three
Version:
JavaScript 3D library
920 lines (611 loc) • 21.8 kB
JavaScript
import {
BufferGeometry,
Color,
Data3DTexture,
FileLoader,
Float32BufferAttribute,
Group,
Loader,
LinearFilter,
Matrix4,
Mesh,
MeshStandardMaterial,
NearestFilter,
RedFormat,
SRGBColorSpace
} from 'three';
// Helper function to read a STRING from the data view
function readString( data, offset ) {
const size = data.getUint32( offset, true );
offset += 4;
let str = '';
for ( let i = 0; i < size; i ++ ) {
str += String.fromCharCode( data.getUint8( offset ++ ) );
}
return { value: str, size: 4 + size };
}
// Helper function to read a DICT from the data view
function readDict( data, offset ) {
const dict = {};
const count = data.getUint32( offset, true );
offset += 4;
let totalSize = 4;
for ( let i = 0; i < count; i ++ ) {
const key = readString( data, offset );
offset += key.size;
totalSize += key.size;
const value = readString( data, offset );
offset += value.size;
totalSize += value.size;
dict[ key.value ] = value.value;
}
return { value: dict, size: totalSize };
}
// Helper function to decode ROTATION byte into a rotation matrix
function decodeRotation( byte ) {
// The rotation is stored as a row-major 3x3 matrix encoded in a single byte
// Bits 0-1: index of the non-zero entry in the first row
// Bits 2-3: index of the non-zero entry in the second row
// Bit 4: sign of the first row entry (0 = positive, 1 = negative)
// Bit 5: sign of the second row entry
// Bit 6: sign of the third row entry
// The third row index is determined by the remaining column
const index1 = byte & 0x3;
const index2 = ( byte >> 2 ) & 0x3;
const sign1 = ( byte >> 4 ) & 0x1 ? - 1 : 1;
const sign2 = ( byte >> 5 ) & 0x1 ? - 1 : 1;
const sign3 = ( byte >> 6 ) & 0x1 ? - 1 : 1;
// Find the third row index (the one not used by row 0 or row 1)
const index3 = 3 - index1 - index2;
// Build the VOX rotation matrix (row-major 3x3)
// r[row][col] - each row has one non-zero entry
const r = [
[ 0, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 0 ]
];
r[ 0 ][ index1 ] = sign1;
r[ 1 ][ index2 ] = sign2;
r[ 2 ][ index3 ] = sign3;
// Convert from VOX coordinate system (Z-up) to Three.js (Y-up)
// VOX: X-right, Y-forward, Z-up
// Three.js: X-right, Y-up, Z-backward
// Transformation: x' = x, y' = z, z' = -y
//
// To convert rotation matrix R_vox to R_three:
// R_three = C * R_vox * C^-1
// where C converts VOX coords to Three.js coords
// Apply coordinate change: swap Y and Z, negate new Z
// This is equivalent to: C * R * C^-1
const m = new Matrix4();
m.set(
r[ 0 ][ 0 ], r[ 0 ][ 2 ], - r[ 0 ][ 1 ], 0,
r[ 2 ][ 0 ], r[ 2 ][ 2 ], - r[ 2 ][ 1 ], 0,
- r[ 1 ][ 0 ], - r[ 1 ][ 2 ], r[ 1 ][ 1 ], 0,
0, 0, 0, 1
);
return m;
}
// Apply VOX transform to a Three.js object
function applyTransform( object, node ) {
if ( node.attributes._name ) {
object.name = node.attributes._name;
}
if ( node.frames.length > 0 ) {
const frame = node.frames[ 0 ];
if ( frame.rotation ) {
object.applyMatrix4( frame.rotation );
}
if ( frame.translation ) {
// VOX uses Z-up, Three.js uses Y-up
object.position.set(
frame.translation.x,
frame.translation.z,
- frame.translation.y
);
}
}
}
// Recursively build Three.js object graph from VOX nodes
function buildObject( nodeId, nodes, chunks ) {
const node = nodes[ nodeId ];
if ( node.type === 'transform' ) {
const childNode = nodes[ node.childNodeId ];
// Check if this transform has actual transformation data
const frame = node.frames[ 0 ];
