UNPKG

three

Version:

JavaScript 3D library

1,939 lines (1,450 loc) 87.4 kB
import Animation from './Animation.js'; import RenderObjects from './RenderObjects.js'; import Attributes from './Attributes.js'; import Geometries from './Geometries.js'; import Info from './Info.js'; import Pipelines from './Pipelines.js'; import Bindings from './Bindings.js'; import RenderLists from './RenderLists.js'; import RenderContexts from './RenderContexts.js'; import Textures from './Textures.js'; import Background from './Background.js'; import Nodes from './nodes/Nodes.js'; import Color4 from './Color4.js'; import ClippingContext from './ClippingContext.js'; import QuadMesh from './QuadMesh.js'; import RenderBundles from './RenderBundles.js'; import NodeLibrary from './nodes/NodeLibrary.js'; import Lighting from './Lighting.js'; import XRManager from './XRManager.js'; import InspectorBase from './InspectorBase.js'; import CanvasTarget from './CanvasTarget.js'; import NodeMaterial from '../../materials/nodes/NodeMaterial.js'; import { Scene } from '../../scenes/Scene.js'; import { ColorManagement } from '../../math/ColorManagement.js'; import { Frustum } from '../../math/Frustum.js'; import { FrustumArray } from '../../math/FrustumArray.js'; import { Matrix4 } from '../../math/Matrix4.js'; import { Vector2 } from '../../math/Vector2.js'; import { Vector4 } from '../../math/Vector4.js'; import { RenderTarget } from '../../core/RenderTarget.js'; import { DoubleSide, BackSide, FrontSide, SRGBColorSpace, NoToneMapping, LinearFilter, HalfFloatType, RGBAFormat, PCFShadowMap } from '../../constants.js'; import { float, vec3, vec4 } from '../../nodes/tsl/TSLCore.js'; import { reference } from '../../nodes/accessors/ReferenceNode.js'; import { highpModelNormalViewMatrix, highpModelViewMatrix } from '../../nodes/accessors/ModelNode.js'; import { error, warn, warnOnce } from '../../utils.js'; const _scene = /*@__PURE__*/ new Scene(); const _drawingBufferSize = /*@__PURE__*/ new Vector2(); const _screen = /*@__PURE__*/ new Vector4(); const _frustum = /*@__PURE__*/ new Frustum(); const _frustumArray = /*@__PURE__*/ new FrustumArray(); const _projScreenMatrix = /*@__PURE__*/ new Matrix4(); const _vector4 = /*@__PURE__*/ new Vector4(); /** * Base class for renderers. */ class Renderer { /** * Renderer options. * * @typedef {Object} Renderer~Options * @property {boolean} [logarithmicDepthBuffer=false] - Whether logarithmic depth buffer is enabled or not. * @property {boolean} [alpha=true] - Whether the default framebuffer (which represents the final contents of the canvas) should be transparent or opaque. * @property {boolean} [depth=true] - Whether the default framebuffer should have a depth buffer or not. * @property {boolean} [stencil=false] - Whether the default framebuffer should have a stencil buffer or not. * @property {boolean} [antialias=false] - Whether MSAA as the default anti-aliasing should be enabled or not. * @property {number} [samples=0] - When `antialias` is `true`, `4` samples are used by default. This parameter can set to any other integer value than 0 * to overwrite the default. * @property {?Function} [getFallback=null] - This callback function can be used to provide a fallback backend, if the primary backend can't be targeted. * @property {number} [colorBufferType=HalfFloatType] - Defines the type of color buffers. The default `HalfFloatType` is recommend for best * quality. To save memory and bandwidth, `UnsignedByteType` might be used. This will reduce rendering quality though. * @property {boolean} [multiview=false] - If set to `true`, the renderer will use multiview during WebXR rendering if supported. */ /** * Constructs a new renderer. * * @param {Backend} backend - The backend the renderer is targeting (e.g. WebGPU or WebGL 2). * @param {Renderer~Options} [parameters] - The configuration parameter. */ constructor( backend, parameters = {} ) { /** * This flag can be used for type testing. * * @type {boolean} * @readonly * @default true */ this.isRenderer = true; // const { logarithmicDepthBuffer = false, alpha = true, depth = true, stencil = false, antialias = false, samples = 0, getFallback = null, colorBufferType = HalfFloatType, multiview = false } = parameters; /** * A reference to the current backend. * * @type {Backend} */ this.backend = backend; /** * Whether the renderer should automatically clear the current rendering target * before execute a `render()` call. The target can be the canvas (default framebuffer) * or the current bound render target (custom framebuffer). * * @type {boolean} * @default true */ this.autoClear = true; /** * When `autoClear` is set to `true`, this property defines whether the renderer * should clear the color buffer. * * @type {boolean} * @default true */ this.autoClearColor = true; /** * When `autoClear` is set to `true`, this property defines whether the renderer * should clear the depth buffer. * * @type {boolean} * @default true */ this.autoClearDepth = true; /** * When `autoClear` is set to `true`, this property defines whether the renderer * should clear the stencil buffer. * * @type {boolean} * @default true */ this.autoClearStencil = true; /** * Whether the default framebuffer should be transparent or opaque. * * @type {boolean} * @default true */ this.alpha = alpha; /** * Whether logarithmic depth buffer is enabled or not. * * @type {boolean} * @default false */ this.logarithmicDepthBuffer = logarithmicDepthBuffer; /** * Defines the output color space of the renderer. * * @type {string} * @default SRGBColorSpace */ this.outputColorSpace = SRGBColorSpace; /** * Defines the tone mapping of the renderer. * * @type {number} * @default NoToneMapping */ this.toneMapping = NoToneMapping; /** * Defines the tone mapping exposure. * * @type {number} * @default 1 */ this.toneMappingExposure = 1.0; /** * Whether the renderer should sort its render lists or not. * * Note: Sorting is used to attempt to properly render objects that have some degree of transparency. * By definition, sorting objects may not work in all cases. Depending on the needs of application, * it may be necessary to turn off sorting and use other methods to deal with transparency rendering * e.g. manually determining each object's rendering order. * * @type {boolean} * @default true */ this.sortObjects = true; /** * Whether the default framebuffer should have a depth buffer or not. * * @type {boolean} * @default true */ this.depth = depth; /** * Whether the default framebuffer should have a stencil buffer or not. * * @type {boolean} * @default false */ this.stencil = stencil; /** * Holds a series of statistical information about the GPU memory * and the rendering process. Useful for debugging and monitoring. * * @type {Info} */ this.info = new Info(); /** * Stores override nodes for specific transformations or calculations. * These nodes can be used to replace default behavior in the rendering pipeline. * * @type {Object} * @property {?Node} modelViewMatrix - An override node for the model-view matrix. * @property {?Node} modelNormalViewMatrix - An override node for the model normal view matrix. */ this.overrideNodes = { modelViewMatrix: null, modelNormalViewMatrix: null }; /** * The node library defines how certain library objects like materials, lights * or tone mapping functions are mapped to node types. This is required since * although instances of classes like `MeshBasicMaterial` or `PointLight` can * be part of the scene graph, they are internally represented as nodes for * further processing. * * @type {NodeLibrary} */ this.library = new NodeLibrary(); /** * A map-like data structure for managing lights. * * @type {Lighting} */ this.lighting = new Lighting(); // internals /** * The number of MSAA samples. * * @private * @type {number} * @default 0 */ this._samples = samples || ( antialias === true ) ? 4 : 0; /** * OnCanvasTargetResize callback function. * * @private * @type {Function} */ this._onCanvasTargetResize = this._onCanvasTargetResize.bind( this ); /** * The canvas target for rendering. * * @private * @type {CanvasTarget} */ this._canvasTarget = new CanvasTarget( backend.getDomElement() ); this._canvasTarget.addEventListener( 'resize', this._onCanvasTargetResize ); this._canvasTarget.isDefaultCanvasTarget = true; /** * The inspector provides information about the internal renderer state. * * @private * @type {InspectorBase} */ this._inspector = new InspectorBase(); this._inspector.setRenderer( this ); /** * This callback function can be used to provide a fallback backend, if the primary backend can't be targeted. * * @private * @type {?Function} */ this._getFallback = getFallback; /** * A reference to a renderer module for managing shader attributes. * * @private * @type {?Attributes} * @default null */ this._attributes = null; /** * A reference to a renderer module for managing geometries. * * @private * @type {?Geometries} * @default null */ this._geometries = null; /** * A reference to a renderer module for managing node related logic. * * @private * @type {?Nodes} * @default null */ this._nodes = null; /** * A reference to a renderer module for managing the internal animation loop. * * @private * @type {?Animation} * @default null */ this._animation = null; /** * A reference to a renderer module for managing shader program bindings. * * @private * @type {?Bindings} * @default null */ this._bindings = null; /** * A reference to a renderer module for managing render objects. * * @private * @type {?RenderObjects} * @default null */ this._objects = null; /** * A reference to a renderer module for managing render and compute pipelines. * * @private * @type {?Pipelines} * @default null */ this._pipelines = null; /** * A reference to a renderer module for managing render bundles. * * @private * @type {?RenderBundles} * @default null */ this._bundles = null; /** * A reference to a renderer module for managing render lists. * * @private * @type {?RenderLists} * @default null */ this._renderLists = null; /** * A reference to a renderer module for managing render contexts. * * @private * @type {?RenderContexts} * @default null */ this._renderContexts = null; /** * A reference to a renderer module for managing textures. * * @private * @type {?Textures} * @default null */ this._textures = null; /** * A reference to a renderer module for backgrounds. * * @private * @type {?Background} * @default null */ this._background = null; /** * This fullscreen quad is used for internal render passes * like the tone mapping and color space output pass. * * @private * @type {QuadMesh} */ this._quad = new QuadMesh( new NodeMaterial() ); this._quad.name = 'Output Color Transform'; this._quad.material.name = 'outputColorTransform'; /** * A reference to the current render context. * * @private * @type {?RenderContext} * @default null */ this._currentRenderContext = null; /** * A custom sort function for the opaque render list. * * @private * @type {?Function} * @default null */ this._opaqueSort = null; /** * A custom sort function for the transparent render list. * * @private * @type {?Function} * @default null */ this._transparentSort = null; /** * The framebuffer target. * * @private * @type {?RenderTarget} * @default null */ this._frameBufferTarget = null; const alphaClear = this.alpha === true ? 