three
Version:
JavaScript 3D library
337 lines (235 loc) • 7.89 kB
JavaScript
import { Vector3 } from './Vector3.js';
import { clamp } from './MathUtils.js';
const _startP = /*@__PURE__*/ new Vector3();
const _startEnd = /*@__PURE__*/ new Vector3();
const _d1 = /*@__PURE__*/ new Vector3();
const _d2 = /*@__PURE__*/ new Vector3();
const _r = /*@__PURE__*/ new Vector3();
const _c1 = /*@__PURE__*/ new Vector3();
const _c2 = /*@__PURE__*/ new Vector3();
/**
* An analytical line segment in 3D space represented by a start and end point.
*/
class Line3 {
/**
* Constructs a new line segment.
*
* @param {Vector3} [start=(0,0,0)] - Start of the line segment.
* @param {Vector3} [end=(0,0,0)] - End of the line segment.
*/
constructor( start = new Vector3(), end = new Vector3() ) {
/**
* Start of the line segment.
*
* @type {Vector3}
*/
this.start = start;
/**
* End of the line segment.
*
* @type {Vector3}
*/
this.end = end;
}
/**
* Sets the start and end values by copying the given vectors.
*
* @param {Vector3} start - The start point.
* @param {Vector3} end - The end point.
* @return {Line3} A reference to this line segment.
*/
set( start, end ) {
this.start.copy( start );
this.end.copy( end );
return this;
}
/**
* Copies the values of the given line segment to this instance.
*
* @param {Line3} line - The line segment to copy.
* @return {Line3} A reference to this line segment.
*/
copy( line ) {
this.start.copy( line.start );
this.end.copy( line.end );
return this;
}
/**
* Returns the center of the line segment.
*
* @param {Vector3} target - The target vector that is used to store the method's result.
* @return {Vector3} The center point.
*/
getCenter( target ) {
return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 );
}
/**
* Returns the delta vector of the line segment's start and end point.
*
* @param {Vector3} target - The target vector that is used to store the method's result.
* @return {Vector3} The delta vector.
*/
delta( target ) {
return target.subVectors( this.end, this.start );
}
/**
* Returns the squared Euclidean distance between the line' start and end point.
*
* @return {number} The squared Euclidean distance.
*/
distanceSq() {
return this.start.distanceToSquared( this.end );
}
/**
* Returns the Euclidean distance between the line' start and end point.
*
* @return {number} The Euclidean distance.
*/
distance() {
return this.start.distanceTo( this.end );
}
/**
* Returns a vector at a certain position along the line segment.
*
* @param {number} t - A value between `[0,1]` to represent a position along the line segment.
* @param {Vector3} target - The target vector that is used to store the method's result.
* @return {Vector3} The delta vector.
*/
at( t, target ) {
return this.delta( target ).multiplyScalar( t ).add( this.start );
}
/**
* Returns a point parameter based on the closest point as projected on the line segment.
*
* @param {Vector3} point - The point for which to return a point parameter.
* @param {boolean} clampToLine - Whether to clamp the result to the range `[0,1]` or not.
* @return {number} The point parameter.
*/
closestPointToPointParameter( point, clampToLine ) {
_startP.subVectors( point, this.start );
_startEnd.subVectors( this.end, this.start );
const startEnd2 = _startEnd.dot( _startEnd );
const startEnd_startP = _startEnd.dot( _startP );
let t = startEnd_startP / startEnd2;
if ( clampToLine ) {
t = clamp( t, 0, 1 );
}
return t;
}
/**
* Returns the closest point on the line for a given point.
*
* @param {Vector3} point - The point to compute the closest point on the line for.
* @param {boolean} clampToLine - Whether to clamp the result to the range `[0,1]` or not.
* @param {Vector3} target - The target vector that is used to store the method's result.
* @return {Vector3} The closest point on the line.
