three
Version:
JavaScript 3D library
1,179 lines (798 loc) • 31 kB
JavaScript
import {
CubeReflectionMapping,
CubeRefractionMapping,
CubeUVReflectionMapping,
LinearFilter,
NoToneMapping,
NoBlending,
RGBAFormat,
HalfFloatType,
BackSide,
LinearSRGBColorSpace
} from '../constants.js';
import { BufferAttribute } from '../core/BufferAttribute.js';
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Mesh } from '../objects/Mesh.js';
import { OrthographicCamera } from '../cameras/OrthographicCamera.js';
import { PerspectiveCamera } from '../cameras/PerspectiveCamera.js';
import { ShaderMaterial } from '../materials/ShaderMaterial.js';
import { Vector3 } from '../math/Vector3.js';
import { Color } from '../math/Color.js';
import { WebGLRenderTarget } from '../renderers/WebGLRenderTarget.js';
import { MeshBasicMaterial } from '../materials/MeshBasicMaterial.js';
import { BoxGeometry } from '../geometries/BoxGeometry.js';
import { error, warn } from '../utils.js';
const LOD_MIN = 4;
// The standard deviations (radians) associated with the extra mips.
// Used for scene blur in fromScene() method.
const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
// The maximum length of the blur for loop. Smaller sigmas will use fewer
// samples and exit early, but not recompile the shader.
// Used for scene blur in fromScene() method.
const MAX_SAMPLES = 20;
// GGX VNDF importance sampling configuration
const GGX_SAMPLES = 512;
const _flatCamera = /*@__PURE__*/ new OrthographicCamera();
const _clearColor = /*@__PURE__*/ new Color();
let _oldTarget = null;
let _oldActiveCubeFace = 0;
let _oldActiveMipmapLevel = 0;
let _oldXrEnabled = false;
const _origin = /*@__PURE__*/ new Vector3();
/**
* This class generates a Prefiltered, Mipmapped Radiance Environment Map
* (PMREM) from a cubeMap environment texture. This allows different levels of
* blur to be quickly accessed based on material roughness. It is packed into a
* special CubeUV format that allows us to perform custom interpolation so that
* we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
* chain, it only goes down to the LOD_MIN level (above), and then creates extra
* even more filtered 'mips' at the same LOD_MIN resolution, associated with
* higher roughness levels. In this way we maintain resolution to smoothly
* interpolate diffuse lighting while limiting sampling computation.
*
* The prefiltering uses GGX VNDF (Visible Normal Distribution Function)
* importance sampling based on "Sampling the GGX Distribution of Visible Normals"
* (Heitz, 2018) to generate environment maps that accurately match the GGX BRDF
* used in material rendering for physically-based image-based lighting.
*/
class PMREMGenerator {
/**
* Constructs a new PMREM generator.
*
* @param {WebGLRenderer} renderer - The renderer.
*/
constructor( renderer ) {
this._renderer = renderer;
this._pingPongRenderTarget = null;
this._lodMax = 0;
this._cubeSize = 0;
this._sizeLods = [];
this._sigmas = [];
this._lodMeshes = [];
this._backgroundBox = null;
this._cubemapMaterial = null;
this._equirectMaterial = null;
this._blurMaterial = null;
this._ggxMaterial = null;
}
/**
* Generates a PMREM from a supplied Scene, which can be faster than using an
* image if networking bandwidth is low. Optional sigma specifies a blur radius
* in radians to be applied to the scene before PMREM generation. Optional near
* and far planes ensure the scene is rendered in its entirety.
*
* @param {Scene} scene - The scene to be captured.
* @param {number} [sigma=0] - The blur radius in radians.
* @param {number} [near=0.1] - The near plane distance.
* @param {number} [far=100] - The far plane distance.
* @param {Object} [options={}] - The configuration options.
* @param {number} [options.size=256] - The texture size of the PMREM.
* @param {Vector3} [options.renderTarget=origin] - The position of the internal cube camera that renders the scene.
* @return {WebGLRenderTarget} The resulting PMREM.