0 : 1; /** * The clear color value. * * @private * @type {Color4} */ this._clearColor = new Color4( 0, 0, 0, alphaClear ); /** * The clear depth value. * * @private * @type {number} * @default 1 */ this._clearDepth = 1; /** * The clear stencil value. * * @private * @type {number} * @default 0 */ this._clearStencil = 0; /** * The current render target. * * @private * @type {?RenderTarget} * @default null */ this._renderTarget = null; /** * The active cube face. * * @private * @type {number} * @default 0 */ this._activeCubeFace = 0; /** * The active mipmap level. * * @private * @type {number} * @default 0 */ this._activeMipmapLevel = 0; /** * The current output render target. * * @private * @type {?RenderTarget} * @default null */ this._outputRenderTarget = null; /** * The MRT setting. * * @private * @type {?MRTNode} * @default null */ this._mrt = null; /** * This function defines how a render object is going * to be rendered. * * @private * @type {?Function} * @default null */ this._renderObjectFunction = null; /** * Used to keep track of the current render object function. * * @private * @type {?Function} * @default null */ this._currentRenderObjectFunction = null; /** * Used to keep track of the current render bundle. * * @private * @type {?RenderBundle} * @default null */ this._currentRenderBundle = null; /** * Next to `_renderObjectFunction()`, this function provides another hook * for influencing the render process of a render object. It is meant for internal * use and only relevant for `compileAsync()` right now. Instead of using * the default logic of `_renderObjectDirect()` which actually draws the render object, * a different function might be used which performs no draw but just the node * and pipeline updates. * * @private * @type {?Function} * @default null */ this._handleObjectFunction = this._renderObjectDirect; /** * Indicates whether the device has been lost or not. In WebGL terms, the device * lost is considered as a context lost. When this is set to `true`, rendering * isn't possible anymore. * * @private * @type {boolean} * @default false */ this._isDeviceLost = false; /** * A callback function that defines what should happen when a device/context lost occurs. * * @type {Function} */ this.onDeviceLost = this._onDeviceLost; /** * Defines the type of color buffers. The default `HalfFloatType` is recommend for * best quality. To save memory and bandwidth, `UnsignedByteType` might be used. * This will reduce rendering quality though. * * @private * @type {number} * @default HalfFloatType */ this._colorBufferType = colorBufferType; /** * A cache for shadow nodes per material * * @private * @type {WeakMap<Material, Object>} */ this._cacheShadowNodes = new WeakMap(); /** * Whether the renderer has been initialized or not. * * @private * @type {boolean} * @default false */ this._initialized = false; /** * A reference to the promise which initializes the renderer. * * @private * @type {?Promise<this>} * @default null */ this._initPromise = null; /** * An array of compilation promises which are used in `compileAsync()`. * * @private * @type {?Array<Promise>} * @default null */ this._compilationPromises = null; /** * Whether the renderer should render transparent render objects or not. * * @type {boolean} * @default true */ this.transparent = true; /** * Whether the renderer should render opaque render objects or not. * * @type {boolean} * @default true */ this.opaque = true; /** * Shadow map configuration * @typedef {Object} ShadowMapConfig * @property {boolean} enabled - Whether to globally enable shadows or not. * @property {number} type - The shadow map type. */ /** * The renderer's shadow configuration. * * @type {ShadowMapConfig} */ this.shadowMap = { enabled: false, type: PCFShadowMap }; /** * XR configuration. * @typedef {Object} XRConfig * @property {boolean} enabled - Whether to globally enable XR or not. */ /** * The renderer's XR manager. * * @type {XRManager} */ this.xr = new XRManager( this, multiview ); /** * Debug configuration. * @typedef {Object} DebugConfig * @property {boolean} checkShaderErrors - Whether shader errors should be checked or not. * @property {?Function} onShaderError - A callback function that is executed when a shader error happens. Only supported with WebGL 2 right now. * @property {Function} getShaderAsync - Allows the get the raw shader code for the given scene, camera and 3D object. */ /** * The renderer's debug configuration. * * @type {DebugConfig} */ this.debug = { checkShaderErrors: true, onShaderError: null, getShaderAsync: async ( scene, camera, object ) => { await this.compileAsync( scene, camera ); const renderList = this._renderLists.get( scene, camera ); const renderContext = this._renderContexts.get( scene, camera, this._renderTarget ); const material = scene.overrideMaterial || object.material; const renderObject = this._objects.get( object, material, scene, camera, renderList.lightsNode, renderContext, renderContext.clippingContext ); const { fragmentShader, vertexShader } = renderObject.getNodeBuilderState(); return { fragmentShader, vertexShader }; } }; } /** * Initializes the renderer so it is ready for usage. * * @async * @return {Promise<this>} A Promise that resolves when the renderer has been initialized. */ async init() { if ( this._initPromise !== null ) { return this._initPromise; } this._initPromise = new Promise( async ( resolve, reject ) => { let backend = this.backend; try { await backend.init( this ); } catch ( error ) { if ( this._getFallback !