) { renderList.pushTriangle( indices[ i ], indices[ i + 1 ], indices[ i + 2 ], material ); } } } else { if ( groups.length > 0 ) { for ( let g = 0; g < groups.length; g ++ ) { const group = groups[ g ]; material = isMultiMaterial === true ? object.material[ group.materialIndex ] : object.material; if ( material === undefined ) continue; for ( let i = group.start, l = group.start + group.count; i < l; i += 3 ) { renderList.pushTriangle( i, i + 1, i + 2, material ); } } } else { for ( let i = 0, l = positions.length / 3; i < l; i += 3 ) { renderList.pushTriangle( i, i + 1, i + 2, material ); } } } } else if ( object.isLine ) { _modelViewProjectionMatrix.multiplyMatrices( _viewProjectionMatrix, _modelMatrix ); const attributes = geometry.attributes; if ( attributes.position !== undefined ) { const positions = attributes.position.array; for ( let i = 0, l = positions.length; i < l; i += 3 ) { renderList.pushVertex( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ); } if ( attributes.color !== undefined ) { const colors = attributes.color.array; for ( let i = 0, l = colors.length; i < l; i += 3 ) { renderList.pushColor( colors[ i ], colors[ i + 1 ], colors[ i + 2 ] ); } } if ( geometry.index !== null ) { const indices = geometry.index.array; for ( let i = 0, l = indices.length; i < l; i += 2 ) { renderList.pushLine( indices[ i ], indices[ i + 1 ] ); } } else { const step = object.isLineSegments ? 2 : 1; for ( let i = 0, l = ( positions.length / 3 ) - 1; i < l; i += step ) { renderList.pushLine( i, i + 1 ); } } } } else if ( object.isPoints ) { _modelViewProjectionMatrix.multiplyMatrices( _viewProjectionMatrix, _modelMatrix ); const attributes = geometry.attributes; if ( attributes.position !== undefined ) { const positions = attributes.position.array; for ( let i = 0, l = positions.length; i < l; i += 3 ) { _vector4.set( positions[ i ], positions[ i + 1 ], positions[ i + 2 ], 1 ); _vector4.applyMatrix4( _modelViewProjectionMatrix ); pushPoint( _vector4, object, camera ); } } } else if ( object.isSprite ) { object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); _vector4.set( _modelMatrix.elements[ 12 ], _modelMatrix.elements[ 13 ], _modelMatrix.elements[ 14 ], 1 ); _vector4.applyMatrix4( _viewProjectionMatrix ); pushPoint( _vector4, object, camera ); } } if ( sortElements === true ) { painterSortStable( _renderData.elements, 0, _renderData.elements.length ); } return _renderData; }; function pushPoint( _vector4, object, camera ) { const invW = 1 / _vector4.w; _vector4.z *= invW; if ( _vector4.z >= - 1 && _vector4.z <= 1 ) { _sprite = getNextSpriteInPool(); _sprite.id = object.id; _sprite.x = _vector4.x * invW; _sprite.y = _vector4.y * invW; _sprite.z = _vector4.z; _sprite.renderOrder = object.renderOrder; _sprite.object = object; _sprite.rotation = object.rotation; _sprite.scale.x = object.scale.x * Math.abs( _sprite.x - ( _vector4.x + camera.projectionMatrix.elements[ 0 ] ) / ( _vector4.w + camera.projectionMatrix.elements[ 12 ] ) ); _sprite.scale.y = object.scale.y * Math.abs( _sprite.y - ( _vector4.y + camera.projectionMatrix.elements[ 5 ] ) / ( _vector4.w + camera.projectionMatrix.elements[ 13 ] ) ); _sprite.material = object.material; _renderData.elements.push( _sprite ); } } // Pools function getNextObjectInPool() { if ( _objectCount === _objectPoolLength ) { const object = new RenderableObject(); _objectPool.push( object ); _objectPoolLength ++; _objectCount ++; return object; } return _objectPool[ _objectCount ++ ]; } function getNextVertexInPool() { if ( _vertexCount === _vertexPoolLength ) { const vertex = new RenderableVertex(); _vertexPool.push( vertex ); _vertexPoolLength ++; _vertexCount ++; return vertex; } return _vertexPool[ _vertexCount ++ ]; } function getNextFaceInPool() { if ( _faceCount === _facePoolLength ) { const face = new RenderableFace(); _facePool.push( face ); _facePoolLength ++; _faceCount ++; return face; } return _facePool[ _faceCount ++ ]; } function getNextLineInPool() { if ( _lineCount === _linePoolLength ) { const line = new RenderableLine(); _linePool.push( line ); _linePoolLength ++; _lineCount ++; return line; } return _linePool[ _lineCount ++ ]; } function getNextSpriteInPool() { if ( _spriteCount === _spritePoolLength ) { const sprite = new RenderableSprite(); _spritePool.push( sprite ); _spritePoolLength ++; _spriteCount ++; return sprite; } return _spritePool[ _spriteCount ++ ]; } // function painterSort( a, b ) { if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.z !