*/
fromScene( scene, sigma = 0, near = 0.1, far = 100, options = {} ) {
const {
size = 256,
position = _origin,
} = options;
_oldTarget = this._renderer.getRenderTarget();
_oldActiveCubeFace = this._renderer.getActiveCubeFace();
_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
_oldXrEnabled = this._renderer.xr.enabled;
this._renderer.xr.enabled = false;
this._setSize( size );
const cubeUVRenderTarget = this._allocateTargets();
cubeUVRenderTarget.depthBuffer = true;
this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget, position );
if ( sigma > 0 ) {
this._blur( cubeUVRenderTarget, 0, 0, sigma );
}
this._applyPMREM( cubeUVRenderTarget );
this._cleanup( cubeUVRenderTarget );
return cubeUVRenderTarget;
}
/**
* Generates a PMREM from an equirectangular texture, which can be either LDR
* or HDR. The ideal input image size is 1k (1024 x 512),
* as this matches best with the 256 x 256 cubemap output.
*
* @param {Texture} equirectangular - The equirectangular texture to be converted.
* @param {?WebGLRenderTarget} [renderTarget=null] - The render target to use.
* @return {WebGLRenderTarget} The resulting PMREM.
*/
fromEquirectangular( equirectangular, renderTarget = null ) {
return this._fromTexture( equirectangular, renderTarget );
}
/**
* Generates a PMREM from an cubemap texture, which can be either LDR
* or HDR. The ideal input cube size is 256 x 256,
* as this matches best with the 256 x 256 cubemap output.
*
* @param {Texture} cubemap - The cubemap texture to be converted.
* @param {?WebGLRenderTarget} [renderTarget=null] - The render target to use.
* @return {WebGLRenderTarget} The resulting PMREM.
*/
fromCubemap( cubemap, renderTarget = null ) {
return this._fromTexture( cubemap, renderTarget );
}
/**
* Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
compileCubemapShader() {
if ( this._cubemapMaterial === null ) {
this._cubemapMaterial = _getCubemapMaterial();
this._compileMaterial( this._cubemapMaterial );
}
}
/**
* Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
compileEquirectangularShader() {
if ( this._equirectMaterial === null ) {
this._equirectMaterial = _getEquirectMaterial();
this._compileMaterial( this._equirectMaterial );
}
}
/**
* Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
* so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
* one of them will cause any others to also become unusable.
*/
dispose() {
this._dispose();
if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose();
if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose();
if ( this._backgroundBox !== null ) {
this._backgroundBox.geometry.dispose();
this._backgroundBox.material.dispose();
}
}
// private interface
_setSize( cubeSize ) {
this._lodMax = Math.floor( Math.log2( cubeSize ) );
this._cubeSize = Math.pow( 2, this._lodMax );
}
_dispose() {
if ( this._blurMaterial !== null ) this._blurMaterial.dispose();
if ( this._ggxMaterial !== null ) this._ggxMaterial.dispose();
if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose();
for ( let i = 0; i < this._lodMeshes.length; i ++ ) {
this._lodMeshes[ i ].geometry.dispose();
}
}
_cleanup( outputTarget ) {
this._renderer.setRenderTarget( _oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel );
this._renderer.xr.enabled = _oldXrEnabled;
outputTarget.scissorTest = false;
_setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height );
}
_fromTexture( texture, renderTarget ) {
if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) {
this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) );
} else { // Equirectangular
this._setSize( texture.image.width / 4 );
}
_oldTarget = this._renderer.getRenderTarget();
_oldActiveCubeFace = this._renderer.getActiveCubeFace();
_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
_oldXrEnabled = this._renderer.xr.enabled;
this._renderer.xr.enabled = false;
const cubeUVRenderTarget = renderTarget || this._allocateTargets();
this._textureToCubeUV( texture, cubeUVRenderTarget );
this._applyPMREM( cubeUVRenderTarget );
this._cleanup( cubeUVRenderTarget );
return cubeUVRenderTarget;
}
_allocateTargets() {
const width = 3 * Math.max( this._cubeSize, 16 * 7 );
const height = 4 * this._cubeSize;
const params = {
magFilter: LinearFilter,
minFilter: LinearFilter,
generateMipmaps: false,
type: HalfFloatType,
format: RGBAFormat,
colorSpace: LinearSRGBColorSpace,