== null ) { // try the fallback try { this.backend = backend = this._getFallback( error ); await backend.init( this ); } catch ( error ) { reject( error ); return; } } else { reject( error ); return; } } this._nodes = new Nodes( this, backend ); this._animation = new Animation( this, this._nodes, this.info ); this._attributes = new Attributes( backend ); this._background = new Background( this, this._nodes ); this._geometries = new Geometries( this._attributes, this.info ); this._textures = new Textures( this, backend, this.info ); this._pipelines = new Pipelines( backend, this._nodes ); this._bindings = new Bindings( backend, this._nodes, this._textures, this._attributes, this._pipelines, this.info ); this._objects = new RenderObjects( this, this._nodes, this._geometries, this._pipelines, this._bindings, this.info ); this._renderLists = new RenderLists( this.lighting ); this._bundles = new RenderBundles(); this._renderContexts = new RenderContexts(); // this._animation.start(); this._initialized = true; // this._inspector.init(); // resolve( this ); } ); return this._initPromise; } /** * A reference to the canvas element the renderer is drawing to. * This value of this property will automatically be created by * the renderer. * * @type {HTMLCanvasElement|OffscreenCanvas} */ get domElement() { return this._canvasTarget.domElement; } /** * The coordinate system of the renderer. The value of this property * depends on the selected backend. Either `THREE.WebGLCoordinateSystem` or * `THREE.WebGPUCoordinateSystem`. * * @readonly * @type {number} */ get coordinateSystem() { return this.backend.coordinateSystem; } /** * Compiles all materials in the given scene. This can be useful to avoid a * phenomenon which is called "shader compilation stutter", which occurs when * rendering an object with a new shader for the first time. * * If you want to add a 3D object to an existing scene, use the third optional * parameter for applying the target scene. Note that the (target) scene's lighting * and environment must be configured before calling this method. * * @async * @param {Object3D} scene - The scene or 3D object to precompile. * @param {Camera} camera - The camera that is used to render the scene. * @param {?Scene} targetScene - If the first argument is a 3D object, this parameter must represent the scene the 3D object is going to be added. * @return {Promise<Array|undefined>} A Promise that resolves when the compile has been finished. */ async compileAsync( scene, camera, targetScene = null ) { if ( this._isDeviceLost === true ) return; if ( this._initialized === false ) await this.init(); // preserve render tree const nodeFrame = this._nodes.nodeFrame; const previousRenderId = nodeFrame.renderId; const previousRenderContext = this._currentRenderContext; const previousRenderObjectFunction = this._currentRenderObjectFunction; const previousCompilationPromises = this._compilationPromises; // const sceneRef = ( scene.isScene === true ) ? scene : _scene; if ( targetScene === null ) targetScene = scene; const renderTarget = this._renderTarget; const renderContext = this._renderContexts.get( targetScene, camera, renderTarget ); const activeMipmapLevel = this._activeMipmapLevel; const compilationPromises = []; this._currentRenderContext = renderContext; this._currentRenderObjectFunction = this.renderObject; this._handleObjectFunction = this._createObjectPipeline; this._compilationPromises = compilationPromises; nodeFrame.renderId ++; // nodeFrame.update(); // renderContext.depth = this.depth; renderContext.stencil = this.stencil; if ( ! renderContext.clippingContext ) renderContext.clippingContext = new ClippingContext(); renderContext.clippingContext.updateGlobal( sceneRef, camera ); // sceneRef.onBeforeRender( this, scene, camera, renderTarget ); // const renderList = this._renderLists.get( scene, camera ); renderList.begin(); this._projectObject( scene, camera, 0, renderList, renderContext.clippingContext ); // include lights from target scene if ( targetScene !== scene ) { targetScene.traverseVisible( function ( object ) { if ( object.isLight && object.layers.test( camera.layers ) ) { renderList.pushLight( object ); } } ); } renderList.finish(); // if ( renderTarget !== null ) { this._textures.updateRenderTarget( renderTarget, activeMipmapLevel ); const renderTargetData = this._textures.get( renderTarget ); renderContext.textures = renderTargetData.textures; renderContext.depthTexture = renderTargetData.depthTexture; } else { renderContext.textures = null; renderContext.depthTexture = null; } // this._background.update( sceneRef, renderList, renderContext ); // process render lists const opaqueObjects = renderList.opaque; const transparentObjects = renderList.transparent; const transparentDoublePassObjects = renderList.transparentDoublePass; const lightsNode = renderList.lightsNode; if ( this.opaque === true && opaqueObjects.length > 0 ) this._renderObjects( opaqueObjects, camera, sceneRef, lightsNode ); if ( this.transparent === true && transparentObjects.length > 0 ) this._renderTransparents( transparentObjects, transparentDoublePassObjects, camera, sceneRef, lightsNode ); // restore render tree nodeFrame.renderId = previousRenderId; this._currentRenderContext = previousRenderContext; this._currentRenderObjectFunction = previousRenderObjectFunction; this._compilationPromises = previousCompilationPromises; this._handleObjectFunction = this._renderObjectDirect; // wait for all promises setup by backends awaiting compilation/linking/pipeline creation to complete await Promise.all( compilationPromises ); } /** * Renders the scene in an async fashion. * * @async * @deprecated * @param {Object3D} scene - The scene or 3D object to render. * @param {Camera} camera - The camera. * @return {Promise} A Promise that resolves when the render has been finished. */ async renderAsync( scene, camera ) { warnOnce( 'Renderer: "renderAsync()" has been deprecated. Use "render()" and "await renderer.init();" when creating the renderer.' ); // @deprecated r181 await this.init(); this.render( scene, camera ); } /** * Can be used to synchronize CPU operations with GPU tasks. So when this method is called, * the CPU waits for the GPU to complete its operation (e.g. a compute task). * * @async * @deprecated * @return {Promise} A Promise that resolves when synchronization has been finished. */ async waitForGPU() { error( 'Renderer: waitForGPU() has been removed. Read https://github.com/mrdoob/three.js/issues/32012 for more information.' ); } // /** * Sets the inspector instance. The inspector can be any class that extends from `InspectorBase`. * * @param {InspectorBase} value - The new inspector. */ set inspector( value ) { if ( this._inspector !