== b.z ) { return b.z - a.z; } else if ( a.id !== b.id ) { return a.id - b.id; } else { return 0; } } function painterSortStable( array, start, length ) { // A stable insertion sort for sorting render items // This avoids the GC overhead of Array.prototype.sort() for ( let i = start + 1; i < start + length; i ++ ) { const item = array[ i ]; let j = i - 1; while ( j >= start && painterSort( array[ j ], item ) > 0 ) { array[ j + 1 ] = array[ j ]; j --; } array[ j + 1 ] = item; } } // Sutherland-Hodgman triangle clipping in homogeneous clip space // Returns count of vertices in clipped polygon (0 if completely clipped, 3+ if partially clipped) // Result vertices are in _clipInput array function clipTriangle( vertices ) { // Initialize input with the three input vertices _clipInput[ 0 ] = vertices[ 0 ]; _clipInput[ 1 ] = vertices[ 1 ]; _clipInput[ 2 ] = vertices[ 2 ]; let inputCount = 3; let outputCount = 0; for ( let p = 0; p < _clipPlanes.length; p ++ ) { const plane = _clipPlanes[ p ]; outputCount = 0; if ( inputCount === 0 ) break; for ( let i = 0; i < inputCount; i ++ ) { const v1 = _clipInput[ i ]; const v2 = _clipInput[ ( i + 1 ) % inputCount ]; const d1 = plane.sign * v1.z + v1.w; const d2 = plane.sign * v2.z + v2.w; const v1Inside = d1 >= 0; const v2Inside = d2 >= 0; if ( v1Inside && v2Inside ) { // Both inside - add v1 _clipOutput[ outputCount ++ ] = v1; } else if ( v1Inside && ! v2Inside ) { // v1 inside, v2 outside - add v1 and intersection _clipOutput[ outputCount ++ ] = v1; const t = d1 / ( d1 - d2 ); let intersection = _clipVertexPool[ outputCount ]; if ( ! intersection ) { intersection = new Vector4(); _clipVertexPool[ outputCount ] = intersection; } intersection.lerpVectors( v1, v2, t ); _clipOutput[ outputCount ++ ] = intersection; } else if ( ! v1Inside && v2Inside ) { // v1 outside, v2 inside - add intersection only const t = d1 / ( d1 - d2 ); let intersection = _clipVertexPool[ outputCount ]; if ( ! intersection ) { intersection = new Vector4(); _clipVertexPool[ outputCount ] = intersection; } intersection.lerpVectors( v1, v2, t ); _clipOutput[ outputCount ++ ] = intersection; } // Both outside - add nothing } // Swap input/output const temp = _clipInput; _clipInput = _clipOutput; _clipOutput = temp; inputCount = outputCount; } return inputCount; } function clipLine( s1, s2 ) { let alpha1 = 0, alpha2 = 1; // Calculate the boundary coordinate of each vertex for the near and far clip planes, // Z = -1 and Z = +1, respectively. const bc1near = s1.z + s1.w, bc2near = s2.z + s2.w, bc1far = - s1.z + s1.w, bc2far = - s2.z + s2.w; if ( bc1near >= 0 && bc2near >= 0 && bc1far >= 0 && bc2far >= 0 ) { // Both vertices lie entirely within all clip planes. return true; } else if ( ( bc1near < 0 && bc2near < 0 ) || ( bc1far < 0 && bc2far < 0 ) ) { // Both vertices lie entirely outside one of the clip planes. return false; } else { // The line segment spans at least one clip plane. if ( bc1near < 0 ) { // v1 lies outside the near plane, v2 inside alpha1 = Math.max( alpha1, bc1near / ( bc1near - bc2near ) ); } else if ( bc2near < 0 ) { // v2 lies outside the near plane, v1 inside alpha2 = Math.min( alpha2, bc1near / ( bc1near - bc2near ) ); } if ( bc1far < 0 ) { // v1 lies outside the far plane, v2 inside alpha1 = Math.max( alpha1, bc1far / ( bc1far - bc2far ) ); } else if ( bc2far < 0 ) { // v2 lies outside the far plane, v2 inside alpha2 = Math.min( alpha2, bc1far / ( bc1far - bc2far ) ); } if ( alpha2 < alpha1 ) { // The line segment spans two boundaries, but is outside both of them. // (This can't happen when we're only clipping against just near/far but good // to leave the check here for future usage if other clip planes are added.) return false; } else { // Update the s1 and s2 vertices to match the clipped line segment. s1.lerp( s2, alpha1 ); s2.lerp( s1, 1 - alpha2 ); return true; } } } } } export { RenderableObject, RenderableFace, RenderableVertex, RenderableLine, RenderableSprite, Projector };