UNPKG

three

Version:

JavaScript 3D library

1,861 lines (1,223 loc) 63.2 kB
/*// debugger tools import 'https://greggman.github.io/webgpu-avoid-redundant-state-setting/webgpu-check-redundant-state-setting.js'; //*/ import { GPUFeatureName, GPULoadOp, GPUStoreOp, GPUIndexFormat, GPUTextureViewDimension } from './utils/WebGPUConstants.js'; import WGSLNodeBuilder from './nodes/WGSLNodeBuilder.js'; import Backend from '../common/Backend.js'; import WebGPUUtils from './utils/WebGPUUtils.js'; import WebGPUAttributeUtils from './utils/WebGPUAttributeUtils.js'; import WebGPUBindingUtils from './utils/WebGPUBindingUtils.js'; import WebGPUPipelineUtils from './utils/WebGPUPipelineUtils.js'; import WebGPUTextureUtils from './utils/WebGPUTextureUtils.js'; import { WebGPUCoordinateSystem } from '../../constants.js'; import WebGPUTimestampQueryPool from './utils/WebGPUTimestampQueryPool.js'; import { warnOnce } from '../../utils.js'; /** * A backend implementation targeting WebGPU. * * @private * @augments Backend */ class WebGPUBackend extends Backend { /** * WebGPUBackend options. * * @typedef {Object} WebGPUBackend~Options * @property {boolean} [logarithmicDepthBuffer=false] - Whether logarithmic depth buffer is enabled or not. * @property {boolean} [alpha=true] - Whether the default framebuffer (which represents the final contents of the canvas) should be transparent or opaque. * @property {boolean} [compatibilityMode=false] - Whether the backend should be in compatibility mode or not. * @property {boolean} [depth=true] - Whether the default framebuffer should have a depth buffer or not. * @property {boolean} [stencil=false] - Whether the default framebuffer should have a stencil buffer or not. * @property {boolean} [antialias=false] - Whether MSAA as the default anti-aliasing should be enabled or not. * @property {number} [samples=0] - When `antialias` is `true`, `4` samples are used by default. Set this parameter to any other integer value than 0 to overwrite the default. * @property {boolean} [forceWebGL=false] - If set to `true`, the renderer uses a WebGL 2 backend no matter if WebGPU is supported or not. * @property {boolean} [trackTimestamp=false] - Whether to track timestamps with a Timestamp Query API or not. * @property {string} [powerPreference=undefined] - The power preference. * @property {Object} [requiredLimits=undefined] - Specifies the limits that are required by the device request. The request will fail if the adapter cannot provide these limits. * @property {GPUDevice} [device=undefined] - If there is an existing GPU device on app level, it can be passed to the renderer as a parameter. * @property {number} [outputType=undefined] - Texture type for output to canvas. By default, device's preferred format is used; other formats may incur overhead. */ /** * Constructs a new WebGPU backend. * * @param {WebGPUBackend~Options} [parameters] - The configuration parameter. */ constructor( parameters = {} ) { super( parameters ); /** * This flag can be used for type testing. * * @type {boolean} * @readonly * @default true */ this.isWebGPUBackend = true; // some parameters require default values other than "undefined" this.parameters.alpha = ( parameters.alpha === undefined ) ? true : parameters.alpha; this.parameters.compatibilityMode = ( parameters.compatibilityMode === undefined ) ? false : parameters.compatibilityMode; this.parameters.requiredLimits = ( parameters.requiredLimits === undefined ) ? {} : parameters.requiredLimits; /** * Indicates whether the backend is in compatibility mode or not. * @type {boolean} * @default false */ this.compatibilityMode = this.parameters.compatibilityMode; /** * A reference to the device. * * @type {?GPUDevice} * @default null */ this.device = null; /** * A reference to the context. * * @type {?GPUCanvasContext} * @default null */ this.context = null; /** * A reference to the color attachment of the default framebuffer. * * @type {?GPUTexture} * @default null */ this.colorBuffer = null; /** * A reference to the default render pass descriptor. * * @type {?Object} * @default null */ this.defaultRenderPassdescriptor = null; /** * A reference to a backend module holding common utility functions. * * @type {WebGPUUtils} */ this.utils = new WebGPUUtils( this ); /** * A reference to a backend module holding shader attribute-related * utility functions. * * @type {WebGPUAttributeUtils} */ this.attributeUtils = new WebGPUAttributeUtils( this ); /** * A reference to a backend module holding shader binding-related * utility functions. * * @type {WebGPUBindingUtils} */ this.bindingUtils = new WebGPUBindingUtils( this ); /** * A reference to a backend module holding shader pipeline-related * utility functions. * * @type {WebGPUPipelineUtils} */ this.pipelineUtils = new WebGPUPipelineUtils( this ); /** * A reference to a backend module holding shader texture-related * utility functions. * * @type {WebGPUTextureUtils} */ this.textureUtils = new WebGPUTextureUtils( this ); /** * A map that manages the resolve buffers for occlusion queries. * * @type {Map<number,GPUBuffer>} */ this.occludedResolveCache = new Map(); } /** * Initializes the backend so it is ready for usage. * * @async * @param {Renderer} renderer - The renderer. * @return {Promise} A Promise that resolves when the backend has been initialized. */ async init( renderer ) { await super.init( renderer ); // const parameters = this.parameters; // create the device if it is not passed with parameters let device; if ( parameters.device === undefined ) { const adapterOptions = { powerPreference: parameters.powerPreference, featureLevel: parameters.compatibilityMode ? 