== null ) { this._inspector.setRenderer( null ); } this._inspector = value; this._inspector.setRenderer( this ); } get inspector() { return this._inspector; } /** * Enables or disables high precision for model-view and normal-view matrices. * When enabled, will use CPU 64-bit precision for higher precision instead of GPU 32-bit for higher performance. * * NOTE: 64-bit precision is not compatible with `InstancedMesh` and `SkinnedMesh`. * * @param {boolean} value - Whether to enable or disable high precision. * @type {boolean} */ set highPrecision( value ) { if ( value === true ) { this.overrideNodes.modelViewMatrix = highpModelViewMatrix; this.overrideNodes.modelNormalViewMatrix = highpModelNormalViewMatrix; } else if ( this.highPrecision ) { this.overrideNodes.modelViewMatrix = null; this.overrideNodes.modelNormalViewMatrix = null; } } /** * Returns whether high precision is enabled or not. * * @return {boolean} Whether high precision is enabled or not. * @type {boolean} */ get highPrecision() { return this.overrideNodes.modelViewMatrix === highpModelViewMatrix && this.overrideNodes.modelNormalViewMatrix === highpModelNormalViewMatrix; } /** * Sets the given MRT configuration. * * @param {MRTNode} mrt - The MRT node to set. * @return {Renderer} A reference to this renderer. */ setMRT( mrt ) { this._mrt = mrt; return this; } /** * Returns the MRT configuration. * * @return {MRTNode} The MRT configuration. */ getMRT() { return this._mrt; } /** * Returns the color buffer type. * * @return {number} The color buffer type. */ getColorBufferType() { return this._colorBufferType; } /** * Default implementation of the device lost callback. * * @private * @param {Object} info - Information about the context lost. */ _onDeviceLost( info ) { let errorMessage = `THREE.WebGPURenderer: ${info.api} Device Lost:\n\nMessage: ${info.message}`; if ( info.reason ) { errorMessage += `\nReason: ${info.reason}`; } error( errorMessage ); this._isDeviceLost = true; } /** * Renders the given render bundle. * * @private * @param {Object} bundle - Render bundle data. * @param {Scene} sceneRef - The scene the render bundle belongs to. * @param {LightsNode} lightsNode - The lights node. */ _renderBundle( bundle, sceneRef, lightsNode ) { const { bundleGroup, camera, renderList } = bundle; const renderContext = this._currentRenderContext; // const renderBundle = this._bundles.get( bundleGroup, camera ); const renderBundleData = this.backend.get( renderBundle ); if ( renderBundleData.renderContexts === undefined ) renderBundleData.renderContexts = new Set(); // const needsUpdate = bundleGroup.version !== renderBundleData.version; const renderBundleNeedsUpdate = renderBundleData.renderContexts.has( renderContext ) === false || needsUpdate; renderBundleData.renderContexts.add( renderContext ); if ( renderBundleNeedsUpdate ) { this.backend.beginBundle( renderContext ); if ( renderBundleData.renderObjects === undefined || needsUpdate ) { renderBundleData.renderObjects = []; } this._currentRenderBundle = renderBundle; const { transparentDoublePass: transparentDoublePassObjects, transparent: transparentObjects, opaque: opaqueObjects } = renderList; if ( this.opaque === true && opaqueObjects.length > 0 ) this._renderObjects( opaqueObjects, camera, sceneRef, lightsNode ); if ( this.transparent === true && transparentObjects.length > 0 ) this._renderTransparents( transparentObjects, transparentDoublePassObjects, camera, sceneRef, lightsNode ); this._currentRenderBundle = null; // this.backend.finishBundle( renderContext, renderBundle ); renderBundleData.version = bundleGroup.version; } else { const { renderObjects } = renderBundleData; for ( let i = 0, l = renderObjects.length; i < l; i ++ ) { const renderObject = renderObjects[ i ]; if ( this._nodes.needsRefresh( renderObject ) ) { this._nodes.updateBefore( renderObject ); this._nodes.updateForRender( renderObject ); this._bindings.updateForRender( renderObject ); this._nodes.updateAfter( renderObject ); } } } this.backend.addBundle( renderContext, renderBundle ); } /** * Renders the scene or 3D object with the given camera. This method can only be called * if the renderer has been initialized. When using `render()` inside an animation loop, * it's guaranteed the renderer will be initialized. The animation loop must be defined * with {@link Renderer#setAnimationLoop} though. * * For all other use cases (like when using on-demand rendering), you must call * {@link Renderer#init} before rendering. * * The target of the method is the default framebuffer (meaning the canvas) * or alternatively a render target when specified via `setRenderTarget()`. * * @param {Object3D} scene - The scene or 3D object to render. * @param {Camera} camera - The camera to render the scene with. */ render( scene, camera ) { if ( this._initialized === false ) { throw new Error( 'Renderer: .render() called before the backend is initialized. Use "await renderer.init();" before rendering.' ); } this._renderScene( scene, camera ); } /** * Returns whether the renderer has been initialized or not. * * @readonly * @return {boolean} Whether the renderer has been initialized or not. */ get initialized() { return this._initialized; } /** * Returns an internal render target which is used when computing the output tone mapping * and color space conversion. Unlike in `WebGLRenderer`, this is done in a separate render * pass and not inline to achieve more correct results. * * @private * @return {?RenderTarget} The render target. The method returns `null` if no output conversion should be applied. */ _getFrameBufferTarget() { const { currentToneMapping, currentColorSpace } = this; const useToneMapping = currentToneMapping !