const hasTransform = frame && ( frame.rotation || frame.translation );
// Flatten: if child is a single-model shape, apply transform directly to mesh
if ( childNode.type === 'shape' && childNode.models.length === 1 ) {
const chunk = chunks[ childNode.models[ 0 ].modelId ];
const mesh = buildMesh( chunk );
applyTransform( mesh, node );
return mesh;
}
// If no transform, just return the child directly (avoid unnecessary group)
if ( ! hasTransform ) {
const child = buildObject( node.childNodeId, nodes, chunks );
if ( child && node.attributes._name ) child.name = node.attributes._name;
return child;
}
// Otherwise create a group
const group = new Group();
applyTransform( group, node );
const child = buildObject( node.childNodeId, nodes, chunks );
if ( child ) group.add( child );
return group;
} else if ( node.type === 'group' ) {
const group = new Group();
for ( const childId of node.childIds ) {
const child = buildObject( childId, nodes, chunks );
if ( child ) group.add( child );
}
return group;
} else if ( node.type === 'shape' ) {
// Shape reached directly (shouldn't happen in well-formed files, but handle it)
if ( node.models.length === 1 ) {
const chunk = chunks[ node.models[ 0 ].modelId ];
return buildMesh( chunk );
}
const group = new Group();
for ( const model of node.models ) {
const chunk = chunks[ model.modelId ];
group.add( buildMesh( chunk ) );
}
return group;
}
return null;
}
/**
* A loader for the VOX format.
*
* ```js
* const loader = new VOXLoader();
* const result = await loader.loadAsync( 'models/vox/monu10.vox' );
*
* scene.add( result.scene.children[ 0 ] );
* ```
* @augments Loader
* @three_import import { VOXLoader } from 'three/addons/loaders/VOXLoader.js';
*/
class VOXLoader extends Loader {
/**
* Starts loading from the given URL and passes the loaded VOX asset
* to the `onLoad()` callback.
*
* @param {string} url - The path/URL of the file to be loaded. This can also be a data URI.
* @param {function(Object)} onLoad - Executed when the loading process has been finished.
* @param {onProgressCallback} onProgress - Executed while the loading is in progress.
* @param {onErrorCallback} onError - Executed when errors occur.
*/
load( url, onLoad, onProgress, onError ) {
const scope = this;
const loader = new FileLoader( scope.manager );
loader.setPath( scope.path );
loader.setResponseType( 'arraybuffer' );
loader.setRequestHeader( scope.requestHeader );
loader.load( url, function ( buffer ) {
try {
onLoad( scope.parse( buffer ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
}
/**
* Parses the given VOX data and returns the result object.
*
* @param {ArrayBuffer} buffer - The raw VOX data as an array buffer.
* @return {Object} The parsed VOX data with properties: chunks, scene.
*/
parse( buffer ) {
const data = new DataView( buffer );
const id = data.getUint32( 0, true );
const version = data.getUint32( 4, true );
if ( id !== 542658390 ) {
console.error( 'THREE.VOXLoader: Invalid VOX file.' );
return;
}
if ( version !== 150 && version !== 200 ) {
console.error( 'THREE.VOXLoader: Invalid VOX file. Unsupported version:', version );
return;
}
const DEFAULT_PALETTE = [
0x00000000, 0xffffffff, 0xffccffff, 0xff99ffff, 0xff66ffff, 0xff33ffff, 0xff00ffff, 0xffffccff,
0xffccccff, 0xff99ccff, 0xff66ccff, 0xff33ccff, 0xff00ccff, 0xffff99ff, 0xffcc99ff, 0xff9999ff,
0xff6699ff, 0xff3399ff, 0xff0099ff, 0xffff66ff, 0xffcc66ff, 0xff9966ff, 0xff6666ff, 0xff3366ff,
0xff0066ff, 0xffff33ff, 0xffcc33ff, 0xff9933ff, 0xff6633ff, 0xff3333ff, 0xff0033ff, 0xffff00ff,