depthBuffer: false
};
const cubeUVRenderTarget = _createRenderTarget( width, height, params );
if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width || this._pingPongRenderTarget.height !== height ) {
if ( this._pingPongRenderTarget !== null ) {
this._dispose();
}
this._pingPongRenderTarget = _createRenderTarget( width, height, params );
const { _lodMax } = this;
( { lodMeshes: this._lodMeshes, sizeLods: this._sizeLods, sigmas: this._sigmas } = _createPlanes( _lodMax ) );
this._blurMaterial = _getBlurShader( _lodMax, width, height );
}
return cubeUVRenderTarget;
}
_compileMaterial( material ) {
const mesh = new Mesh( new BufferGeometry(), material );
this._renderer.compile( mesh, _flatCamera );
}
_sceneToCubeUV( scene, near, far, cubeUVRenderTarget, position ) {
const fov = 90;
const aspect = 1;
const cubeCamera = new PerspectiveCamera( fov, aspect, near, far );
const upSign = [ 1, - 1, 1, 1, 1, 1 ];
const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ];
const renderer = this._renderer;
const originalAutoClear = renderer.autoClear;
const toneMapping = renderer.toneMapping;
renderer.getClearColor( _clearColor );
renderer.toneMapping = NoToneMapping;
renderer.autoClear = false;
// https://github.com/mrdoob/three.js/issues/31413#issuecomment-3095966812
const reversedDepthBuffer = renderer.state.buffers.depth.getReversed();
if ( reversedDepthBuffer ) {
renderer.setRenderTarget( cubeUVRenderTarget );
renderer.clearDepth();
renderer.setRenderTarget( null );
}
if ( this._backgroundBox === null ) {
this._backgroundBox = new Mesh(
new BoxGeometry(),
new MeshBasicMaterial( {
name: 'PMREM.Background',
side: BackSide,
depthWrite: false,
depthTest: false,
} )
);
}
const backgroundBox = this._backgroundBox;
const backgroundMaterial = backgroundBox.material;
let useSolidColor = false;
const background = scene.background;
if ( background ) {
if ( background.isColor ) {
backgroundMaterial.color.copy( background );
scene.background = null;
useSolidColor = true;
}
} else {
backgroundMaterial.color.copy( _clearColor );
useSolidColor = true;
}
for ( let i = 0; i < 6; i ++ ) {
const col = i % 3;
if ( col === 0 ) {
cubeCamera.up.set( 0, upSign[ i ], 0 );
cubeCamera.position.set( position.x, position.y, position.z );
cubeCamera.lookAt( position.x + forwardSign[ i ], position.y, position.z );
} else if ( col === 1 ) {
cubeCamera.up.set( 0, 0, upSign[ i ] );
cubeCamera.position.set( position.x, position.y, position.z );
cubeCamera.lookAt( position.x, position.y + forwardSign[ i ], position.z );
} else {
cubeCamera.up.set( 0, upSign[ i ], 0 );
cubeCamera.position.set( position.x, position.y, position.z );
cubeCamera.lookAt( position.x, position.y, position.z + forwardSign[ i ] );
}
const size = this._cubeSize;
_setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size );
renderer.setRenderTarget( cubeUVRenderTarget );
if ( useSolidColor ) {
renderer.render( backgroundBox, cubeCamera );
}
renderer.render( scene, cubeCamera );
}
renderer.toneMapping = toneMapping;
renderer.autoClear = originalAutoClear;
scene.background = background;
}
_textureToCubeUV( texture, cubeUVRenderTarget ) {
const renderer = this._renderer;
const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping );
if ( isCubeTexture ) {
if ( this._cubemapMaterial === null ) {
this._cubemapMaterial = _getCubemapMaterial();
}
this._cubemapMaterial.uniforms.flipEnvMap.value = ( texture.isRenderTargetTexture === false ) ? - 1 : 1;
} else {
if ( this._equirectMaterial === null ) {
this._equirectMaterial = _getEquirectMaterial();
}
}
const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial;
const mesh = this._lodMeshes[ 0 ];
mesh.material = material;
const uniforms = material.uniforms;
uniforms[ 'envMap' ].value = texture;
const size = this._cubeSize;
_setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size );
renderer.setRenderTarget( cubeUVRenderTarget );
renderer.render( mesh, _flatCamera );
}
_applyPMREM( cubeUVRenderTarget ) {
const renderer = this._renderer;
const autoClear = renderer.autoClear;
renderer.autoClear = false;
const n = this._lodMeshes.length;
// Use GGX VNDF importance sampling
for ( let i = 1; i < n; i ++ ) {
this._applyGGXFilter( cubeUVRenderTarget, i - 1, i );
}
renderer.autoClear = autoClear;
}
/**
* Applies GGX VNDF importance sampling filter to generate a prefiltered environment map.