== NoToneMapping; const useColorSpace = currentColorSpace !== ColorManagement.workingColorSpace; if ( useToneMapping === false && useColorSpace === false ) return null; const { width, height } = this.getDrawingBufferSize( _drawingBufferSize ); const { depth, stencil } = this; let frameBufferTarget = this._frameBufferTarget; if ( frameBufferTarget === null ) { frameBufferTarget = new RenderTarget( width, height, { depthBuffer: depth, stencilBuffer: stencil, type: this._colorBufferType, format: RGBAFormat, colorSpace: ColorManagement.workingColorSpace, generateMipmaps: false, minFilter: LinearFilter, magFilter: LinearFilter, samples: this.samples } ); frameBufferTarget.isPostProcessingRenderTarget = true; this._frameBufferTarget = frameBufferTarget; } const outputRenderTarget = this.getOutputRenderTarget(); frameBufferTarget.depthBuffer = depth; frameBufferTarget.stencilBuffer = stencil; if ( outputRenderTarget !== null ) { frameBufferTarget.setSize( outputRenderTarget.width, outputRenderTarget.height, outputRenderTarget.depth ); } else { frameBufferTarget.setSize( width, height, 1 ); } const canvasTarget = this._canvasTarget; frameBufferTarget.viewport.copy( canvasTarget._viewport ); frameBufferTarget.scissor.copy( canvasTarget._scissor ); frameBufferTarget.viewport.multiplyScalar( canvasTarget._pixelRatio ); frameBufferTarget.scissor.multiplyScalar( canvasTarget._pixelRatio ); frameBufferTarget.scissorTest = canvasTarget._scissorTest; frameBufferTarget.multiview = outputRenderTarget !== null ? outputRenderTarget.multiview : false; frameBufferTarget.resolveDepthBuffer = outputRenderTarget !== null ? outputRenderTarget.resolveDepthBuffer : true; frameBufferTarget._autoAllocateDepthBuffer = outputRenderTarget !== null ? outputRenderTarget._autoAllocateDepthBuffer : false; return frameBufferTarget; } /** * Renders the scene or 3D object with the given camera. * * @private * @param {Object3D} scene - The scene or 3D object to render. * @param {Camera} camera - The camera to render the scene with. * @param {boolean} [useFrameBufferTarget=true] - Whether to use a framebuffer target or not. * @return {RenderContext} The current render context. */ _renderScene( scene, camera, useFrameBufferTarget = true ) { if ( this._isDeviceLost === true ) return; // const frameBufferTarget = useFrameBufferTarget ? this._getFrameBufferTarget() : null; // preserve render tree const nodeFrame = this._nodes.nodeFrame; const previousRenderId = nodeFrame.renderId; const previousRenderContext = this._currentRenderContext; const previousRenderObjectFunction = this._currentRenderObjectFunction; // const sceneRef = ( scene.isScene === true ) ? scene : _scene; const outputRenderTarget = this._renderTarget || this._outputRenderTarget; const activeCubeFace = this._activeCubeFace; const activeMipmapLevel = this._activeMipmapLevel; // let renderTarget; if ( frameBufferTarget !== null ) { renderTarget = frameBufferTarget; this.setRenderTarget( renderTarget ); } else { renderTarget = outputRenderTarget; } // const renderContext = this._renderContexts.get( scene, camera, renderTarget ); this._currentRenderContext = renderContext; this._currentRenderObjectFunction = this._renderObjectFunction || this.renderObject; // this.info.calls ++; this.info.render.calls ++; this.info.render.frameCalls ++; nodeFrame.renderId = this.info.calls; // this.backend.updateTimeStampUID( renderContext ); this.inspector.beginRender( this.backend.getTimestampUID( renderContext ), scene, camera, renderTarget ); // const coordinateSystem = this.coordinateSystem; const xr = this.xr; if ( camera.coordinateSystem !== coordinateSystem && xr.isPresenting === false ) { camera.coordinateSystem = coordinateSystem; camera.updateProjectionMatrix(); if ( camera.isArrayCamera ) { for ( const subCamera of camera.cameras ) { subCamera.coordinateSystem = coordinateSystem; subCamera.updateProjectionMatrix(); } } } // if ( scene.matrixWorldAutoUpdate === true ) scene.updateMatrixWorld(); if ( camera.parent === null && camera.matrixWorldAutoUpdate === true ) camera.updateMatrixWorld(); if ( xr.enabled === true && xr.isPresenting === true ) { if ( xr.cameraAutoUpdate === true ) xr.updateCamera( camera ); camera = xr.getCamera(); // use XR camera for rendering } // const canvasTarget = this._canvasTarget; let viewport = canvasTarget._viewport; let scissor = canvasTarget._scissor; let pixelRatio = canvasTarget._pixelRatio; if ( renderTarget !== null ) { viewport = renderTarget.viewport; scissor = renderTarget.scissor; pixelRatio = 1; } this.getDrawingBufferSize( _drawingBufferSize ); _screen.set( 0, 0, _drawingBufferSize.width, _drawingBufferSize.height ); const minDepth = ( viewport.minDepth === undefined ) ? 0 : viewport.minDepth; const maxDepth = ( viewport.maxDepth === undefined ) ? 