0xffcc00ff, 0xff9900ff, 0xff6600ff, 0xff3300ff, 0xff0000ff, 0xffffffcc, 0xffccffcc, 0xff99ffcc,
0xff66ffcc, 0xff33ffcc, 0xff00ffcc, 0xffffcccc, 0xffcccccc, 0xff99cccc, 0xff66cccc, 0xff33cccc,
0xff00cccc, 0xffff99cc, 0xffcc99cc, 0xff9999cc, 0xff6699cc, 0xff3399cc, 0xff0099cc, 0xffff66cc,
0xffcc66cc, 0xff9966cc, 0xff6666cc, 0xff3366cc, 0xff0066cc, 0xffff33cc, 0xffcc33cc, 0xff9933cc,
0xff6633cc, 0xff3333cc, 0xff0033cc, 0xffff00cc, 0xffcc00cc, 0xff9900cc, 0xff6600cc, 0xff3300cc,
0xff0000cc, 0xffffff99, 0xffccff99, 0xff99ff99, 0xff66ff99, 0xff33ff99, 0xff00ff99, 0xffffcc99,
0xffcccc99, 0xff99cc99, 0xff66cc99, 0xff33cc99, 0xff00cc99, 0xffff9999, 0xffcc9999, 0xff999999,
0xff669999, 0xff339999, 0xff009999, 0xffff6699, 0xffcc6699, 0xff996699, 0xff666699, 0xff336699,
0xff006699, 0xffff3399, 0xffcc3399, 0xff993399, 0xff663399, 0xff333399, 0xff003399, 0xffff0099,
0xffcc0099, 0xff990099, 0xff660099, 0xff330099, 0xff000099, 0xffffff66, 0xffccff66, 0xff99ff66,
0xff66ff66, 0xff33ff66, 0xff00ff66, 0xffffcc66, 0xffcccc66, 0xff99cc66, 0xff66cc66, 0xff33cc66,
0xff00cc66, 0xffff9966, 0xffcc9966, 0xff999966, 0xff669966, 0xff339966, 0xff009966, 0xffff6666,
0xffcc6666, 0xff996666, 0xff666666, 0xff336666, 0xff006666, 0xffff3366, 0xffcc3366, 0xff993366,
0xff663366, 0xff333366, 0xff003366, 0xffff0066, 0xffcc0066, 0xff990066, 0xff660066, 0xff330066,
0xff000066, 0xffffff33, 0xffccff33, 0xff99ff33, 0xff66ff33, 0xff33ff33, 0xff00ff33, 0xffffcc33,
0xffcccc33, 0xff99cc33, 0xff66cc33, 0xff33cc33, 0xff00cc33, 0xffff9933, 0xffcc9933, 0xff999933,
0xff669933, 0xff339933, 0xff009933, 0xffff6633, 0xffcc6633, 0xff996633, 0xff666633, 0xff336633,
0xff006633, 0xffff3333, 0xffcc3333, 0xff993333, 0xff663333, 0xff333333, 0xff003333, 0xffff0033,
0xffcc0033, 0xff990033, 0xff660033, 0xff330033, 0xff000033, 0xffffff00, 0xffccff00, 0xff99ff00,
0xff66ff00, 0xff33ff00, 0xff00ff00, 0xffffcc00, 0xffcccc00, 0xff99cc00, 0xff66cc00, 0xff33cc00,
0xff00cc00, 0xffff9900, 0xffcc9900, 0xff999900, 0xff669900, 0xff339900, 0xff009900, 0xffff6600,
0xffcc6600, 0xff996600, 0xff666600, 0xff336600, 0xff006600, 0xffff3300, 0xffcc3300, 0xff993300,
0xff663300, 0xff333300, 0xff003300, 0xffff0000, 0xffcc0000, 0xff990000, 0xff660000, 0xff330000,
0xff0000ee, 0xff0000dd, 0xff0000bb, 0xff0000aa, 0xff000088, 0xff000077, 0xff000055, 0xff000044,
0xff000022, 0xff000011, 0xff00ee00, 0xff00dd00, 0xff00bb00, 0xff00aa00, 0xff008800, 0xff007700,
0xff005500, 0xff004400, 0xff002200, 0xff001100, 0xffee0000, 0xffdd0000, 0xffbb0000, 0xffaa0000,
0xff880000, 0xff770000, 0xff550000, 0xff440000, 0xff220000, 0xff110000, 0xffeeeeee, 0xffdddddd,
0xffbbbbbb, 0xffaaaaaa, 0xff888888, 0xff777777, 0xff555555, 0xff444444, 0xff222222, 0xff111111
];
let i = 8;
let chunk;
const chunks = [];
// Extension data
const nodes = {};
let palette = DEFAULT_PALETTE;
while ( i < data.byteLength ) {
let id = '';
for ( let j = 0; j < 4; j ++ ) {
id += String.fromCharCode( data.getUint8( i ++ ) );
}
const chunkSize = data.getUint32( i, true ); i += 4;
i += 4; // childChunks
if ( id === 'SIZE' ) {
const x = data.getUint32( i, true ); i += 4;
const y = data.getUint32( i, true ); i += 4;
const z = data.getUint32( i, true ); i += 4;
chunk = {
palette: DEFAULT_PALETTE,
size: { x: x, y: y, z: z },
};
chunks.push( chunk );
i += chunkSize - ( 3 * 4 );
} else if ( id === 'XYZI' ) {
const numVoxels = data.getUint32( i, true ); i += 4;
chunk.data = new Uint8Array( buffer, i, numVoxels * 4 );
i += numVoxels * 4;