* Uses Monte Carlo integration with VNDF importance sampling to accurately represent the
* GGX BRDF for physically-based rendering. Reads from the previous LOD level and
* applies incremental roughness filtering to avoid over-blurring.
*
* @private
* @param {WebGLRenderTarget} cubeUVRenderTarget
* @param {number} lodIn - Source LOD level to read from
* @param {number} lodOut - Target LOD level to write to
*/
_applyGGXFilter( cubeUVRenderTarget, lodIn, lodOut ) {
const renderer = this._renderer;
const pingPongRenderTarget = this._pingPongRenderTarget;
if ( this._ggxMaterial === null ) {
const width = 3 * Math.max( this._cubeSize, 16 );
const height = 4 * this._cubeSize;
this._ggxMaterial = _getGGXShader( this._lodMax, width, height );
}
const ggxMaterial = this._ggxMaterial;
const ggxMesh = this._lodMeshes[ lodOut ];
ggxMesh.material = ggxMaterial;
const ggxUniforms = ggxMaterial.uniforms;
// Calculate incremental roughness between LOD levels
const targetRoughness = lodOut / ( this._lodMeshes.length - 1 );
const sourceRoughness = lodIn / ( this._lodMeshes.length - 1 );
const incrementalRoughness = Math.sqrt( targetRoughness * targetRoughness - sourceRoughness * sourceRoughness );
// Apply blur strength mapping for better quality across the roughness range
const blurStrength = 0.05 + targetRoughness * 0.95;
const adjustedRoughness = incrementalRoughness * blurStrength;
// Calculate viewport position based on output LOD level
const { _lodMax } = this;
const outputSize = this._sizeLods[ lodOut ];
const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 );
const y = 4 * ( this._cubeSize - outputSize );
// Read from previous LOD with incremental roughness
ggxUniforms[ 'envMap' ].value = cubeUVRenderTarget.texture;
ggxUniforms[ 'roughness' ].value = adjustedRoughness;
ggxUniforms[ 'mipInt' ].value = _lodMax - lodIn; // Sample from input LOD
_setViewport( pingPongRenderTarget, x, y, 3 * outputSize, 2 * outputSize );
renderer.setRenderTarget( pingPongRenderTarget );
renderer.render( ggxMesh, _flatCamera );
// Copy from pingPong back to cubeUV (simple direct copy)
ggxUniforms[ 'envMap' ].value = pingPongRenderTarget.texture;
ggxUniforms[ 'roughness' ].value = 0.0; // Direct copy
ggxUniforms[ 'mipInt' ].value = _lodMax - lodOut; // Read from the level we just wrote
_setViewport( cubeUVRenderTarget, x, y, 3 * outputSize, 2 * outputSize );
renderer.setRenderTarget( cubeUVRenderTarget );
renderer.render( ggxMesh, _flatCamera );
}
/**
* This is a two-pass Gaussian blur for a cubemap. Normally this is done
* vertically and horizontally, but this breaks down on a cube. Here we apply
* the blur latitudinally (around the poles), and then longitudinally (towards
* the poles) to approximate the orthogonally-separable blur. It is least
* accurate at the poles, but still does a decent job.
*
* Used for initial scene blur in fromScene() method when sigma > 0.