1 : viewport.maxDepth; renderContext.viewportValue.copy( viewport ).multiplyScalar( pixelRatio ).floor(); renderContext.viewportValue.width >>= activeMipmapLevel; renderContext.viewportValue.height >>= activeMipmapLevel; renderContext.viewportValue.minDepth = minDepth; renderContext.viewportValue.maxDepth = maxDepth; renderContext.viewport = renderContext.viewportValue.equals( _screen ) === false; renderContext.scissorValue.copy( scissor ).multiplyScalar( pixelRatio ).floor(); renderContext.scissor = canvasTarget._scissorTest && renderContext.scissorValue.equals( _screen ) === false; renderContext.scissorValue.width >>= activeMipmapLevel; renderContext.scissorValue.height >>= activeMipmapLevel; if ( ! renderContext.clippingContext ) renderContext.clippingContext = new ClippingContext(); renderContext.clippingContext.updateGlobal( sceneRef, camera ); // sceneRef.onBeforeRender( this, scene, camera, renderTarget ); // const frustum = camera.isArrayCamera ? _frustumArray : _frustum; if ( ! camera.isArrayCamera ) { _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); frustum.setFromProjectionMatrix( _projScreenMatrix, camera.coordinateSystem, camera.reversedDepth ); } const renderList = this._renderLists.get( scene, camera ); renderList.begin(); this._projectObject( scene, camera, 0, renderList, renderContext.clippingContext ); renderList.finish(); if ( this.sortObjects === true ) { renderList.sort( this._opaqueSort, this._transparentSort ); } // if ( renderTarget !== null ) { this._textures.updateRenderTarget( renderTarget, activeMipmapLevel ); const renderTargetData = this._textures.get( renderTarget ); renderContext.textures = renderTargetData.textures; renderContext.depthTexture = renderTargetData.depthTexture; renderContext.width = renderTargetData.width; renderContext.height = renderTargetData.height; renderContext.renderTarget = renderTarget; renderContext.depth = renderTarget.depthBuffer; renderContext.stencil = renderTarget.stencilBuffer; } else { renderContext.textures = null; renderContext.depthTexture = null; renderContext.width = _drawingBufferSize.width; renderContext.height = _drawingBufferSize.height; renderContext.depth = this.depth; renderContext.stencil = this.stencil; } renderContext.width >>= activeMipmapLevel; renderContext.height >>= activeMipmapLevel; renderContext.activeCubeFace = activeCubeFace; renderContext.activeMipmapLevel = activeMipmapLevel; renderContext.occlusionQueryCount = renderList.occlusionQueryCount; // renderContext.scissorValue.max( _vector4.set( 0, 0, 0, 0 ) ); if ( renderContext.scissorValue.x + renderContext.scissorValue.width > renderContext.width ) { renderContext.scissorValue.width = Math.max( renderContext.width - renderContext.scissorValue.x, 0 ); } if ( renderContext.scissorValue.y + renderContext.scissorValue.height > renderContext.height ) { renderContext.scissorValue.height = Math.max( renderContext.height - renderContext.scissorValue.y, 0 ); } // this._background.update( sceneRef, renderList, renderContext ); // renderContext.camera = camera; this.backend.beginRender( renderContext ); // process render lists const { bundles, lightsNode, transparentDoublePass: transparentDoublePassObjects, transparent: transparentObjects, opaque: opaqueObjects } = renderList; if ( bundles.length > 0 ) this._renderBundles( bundles, sceneRef, lightsNode ); if ( this.opaque === true && opaqueObjects.length > 0 ) this._renderObjects( opaqueObjects, camera, sceneRef, lightsNode ); if ( this.transparent === true && transparentObjects.length > 0 ) this._renderTransparents( transparentObjects, transparentDoublePassObjects, camera, sceneRef, lightsNode ); // finish render pass this.backend.finishRender( renderContext ); // restore render tree nodeFrame.renderId = previousRenderId; this._currentRenderContext = previousRenderContext; this._currentRenderObjectFunction = previousRenderObjectFunction; // if ( frameBufferTarget !== null ) { this.setRenderTarget( outputRenderTarget, activeCubeFace, activeMipmapLevel ); this._renderOutput( renderTarget ); } // sceneRef.onAfterRender( this, scene, camera, renderTarget ); // this.inspector.finishRender( this.backend.getTimestampUID( renderContext ) ); // return renderContext; } _setXRLayerSize( width, height ) { // TODO: Find a better solution to resize the canvas when in XR. this._canvasTarget._width = width; this._canvasTarget._height = height; this.setViewport( 0, 0, width, height ); } /** * The output pass performs tone mapping and color space conversion. * * @private * @param {RenderTarget} renderTarget - The current render target. */ _renderOutput( renderTarget ) { const quad = this._quad; if ( this._nodes.hasOutputChange( renderTarget.texture ) ) { quad.material.fragmentNode = this._nodes.getOutputNode( renderTarget.texture ); quad.material.needsUpdate = true; } // a clear operation clears the intermediate renderTarget texture, but should not update the screen canvas. const currentAutoClear = this.autoClear; const currentXR = this.xr.enabled; this.autoClear = false; this.xr.enabled = false; this._renderScene( quad, quad.camera, false ); this.autoClear = currentAutoClear; this.xr.enabled = currentXR; } /** * Returns the maximum available anisotropy for texture filtering. * * @return {number} The maximum available anisotropy. */ getMaxAnisotropy() { return this.backend.getMaxAnisotropy(); } /** * Returns the active cube face. * * @return {number} The active cube face. */ getActiveCubeFace() { return this._activeCubeFace; } /** * Returns the active mipmap level. * * @return {number} The active mipmap level. */ getActiveMipmapLevel() { return this._activeMipmapLevel; } /** * Applications are advised to always define the animation loop * with this method and not manually with `requestAnimationFrame()` * for best compatibility. * * @async * @param {?onAnimationCallback} callback - The application's animation loop. * @return {Promise} A Promise that resolves when the set has been executed. */ async setAnimationLoop( callback ) { if ( this._initialized === false ) await this.init(); this._animation.setAnimationLoop( callback ); } /** * Returns the current animation loop callback. * * @return {?Function} The current animation loop callback. */ getAnimationLoop() { return this._animation.getAnimationLoop(); } /** * Can be used to transfer buffer data from a storage buffer attribute * from the GPU to the CPU in context of compute