*/
closestPointToPoint( point, clampToLine, target ) {
const t = this.closestPointToPointParameter( point, clampToLine );
return this.delta( target ).multiplyScalar( t ).add( this.start );
}
/**
* Returns the closest squared distance between this line segment and the given one.
*
* @param {Line3} line - The line segment to compute the closest squared distance to.
* @param {Vector3} [c1] - The closest point on this line segment.
* @param {Vector3} [c2] - The closest point on the given line segment.
* @return {number} The squared distance between this line segment and the given one.
*/
distanceSqToLine3( line, c1 = _c1, c2 = _c2 ) {
// from Real-Time Collision Detection by Christer Ericson, chapter 5.1.9
// Computes closest points C1 and C2 of S1(s)=P1+s*(Q1-P1) and
// S2(t)=P2+t*(Q2-P2), returning s and t. Function result is squared
// distance between between S1(s) and S2(t)
const EPSILON = 1e-8 * 1e-8; // must be squared since we compare squared length
let s, t;
const p1 = this.start;
const p2 = line.start;
const q1 = this.end;
const q2 = line.end;
_d1.subVectors( q1, p1 ); // Direction vector of segment S1
_d2.subVectors( q2, p2 ); // Direction vector of segment S2
_r.subVectors( p1, p2 );
const a = _d1.dot( _d1 ); // Squared length of segment S1, always nonnegative
const e = _d2.dot( _d2 ); // Squared length of segment S2, always nonnegative
const f = _d2.dot( _r );
// Check if either or both segments degenerate into points
if ( a <= EPSILON && e <= EPSILON ) {
// Both segments degenerate into points
c1.copy( p1 );
c2.copy( p2 );
c1.sub( c2 );
return c1.dot( c1 );
}
if ( a <= EPSILON ) {
// First segment degenerates into a point
s = 0;
t = f / e; // s = 0 => t = (b*s + f) / e = f / e
t = clamp( t, 0, 1 );
} else {
const c = _d1.dot( _r );
if ( e <= EPSILON ) {
// Second segment degenerates into a point
t = 0;
s = clamp( - c / a, 0, 1 ); // t = 0 => s = (b*t - c) / a = -c / a
} else {
// The general nondegenerate case starts here
const b = _d1.dot( _d2 );
const denom = a * e - b * b; // Always nonnegative
// If segments not parallel, compute closest point on L1 to L2 and
// clamp to segment S1. Else pick arbitrary s (here 0)
if ( denom !== 0 ) {
s = clamp( ( b * f - c * e ) / denom, 0, 1 );
} else {
s = 0;
}
// Compute point on L2 closest to S1(s) using
// t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e
t = ( b * s + f ) / e;
// If t in [0,1] done. Else clamp t, recompute s for the new value
// of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a
// and clamp s to [0, 1]
if ( t < 0 ) {
t = 0.;
s = clamp( - c / a, 0, 1 );
} else if ( t > 1 ) {
t = 1;
s = clamp( ( b - c ) / a, 0, 1 );
}
}
}
c1.copy( p1 ).add( _d1.multiplyScalar( s ) );
c2.copy( p2 ).add( _d2.multiplyScalar( t ) );
c1.sub( c2 );
return c1.dot( c1 );
}
/**
* Applies a 4x4 transformation matrix to this line segment.
*
* @param {Matrix4} matrix - The transformation matrix.
* @return {Line3} A reference to this line segment.
*/
applyMatrix4( matrix ) {
this.start.applyMatrix4( matrix );
this.end.applyMatrix4( matrix );
return this;
}
/**
* Returns `true` if this line segment is equal with the given one.
*
* @param {Line3} line - The line segment to test for equality.
* @return {boolean} Whether this line segment is equal with the given one.
*/
equals( line ) {
return line.start.equals( this.start ) && line.end.equals( this.end );
}
/**
* Returns a new line segment with copied values from this instance.
*
* @return {Line3} A clone of this instance.
*/
clone() {
return new this.constructor().copy( this );
}
}
export { Line3 };