*
* @private
* @param {WebGLRenderTarget} cubeUVRenderTarget
* @param {number} lodIn
* @param {number} lodOut
* @param {number} sigma
* @param {Vector3} [poleAxis]
*/
_blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
const pingPongRenderTarget = this._pingPongRenderTarget;
this._halfBlur(
cubeUVRenderTarget,
pingPongRenderTarget,
lodIn,
lodOut,
sigma,
'latitudinal',
poleAxis );
this._halfBlur(
pingPongRenderTarget,
cubeUVRenderTarget,
lodOut,
lodOut,
sigma,
'longitudinal',
poleAxis );
}
_halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
const renderer = this._renderer;
const blurMaterial = this._blurMaterial;
if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
error(
'blur direction must be either latitudinal or longitudinal!' );
}
// Number of standard deviations at which to cut off the discrete approximation.
const STANDARD_DEVIATIONS = 3;
const blurMesh = this._lodMeshes[ lodOut ];
blurMesh.material = blurMaterial;
const blurUniforms = blurMaterial.uniforms;
const pixels = this._sizeLods[ lodIn ] - 1;
const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
const sigmaPixels = sigmaRadians / radiansPerPixel;
const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
if ( samples > MAX_SAMPLES ) {
warn( `sigmaRadians, ${
sigmaRadians}, is too large and will clip, as it requested ${
samples} samples when the maximum is set to ${MAX_SAMPLES}` );
}
const weights = [];
let sum = 0;
for ( let i = 0; i < MAX_SAMPLES; ++ i ) {
const x = i / sigmaPixels;
const weight = Math.exp( - x * x / 2 );
weights.push( weight );
if ( i === 0 ) {
sum += weight;
} else if ( i < samples ) {
sum += 2 * weight;
}
}
for ( let i = 0; i < weights.length; i ++ ) {
weights[ i ] = weights[ i ] / sum;
}
blurUniforms[ 'envMap' ].value = targetIn.texture;
blurUniforms[ 'samples' ].value = samples;
blurUniforms[ 'weights' ].value = weights;
blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal';
if ( poleAxis ) {
blurUniforms[ 'poleAxis' ].value = poleAxis;
}
const { _lodMax } = this;
blurUniforms[ 'dTheta' ].value = radiansPerPixel;
blurUniforms[ 'mipInt' ].value = _lodMax - lodIn;
const outputSize = this._sizeLods[ lodOut ];
const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 );
const y = 4 * ( this._cubeSize - outputSize );
_setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize );
renderer.setRenderTarget( targetOut );
renderer.render( blurMesh, _flatCamera );
}
}
function _createPlanes( lodMax ) {
const sizeLods = [];
const sigmas = [];
const lodMeshes = [];
let lod = lodMax;
const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
for ( let i = 0; i < totalLods; i ++ ) {
const sizeLod = Math.pow( 2, lod );
sizeLods.push( sizeLod );
let sigma = 1.0 / sizeLod;
if ( i > lodMax - LOD_MIN ) {
sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ];
} else if ( i === 0 ) {
sigma = 0;
}
sigmas.push( sigma );
const texelSize = 1.0 / ( sizeLod - 2 );
const min = - texelSize;
const max = 1 + texelSize;
const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
const cubeFaces = 6;
const vertices = 6;
const positionSize = 3;
const uvSize = 2;
const faceIndexSize = 1;
const position = new Float32Array( positionSize * vertices * cubeFaces );
const uv = new Float32Array( uvSize * vertices * cubeFaces );
const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
for ( let face = 0; face < cubeFaces; face ++ ) {
const x = ( face % 3 ) * 2 / 3 - 1;
const y = face > 2 ? 0 : - 1;
const coordinates = [
x, y, 0,
x + 2 / 3, y, 0,
x + 2 / 3, y + 1, 0,
x, y, 0,
x + 2 / 3, y + 1, 0,
x, y + 1, 0
];
position.set( coordinates, positionSize * vertices * face );
uv.set( uv1, uvSize * vertices * face );
const fill = [ face, face, face, face, face, face ];
faceIndex.set( fill, faceIndexSize * vertices * face );
}
const planes = new BufferGeometry();
planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) );
planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