} else if ( id === 'RGBA' ) {
palette = [ 0 ];
for ( let j = 0; j < 256; j ++ ) {
palette[ j + 1 ] = data.getUint32( i, true ); i += 4;
}
chunk.palette = palette;
} else if ( id === 'nTRN' ) {
// Transform Node
const nodeId = data.getUint32( i, true ); i += 4;
const attributes = readDict( data, i );
i += attributes.size;
const childNodeId = data.getUint32( i, true ); i += 4;
i += 4; // reserved (-1)
const layerId = data.getInt32( i, true ); i += 4;
const numFrames = data.getUint32( i, true ); i += 4;
const frames = [];
for ( let f = 0; f < numFrames; f ++ ) {
const frameDict = readDict( data, i );
i += frameDict.size;
const frame = { rotation: null, translation: null };
if ( frameDict.value._r !== undefined ) {
frame.rotation = decodeRotation( parseInt( frameDict.value._r ) );
}
if ( frameDict.value._t !== undefined ) {
const parts = frameDict.value._t.split( ' ' ).map( Number );
frame.translation = { x: parts[ 0 ], y: parts[ 1 ], z: parts[ 2 ] };
}
frames.push( frame );
}
nodes[ nodeId ] = {
type: 'transform',
id: nodeId,
attributes: attributes.value,
childNodeId: childNodeId,
layerId: layerId,
frames: frames
};
} else if ( id === 'nGRP' ) {
// Group Node
const nodeId = data.getUint32( i, true ); i += 4;
const attributes = readDict( data, i );
i += attributes.size;
const numChildren = data.getUint32( i, true ); i += 4;
const childIds = [];
for ( let c = 0; c < numChildren; c ++ ) {
childIds.push( data.getUint32( i, true ) ); i += 4;
}
nodes[ nodeId ] = {
type: 'group',
id: nodeId,
attributes: attributes.value,
childIds: childIds
};
} else if ( id === 'nSHP' ) {
// Shape Node
const nodeId = data.getUint32( i, true ); i += 4;
const attributes = readDict( data, i );
i += attributes.size;
const numModels = data.getUint32( i, true ); i += 4;
const models = [];
for ( let m = 0; m < numModels; m ++ ) {
const modelId = data.getUint32( i, true ); i += 4;
const modelAttributes = readDict( data, i );
i += modelAttributes.size;
models.push( {
modelId: modelId,
attributes: modelAttributes.value
} );
}
nodes[ nodeId ] = {
type: 'shape',
id: nodeId,
attributes: attributes.value,
models: models
};
} else {
// Skip unknown chunks
i += chunkSize;
}
}
// Apply palette to all chunks
for ( let c = 0; c < chunks.length; c ++ ) {
chunks[ c ].palette = palette;
}
// Build Three.js scene graph from nodes
let scene = null;
if ( Object.keys( nodes ).length > 0 ) {
scene = buildObject( 0, nodes, chunks );
}
// Build result object
const result = {
chunks: chunks,
scene: scene
};
// @deprecated, r182
// Proxy for backwards compatibility with array-like access
let warned = false;
return new Proxy( result, {
get( target, prop ) {
// Handle numeric indices
if ( typeof prop === 'string' && /^\d+$/.test( prop ) ) {
if ( ! warned ) {
console.warn( 'THREE.VOXLoader: Accessing result as an array is deprecated. Use result.chunks[] instead.' );
warned = true;
}
return target.chunks[ parseInt( prop ) ];
}
// Handle array properties/methods
if ( prop === 'length' ) {
if ( ! warned ) {
console.warn( 'THREE.VOXLoader: Accessing result as an array is deprecated. Use result.chunks instead.' );
warned = true;
}
return target.chunks.length;
}
// Handle iteration
if ( prop === Symbol.iterator ) {
if ( ! warned ) {
console.warn( 'THREE.VOXLoader: Iterating result as an array is deprecated. Use result.chunks instead.' );
warned = true;
}
return target.chunks[ Symbol.iterator ].bind( target.chunks );
}
return target[ prop ];
}
} );
}
}
/**
* Builds a mesh from a VOX chunk.
