UNPKG

three

Version:

JavaScript 3D library

337 lines (235 loc) 7.89 kB
import { Vector3 } from './Vector3.js'; import { clamp } from './MathUtils.js'; const _startP = /*@__PURE__*/ new Vector3(); const _startEnd = /*@__PURE__*/ new Vector3(); const _d1 = /*@__PURE__*/ new Vector3(); const _d2 = /*@__PURE__*/ new Vector3(); const _r = /*@__PURE__*/ new Vector3(); const _c1 = /*@__PURE__*/ new Vector3(); const _c2 = /*@__PURE__*/ new Vector3(); /** * An analytical line segment in 3D space represented by a start and end point. */ class Line3 { /** * Constructs a new line segment. * * @param {Vector3} [start=(0,0,0)] - Start of the line segment. * @param {Vector3} [end=(0,0,0)] - End of the line segment. */ constructor( start = new Vector3(), end = new Vector3() ) { /** * Start of the line segment. * * @type {Vector3} */ this.start = start; /** * End of the line segment. * * @type {Vector3} */ this.end = end; } /** * Sets the start and end values by copying the given vectors. * * @param {Vector3} start - The start point. * @param {Vector3} end - The end point. * @return {Line3} A reference to this line segment. */ set( start, end ) { this.start.copy( start ); this.end.copy( end ); return this; } /** * Copies the values of the given line segment to this instance. * * @param {Line3} line - The line segment to copy. * @return {Line3} A reference to this line segment. */ copy( line ) { this.start.copy( line.start ); this.end.copy( line.end ); return this; } /** * Returns the center of the line segment. * * @param {Vector3} target - The target vector that is used to store the method's result. * @return {Vector3} The center point. */ getCenter( target ) { return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 ); } /** * Returns the delta vector of the line segment's start and end point. * * @param {Vector3} target - The target vector that is used to store the method's result. * @return {Vector3} The delta vector. */ delta( target ) { return target.subVectors( this.end, this.start ); } /** * Returns the squared Euclidean distance between the line' start and end point. * * @return {number} The squared Euclidean distance. */ distanceSq() { return this.start.distanceToSquared( this.end ); } /** * Returns the Euclidean distance between the line' start and end point. * * @return {number} The Euclidean distance. */ distance() { return this.start.distanceTo( this.end ); } /** * Returns a vector at a certain position along the line segment. * * @param {number} t - A value between `[0,1]` to represent a position along the line segment. * @param {Vector3} target - The target vector that is used to store the method's result. * @return {Vector3} The delta vector. */ at( t, target ) { return this.delta( target ).multiplyScalar( t ).add( this.start ); } /** * Returns a point parameter based on the closest point as projected on the line segment. * * @param {Vector3} point - The point for which to return a point parameter. * @param {boolean} clampToLine - Whether to clamp the result to the range `[0,1]` or not. * @return {number} The point parameter. */ closestPointToPointParameter( point, clampToLine ) { _startP.subVectors( point, this.start ); _startEnd.subVectors( this.end, this.start ); const startEnd2 = _startEnd.dot( _startEnd ); const startEnd_startP = _startEnd.dot( _startP ); let t = startEnd_startP / startEnd2; if ( clampToLine ) { t = clamp( t, 0, 1 ); } return t; } /** * Returns the closest point on the line for a given point. * * @param {Vector3} point - The point to compute the closest point on the line for. * @param {boolean} clampToLine - Whether to clamp the result to the range `[0,1]` or not. * @param {Vector3} target - The target vector that is used to store the method's result. * @return {Vector3} The closest point on the line. */ closestPointToPoint( point, clampToLine, target ) { const t = this.closestPointToPointParameter( point, clampToLine ); return this.delta( target ).multiplyScalar( t ).add( this.start ); } /** * Returns the closest squared distance between this line segment and the given one. * * @param {Line3} line - The line segment to compute the closest squared distance to. * @param {Vector3} [c1] - The closest point on this line segment. * @param {Vector3} [c2] - The closest point on the given line segment. * @return {number} The squared distance between this line segment and the given one. */ distanceSqToLine3( line, c1 = _c1, c2 = _c2 ) { // from Real-Time Collision Detection by Christer Ericson, chapter 5.1.9 // Computes closest points C1 and C2 of S1(s)=P1+s*(Q1-P1) and // S2(t)=P2+t*(Q2-P2), returning s and t. Function result is squared // distance between between S1(s) and S2(t) const EPSILON = 1e-8 * 1e-8; // must be squared since we compare squared length let s, t; const p1 = this.start; const p2 = line.start; const q1 = this.end; const q2 = line.end; _d1.subVectors( q1, p1 ); // Direction vector of segment S1 _d2.subVectors( q2, p2 ); // Direction vector of segment S2 _r.subVectors( p1, p2 ); const a = _d1.dot( _d1 ); // Squared length of segment S1, always nonnegative const e = _d2.dot( _d2 ); // Squared length of segment S2, always nonnegative const f = _d2.dot( _r ); // Check if either or both segments degenerate into points if ( a <= EPSILON && e <= EPSILON ) { // Both segments degenerate into points c1.copy( p1 ); c2.copy( p2 ); c1.sub( c2 ); return c1.dot( c1 ); } if ( a <= EPSILON ) { // First segment degenerates into a point s = 0; t = f / e; // s = 0 => t = (b*s + f) / e = f / e t = clamp( t, 0, 1 ); } else { const c = _d1.dot( _r ); if ( e <= EPSILON ) { // Second segment degenerates into a point t = 0; s = clamp( - c / a, 0, 1 ); // t = 0 => s = (b*t - c) / a = -c / a } else { // The general nondegenerate case starts here const b = _d1.dot( _d2 ); const denom = a * e - b * b; // Always nonnegative // If segments not parallel, compute closest point on L1 to L2 and // clamp to segment S1. Else pick arbitrary s (here 0) if ( denom !== 0 ) { s = clamp( ( b * f - c * e ) / denom, 0, 1 ); } else { s = 0; } // Compute point on L2 closest to S1(s) using // t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e t = ( b * s + f ) / e; // If t in [0,1] done. Else clamp t, recompute s for the new value // of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a // and clamp s to [0, 1] if ( t < 0 ) { t = 0.; s = clamp( - c / a, 0, 1 ); } else if ( t > 1 ) { t = 1; s = clamp( ( b - c ) / a, 0, 1 ); } } } c1.copy( p1 ).add( _d1.multiplyScalar( s ) ); c2.copy( p2 ).add( _d2.multiplyScalar( t ) ); c1.sub( c2 ); return c1.dot( c1 ); } /** * Applies a 4x4 transformation matrix to this line segment. * * @param {Matrix4} matrix - The transformation matrix. * @return {Line3} A reference to this line segment. */ applyMatrix4( matrix ) { this.start.applyMatrix4( matrix ); this.end.applyMatrix4( matrix ); return this; } /** * Returns `true` if this line segment is equal with the given one. * * @param {Line3} line - The line segment to test for equality. * @return {boolean} Whether this line segment is equal with the given one. */ equals( line ) { return line.start.equals( this.start ) && line.end.equals( this.end ); } /** * Returns a new line segment with copied values from this instance. * * @return {Line3} A clone of this instance. */ clone() { return new this.constructor().copy( this ); } } export { Line3 };