lodMeshes.push( new Mesh( planes, null ) );
if ( lod > LOD_MIN ) {
lod --;
}
}
return { lodMeshes, sizeLods, sigmas };
}
function _createRenderTarget( width, height, params ) {
const cubeUVRenderTarget = new WebGLRenderTarget( width, height, params );
cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
cubeUVRenderTarget.scissorTest = true;
return cubeUVRenderTarget;
}
function _setViewport( target, x, y, width, height ) {
target.viewport.set( x, y, width, height );
target.scissor.set( x, y, width, height );
}
function _getGGXShader( lodMax, width, height ) {
const shaderMaterial = new ShaderMaterial( {
name: 'PMREMGGXConvolution',
defines: {
'GGX_SAMPLES': GGX_SAMPLES,
'CUBEUV_TEXEL_WIDTH': 1.0 / width,
'CUBEUV_TEXEL_HEIGHT': 1.0 / height,
'CUBEUV_MAX_MIP': `${lodMax}.0`,
},
uniforms: {
'envMap': { value: null },
'roughness': { value: 0.0 },
'mipInt': { value: 0 }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: /* glsl */`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform sampler2D envMap;
uniform float roughness;
uniform float mipInt;
#define ENVMAP_TYPE_CUBE_UV
#include <cube_uv_reflection_fragment>
#define PI 3.14159265359
// Van der Corput radical inverse
float radicalInverse_VdC(uint bits) {
bits = (bits << 16u) | (bits >> 16u);
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
return float(bits) * 2.3283064365386963e-10; // / 0x100000000
}
// Hammersley sequence
vec2 hammersley(uint i, uint N) {
return vec2(float(i) / float(N), radicalInverse_VdC(i));
}
// GGX VNDF importance sampling (Eric Heitz 2018)
// "Sampling the GGX Distribution of Visible Normals"
// https://jcgt.org/published/0007/04/01/
vec3 importanceSampleGGX_VNDF(vec2 Xi, vec3 V, float roughness) {
float alpha = roughness * roughness;
// Section 3.2: Transform view direction to hemisphere configuration
vec3 Vh = normalize(vec3(alpha * V.x, alpha * V.y, V.z));
// Section 4.1: Orthonormal basis
float lensq = Vh.x * Vh.x + Vh.y * Vh.y;
vec3 T1 = lensq > 0.0 ? vec3(-Vh.y, Vh.x, 0.0) / sqrt(lensq) : vec3(1.0, 0.0, 0.0);
vec3 T2 = cross(Vh, T1);
// Section 4.2: Parameterization of projected area
float r = sqrt(Xi.x);
float phi = 2.0 * PI * Xi.y;
float t1 = r * cos(phi);
float t2 = r * sin(phi);
float s = 0.5 * (1.0 + Vh.z);
t2 = (1.0 - s) * sqrt(1.0 - t1 * t1) + s * t2;
// Section 4.3: Reprojection onto hemisphere
vec3 Nh = t1 * T1 + t2 * T2 + sqrt(max(0.0, 1.0 - t1 * t1 - t2 * t2)) * Vh;
// Section 3.4: Transform back to ellipsoid configuration
return normalize(vec3(alpha * Nh.x, alpha * Nh.y, max(0.0, Nh.z)));
}
void main() {
vec3 N = normalize(vOutputDirection);
vec3 V = N; // Assume view direction equals normal for pre-filtering
vec3 prefilteredColor = vec3(0.0);
float totalWeight = 0.0;
// For very low roughness, just sample the environment directly
if (roughness < 0.001) {
gl_FragColor = vec4(bilinearCubeUV(envMap, N, mipInt), 1.0);
return;
}
// Tangent space basis for VNDF sampling
vec3 up = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
vec3 tangent = normalize(cross(up, N));
vec3 bitangent = cross(N, tangent);
for(uint i = 0u; i < uint(GGX_SAMPLES); i++) {
vec2 Xi = hammersley(i, uint(GGX_SAMPLES));
// For PMREM, V = N, so in tangent space V is always (0, 0, 1)
vec3 H_tangent = importanceSampleGGX_VNDF(Xi, vec3(0.0, 0.0, 1.0), roughness);
// Transform H back to world space
vec3 H = normalize(tangent * H_tangent.x + bitangent * H_tangent.y + N * H_tangent.z);
vec3 L = normalize(2.0 * dot(V, H) * H - V);
float NdotL = max(dot(N, L), 0.0);
if(NdotL > 0.0) {
// Sample environment at fixed mip level
// VNDF importance sampling handles the distribution filtering
vec3 sampleColor = bilinearCubeUV(envMap, L, mipInt);
// Weight by NdotL for the split-sum approximation
// VNDF PDF naturally accounts for the visible microfacet distribution
prefilteredColor += sampleColor * NdotL;
totalWeight += NdotL;
}
}
if (totalWeight > 0.0) {
prefilteredColor = prefilteredColor / totalWeight;
}