shaders. * * @async * @param {StorageBufferAttribute} attribute - The storage buffer attribute. * @return {Promise<ArrayBuffer>} A promise that resolves with the buffer data when the data are ready. */ async getArrayBufferAsync( attribute ) { return await this.backend.getArrayBufferAsync( attribute ); } /** * Returns the rendering context. * * @return {GPUCanvasContext|WebGL2RenderingContext} The rendering context. */ getContext() { return this.backend.getContext(); } /** * Returns the pixel ratio. * * @return {number} The pixel ratio. */ getPixelRatio() { return this._canvasTarget.getPixelRatio(); } /** * Returns the drawing buffer size in physical pixels. This method honors the pixel ratio. * * @param {Vector2} target - The method writes the result in this target object. * @return {Vector2} The drawing buffer size. */ getDrawingBufferSize( target ) { return this._canvasTarget.getDrawingBufferSize( target ); } /** * Returns the renderer's size in logical pixels. This method does not honor the pixel ratio. * * @param {Vector2} target - The method writes the result in this target object. * @return {Vector2} The renderer's size in logical pixels. */ getSize( target ) { return this._canvasTarget.getSize( target ); } /** * Sets the given pixel ratio and resizes the canvas if necessary. * * @param {number} [value=1] - The pixel ratio. */ setPixelRatio( value = 1 ) { this._canvasTarget.setPixelRatio( value ); } /** * This method allows to define the drawing buffer size by specifying * width, height and pixel ratio all at once. The size of the drawing * buffer is computed with this formula: * ```js * size.x = width * pixelRatio; * size.y = height * pixelRatio; * ``` * * @param {number} width - The width in logical pixels. * @param {number} height - The height in logical pixels. * @param {number} pixelRatio - The pixel ratio. */ setDrawingBufferSize( width, height, pixelRatio ) { // Renderer can't be resized while presenting in XR. if ( this.xr && this.xr.isPresenting ) return; this._canvasTarget.setDrawingBufferSize( width, height, pixelRatio ); } /** * Sets the size of the renderer. * * @param {number} width - The width in logical pixels. * @param {number} height - The height in logical pixels. * @param {boolean} [updateStyle=true] - Whether to update the `style` attribute of the canvas or not. */ setSize( width, height, updateStyle = true ) { // Renderer can't be resized while presenting in XR. if ( this.xr && this.xr.isPresenting ) return; this._canvasTarget.setSize( width, height, updateStyle ); } /** * Defines a manual sort function for the opaque render list. * Pass `null` to use the default sort. * * @param {Function} method - The sort function. */ setOpaqueSort( method ) { this._opaqueSort = method; } /** * Defines a manual sort function for the transparent render list. * Pass `null` to use the default sort. * * @param {Function} method - The sort function. */ setTransparentSort( method ) { this._transparentSort = method; } /** * Returns the scissor rectangle. * * @param {Vector4} target - The method writes the result in this target object. * @return {Vector4} The scissor rectangle. */ getScissor( target ) { return this._canvasTarget.getScissor( target ); } /** * Defines the scissor rectangle. * * @param {number | Vector4} x - The horizontal coordinate for the lower left corner of the box in logical pixel unit. * Instead of passing four arguments, the method also works with a single four-dimensional vector. * @param {number} y - The vertical coordinate for the lower left corner of the box in logical pixel unit. * @param {number} width - The width of the scissor box in logical pixel unit. * @param {number} height - The height of the scissor box in logical pixel unit. */ setScissor( x, y, width, height ) { this._canvasTarget.setScissor( x, y, width, height ); } /** * Returns the scissor test value. * * @return {boolean} Whether the scissor test should be enabled or not. */ getScissorTest() { return this._canvasTarget.getScissorTest(); } /** * Defines the scissor test. * * @param {boolean} boolean - Whether the scissor test should be enabled or not. */ setScissorTest( boolean ) { this._canvasTarget.setScissorTest( boolean ); // TODO: Move it to CanvasTarget event listener. this.backend.setScissorTest( boolean ); } /** * Returns the viewport definition. * * @param {Vector4} target - The method writes the result in this target object. * @return {Vector4} The viewport definition. */ getViewport( target ) { return this._canvasTarget.getViewport( target ); } /** * Defines the viewport. * * @param {number | Vector4} x - The horizontal coordinate for the lower left corner of the viewport origin in logical pixel unit. * @param {number} y - The vertical coordinate for the lower left corner of the viewport origin in logical pixel unit. * @param {number} width - The width of the viewport in logical pixel unit. * @param {number} height - The height of the viewport in logical pixel unit. * @param {number} minDepth - The minimum depth value of the viewport. WebGPU only. * @param {number} maxDepth - The maximum depth value of the viewport. WebGPU only. */ setViewport( x, y, width, height, minDepth = 0, maxDepth = 1 ) { this._canvasTarget.setViewport( x, y, width, height, minDepth, maxDepth ); } /** * Returns the clear color. * * @param {Color} target - The method writes the result in this target object. * @return {Color} The clear color. */ getClearColor( target ) { return target.copy( this._clearColor ); } /** * Defines the clear color and optionally the clear alpha. * * @param {Color} color - The clear color. * @param {number} [alpha=1] - The clear alpha. */ setClearColor( color, alpha = 1 ) { this._clearColor.set( color ); this._clearColor.a = alpha; } /** * Returns the clear alpha. * * @retur