*
* @param {Object} chunk - A VOX chunk loaded via {@link VOXLoader}.
* @return {Mesh} The generated mesh.
*/
function buildMesh( chunk ) {
const data = chunk.data;
const size = chunk.size;
const palette = chunk.palette;
const sx = size.x;
const sy = size.y;
const sz = size.z;
// Build volume with color indices
const volume = new Uint8Array( sx * sy * sz );
for ( let j = 0; j < data.length; j += 4 ) {
const x = data[ j + 0 ];
const y = data[ j + 1 ];
const z = data[ j + 2 ];
const c = data[ j + 3 ];
volume[ x + y * sx + z * sx * sy ] = c;
}
// Greedy meshing
const vertices = [];
const indices = [];
const colors = [];
const _color = new Color();
let hasColors = false;
// Process each of the 6 face directions
// dims: the 3 axis sizes, d: which axis is normal to the face
const dims = [ sx, sy, sz ];
for ( let d = 0; d < 3; d ++ ) {
const u = ( d + 1 ) % 3;
const v = ( d + 2 ) % 3;
const dimsD = dims[ d ];
const dimsU = dims[ u ];
const dimsV = dims[ v ];
const q = [ 0, 0, 0 ];
const mask = new Int16Array( dimsU * dimsV );
q[ d ] = 1;
// Sweep through slices
for ( let slice = 0; slice <= dimsD; slice ++ ) {
// Build mask for this slice
let n = 0;
for ( let vv = 0; vv < dimsV; vv ++ ) {
for ( let uu = 0; uu < dimsU; uu ++ ) {
const pos = [ 0, 0, 0 ];
pos[ d ] = slice;
pos[ u ] = uu;
pos[ v ] = vv;
const x0 = pos[ 0 ], y0 = pos[ 1 ], z0 = pos[ 2 ];
// Get voxel behind and in front of this face
const behind = ( slice > 0 ) ? volume[ ( x0 - q[ 0 ] ) + ( y0 - q[ 1 ] ) * sx + ( z0 - q[ 2 ] ) * sx * sy ] : 0;
const infront = ( slice < dimsD ) ? volume[ x0 + y0 * sx + z0 * sx * sy ] : 0;
// Face exists if exactly one side is solid
if ( behind > 0 && infront === 0 ) {
mask[ n ] = behind; // positive face
} else if ( infront > 0 && behind === 0 ) {
mask[ n ] = - infront; // negative face
} else {
mask[ n ] = 0;
}
n ++;
}
}
// Greedy merge mask into quads
n = 0;
for ( let vv = 0; vv < dimsV; vv ++ ) {
for ( let uu = 0; uu < dimsU; ) {
const c = mask[ n ];
if ( c !== 0 ) {
// Find width
let w = 1;
while ( uu + w < dimsU && mask[ n + w ] === c ) {
w ++;
}
// Find height
let h = 1;
let done = false;
while ( vv + h < dimsV && ! done ) {
for ( let k = 0; k < w; k ++ ) {
if ( mask[ n + k + h * dimsU ] !== c ) {
done = true;
break;
}
}
if ( ! done ) h ++;
}
// Add quad
const pos = [ 0, 0, 0 ];
pos[ d ] = slice;
pos[ u ] = uu;
pos[ v ] = vv;
const du = [ 0, 0, 0 ];
const dv = [ 0, 0, 0 ];
du[ u ] = w;
dv[ v ] = h;
// Get color
const colorIndex = Math.abs( c );
const hex = palette[ colorIndex ];
const r = ( hex >> 0 & 0xff ) / 0xff;
const g = ( hex >> 8 & 0xff ) / 0xff;
const b = ( hex >> 16 & 0xff ) / 0xff;
if ( r > 0 || g > 0 || b > 0 ) hasColors = true;
_color.setRGB( r, g, b, SRGBColorSpace );
// Convert VOX coords to Three.js coords (Y-up)
// VOX: X right, Y forward, Z up -> Three.js: X right, Y up, Z back
const toThree = ( p ) => [
p[ 0 ] - sx / 2,