gl_FragColor = vec4(prefilteredColor, 1.0);
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
} );
return shaderMaterial;
}
function _getBlurShader( lodMax, width, height ) {
const weights = new Float32Array( MAX_SAMPLES );
const poleAxis = new Vector3( 0, 1, 0 );
const shaderMaterial = new ShaderMaterial( {
name: 'SphericalGaussianBlur',
defines: {
'n': MAX_SAMPLES,
'CUBEUV_TEXEL_WIDTH': 1.0 / width,
'CUBEUV_TEXEL_HEIGHT': 1.0 / height,
'CUBEUV_MAX_MIP': `${lodMax}.0`,
},
uniforms: {
'envMap': { value: null },
'samples': { value: 1 },
'weights': { value: weights },
'latitudinal': { value: false },
'dTheta': { value: 0 },
'mipInt': { value: 0 },
'poleAxis': { value: poleAxis }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: /* glsl */`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform sampler2D envMap;
uniform int samples;
uniform float weights[ n ];
uniform bool latitudinal;
uniform float dTheta;
uniform float mipInt;
uniform vec3 poleAxis;
#define ENVMAP_TYPE_CUBE_UV
#include <cube_uv_reflection_fragment>
vec3 getSample( float theta, vec3 axis ) {
float cosTheta = cos( theta );
// Rodrigues' axis-angle rotation
vec3 sampleDirection = vOutputDirection * cosTheta
+ cross( axis, vOutputDirection ) * sin( theta )
+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );
return bilinearCubeUV( envMap, sampleDirection, mipInt );
}
void main() {
vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );
if ( all( equal( axis, vec3( 0.0 ) ) ) ) {
axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );
}
axis = normalize( axis );
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );
for ( int i = 1; i < n; i++ ) {
if ( i >= samples ) {
break;
}
float theta = dTheta * float( i );
gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );
gl_FragColor.rgb += weights[ i ] * getSample( theta, axis );
}
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
} );
return shaderMaterial;
}
function _getEquirectMaterial() {
return new ShaderMaterial( {
name: 'EquirectangularToCubeUV',
uniforms: {
'envMap': { value: null }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: /* glsl */`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform sampler2D envMap;
#include <common>
void main() {
vec3 outputDirection = normalize( vOutputDirection );
vec2 uv = equirectUv( outputDirection );
gl_FragColor = vec4( texture2D ( envMap, uv ).rgb, 1.0 );
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
} );
}
function _getCubemapMaterial() {
return new ShaderMaterial( {
name: 'CubemapToCubeUV',
uniforms: {
'envMap': { value: null },
'flipEnvMap': { value: - 1 }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: /* glsl */`
precision mediump float;
precision mediump int;
uniform float flipEnvMap;
varying vec3 vOutputDirection;
uniform samplerCube envMap;
void main() {
gl_FragColor = textureCube( envMap, vec3( flipEnvMap * vOutputDirection.x, vOutputDirection.yz ) );
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
} );
}
function _getCommonVertexShader() {
return /* glsl */`
precision mediump float;
precision mediump int;
attribute float faceIndex;
varying vec3 vOutputDirection;
// RH coordinate system; PMREM face-indexing convention
vec3 getDirection( vec2 uv, float face ) {
uv = 2.0 * uv - 1.0;
vec3 direction = vec3( uv, 1.0 );
if ( face == 0.0 ) {
direction = direction.zyx; // ( 1, v, u ) pos x
} else if ( face == 1.0 ) {
direction = direction.xzy;
direction.xz *= -1.0; // ( -u, 1, -v ) pos y
} else if ( face == 2.0 ) {
direction.x *= -1.0; // ( -u, v, 1 ) pos z
} else if ( face == 3.0 ) {
direction = direction.zyx;
direction.xz *= -1.0; // ( -1, v, -u ) neg x
} else if ( face == 4.0 ) {
direction = direction.xzy;
direction.xy *= -1.0; // ( -u, -1, v ) neg y
} else if ( face == 5.0 ) {
direction.z *= -1.0; // ( u, v, -1 ) neg z
}
return direction;
}
void main() {
vOutputDirection = getDirection( uv, faceIndex );
gl_Position = vec4( position, 1.0 );
}
`;
}
export { PMREMGenerator };