p[ 2 ] - sz / 2,
- p[ 1 ] + sy / 2
];
const v0 = toThree( pos );
const v1 = toThree( [ pos[ 0 ] + du[ 0 ], pos[ 1 ] + du[ 1 ], pos[ 2 ] + du[ 2 ] ] );
const v2 = toThree( [ pos[ 0 ] + du[ 0 ] + dv[ 0 ], pos[ 1 ] + du[ 1 ] + dv[ 1 ], pos[ 2 ] + du[ 2 ] + dv[ 2 ] ] );
const v3 = toThree( [ pos[ 0 ] + dv[ 0 ], pos[ 1 ] + dv[ 1 ], pos[ 2 ] + dv[ 2 ] ] );
const idx = vertices.length / 3;
// Winding order depends on face direction
if ( c > 0 ) {
vertices.push( ...v0, ...v1, ...v2, ...v3 );
indices.push( idx, idx + 1, idx + 2, idx, idx + 2, idx + 3 );
} else {
vertices.push( ...v0, ...v3, ...v2, ...v1 );
indices.push( idx, idx + 1, idx + 2, idx, idx + 2, idx + 3 );
}
colors.push(
_color.r, _color.g, _color.b,
_color.r, _color.g, _color.b,
_color.r, _color.g, _color.b,
_color.r, _color.g, _color.b
);
// Clear mask
for ( let hh = 0; hh < h; hh ++ ) {
for ( let ww = 0; ww < w; ww ++ ) {
mask[ n + ww + hh * dimsU ] = 0;
}
}
uu += w;
n += w;
} else {
uu ++;
n ++;
}
}
}
}
}
const geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
geometry.setIndex( indices );
geometry.computeVertexNormals();
const material = new MeshStandardMaterial();
if ( hasColors ) {
geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
material.vertexColors = true;
}
return new Mesh( geometry, material );
}
/**
* Builds a 3D texture from a VOX chunk.
*
* @param {Object} chunk - A VOX chunk loaded via {@link VOXLoader}.
* @return {Data3DTexture} The generated 3D texture.
*/
function buildData3DTexture( chunk ) {
const data = chunk.data;
const size = chunk.size;
const offsety = size.x;
const offsetz = size.x * size.y;
const array = new Uint8Array( size.x * size.y * size.z );
for ( let j = 0; j < data.length; j += 4 ) {
const x = data[ j + 0 ];
const y = data[ j + 1 ];
const z = data[ j + 2 ];
const index = x + ( y * offsety ) + ( z * offsetz );
array[ index ] = 255;
}
const texture = new Data3DTexture( array, size.x, size.y, size.z );
texture.format = RedFormat;
texture.minFilter = NearestFilter;
texture.magFilter = LinearFilter;
texture.unpackAlignment = 1;
texture.needsUpdate = true;
return texture;
}
// @deprecated, r182
class VOXMesh extends Mesh {
constructor( chunk ) {
console.warn( 'VOXMesh has been deprecated. Use buildMesh() instead.' );
const mesh = buildMesh( chunk );
super( mesh.geometry, mesh.material );
}
}
class VOXData3DTexture extends Data3DTexture {
constructor( chunk ) {
console.warn( 'VOXData3DTexture has been deprecated. Use buildData3DTexture() instead.' );
const texture = buildData3DTexture( chunk );
super( texture.image.data, texture.image.width, texture.image.height, texture.image.depth );
this.format = texture.format;
this.minFilter = texture.minFilter;
this.magFilter = texture.magFilter;
this.unpackAlignment = texture.unpackAlignment;
this.needsUpdate = true;
}
}
export { VOXLoader, buildMesh, buildData3DTexture, VOXMesh, VOXData3DTexture };