'compatibility' : undefined }; const adapter = ( typeof navigator !== 'undefined' ) ? await navigator.gpu.requestAdapter( adapterOptions ) : null; if ( adapter === null ) { throw new Error( 'WebGPUBackend: Unable to create WebGPU adapter.' ); } // feature support const features = Object.values( GPUFeatureName ); const supportedFeatures = []; for ( const name of features ) { if ( adapter.features.has( name ) ) { supportedFeatures.push( name ); } } const deviceDescriptor = { requiredFeatures: supportedFeatures, requiredLimits: parameters.requiredLimits }; device = await adapter.requestDevice( deviceDescriptor ); } else { device = parameters.device; } device.lost.then( ( info ) => { const deviceLossInfo = { api: 'WebGPU', message: info.message || 'Unknown reason', reason: info.reason || null, originalEvent: info }; renderer.onDeviceLost( deviceLossInfo ); } ); const context = ( parameters.context !== undefined ) ? parameters.context : renderer.domElement.getContext( 'webgpu' ); this.device = device; this.context = context; const alphaMode = parameters.alpha ? 'premultiplied' : 'opaque'; this.trackTimestamp = this.trackTimestamp && this.hasFeature( GPUFeatureName.TimestampQuery ); this.context.configure( { device: this.device, format: this.utils.getPreferredCanvasFormat(), usage: GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.COPY_SRC, alphaMode: alphaMode } ); this.updateSize(); } /** * The coordinate system of the backend. * * @type {number} * @readonly */ get coordinateSystem() { return WebGPUCoordinateSystem; } /** * This method performs a readback operation by moving buffer data from * a storage buffer attribute from the GPU to the CPU. * * @async * @param {StorageBufferAttribute} attribute - The storage buffer attribute. * @return {Promise<ArrayBuffer>} A promise that resolves with the buffer data when the data are ready. */ async getArrayBufferAsync( attribute ) { return await this.attributeUtils.getArrayBufferAsync( attribute ); } /** * Returns the backend's rendering context. * * @return {GPUCanvasContext} The rendering context. */ getContext() { return this.context; } /** * Returns the default render pass descriptor. * * In WebGPU, the default framebuffer must be configured * like custom framebuffers so the backend needs a render * pass descriptor even when rendering directly to screen. * * @private * @return {Object} The render pass descriptor. */ _getDefaultRenderPassDescriptor() { let descriptor = this.defaultRenderPassdescriptor; if ( descriptor === null ) { const renderer = this.renderer; descriptor = { colorAttachments: [ { view: null } ], }; if ( this.renderer.depth === true || this.renderer.stencil === true ) { descriptor.depthStencilAttachment = { view: this.textureUtils.getDepthBuffer( renderer.depth, renderer.stencil ).createView() }; } const colorAttachment = descriptor.colorAttachments[ 0 ]; if ( this.renderer.samples > 0 ) { colorAttachment.view = this.colorBuffer.createView(); } else { colorAttachment.resolveTarget = undefined; } this.defaultRenderPassdescriptor = descriptor; } const colorAttachment = descriptor.colorAttachments[ 0 ]; if ( this.renderer.samples > 0 ) { colorAttachment.resolveTarget = this.context.getCurrentTexture().createView(); } else { colorAttachment.view = this.context.getCurrentTexture().createView(); } return descriptor; } /** * Internal to determine if the current render target is a render target array with depth 2D array texture. * * @param {RenderContext} renderContext - The render context. * @return {boolean} Whether the render target is a render target array with depth 2D array texture. * * @private */ _isRenderCameraDepthArray( renderContext ) { return renderContext.depthTexture && renderContext.depthTexture.isDepthArrayTexture && renderContext.camera.isArrayCamera; } /** * Returns the render pass descriptor for the given render context. * * @private * @param {RenderContext} renderContext - The render context. * @param {Object} colorAttachmentsConfig - Configuration object for the color attachments. * @return {Object} The render pass descriptor. */ _getRenderPassDescriptor( renderContext, colorAttachmentsConfig = {} ) { const renderTarget = renderContext.renderTarget; const renderTargetData = this.get( renderTarget ); let descriptors = renderTargetData.descriptors; if ( descriptors === undefined || renderTargetData.width !== renderTarget.width || renderTargetData.height !== renderTarget.height || renderTargetData.dimensions !== renderTarget.dimensions || renderTargetData.activeMipmapLevel !== renderContext.activeMipmapLevel || renderTargetData.activeCubeFace !== renderContext.activeCubeFace || renderTargetData.samples !== renderTarget.samples ) { descriptors = {}; renderTargetData.descriptors = descriptors; // dispose const onDispose = () => { renderTarget.removeEventListener( 'dispose', onDispose ); this.delete( renderTarget ); }; if ( renderTarget.hasEventListener( 'dispose', onDispose ) === false ) { renderTarget.addEventListener( 'dispose', onDispose ); } } const cacheKey = renderContext.getCacheKey(); let descriptorBase = descriptors[ cacheKey ]; if ( descriptorBase === undefined ) { const textures = renderContext.textures; const textureViews = []; let sliceIndex; const isRenderCameraDepthArray = this._isRenderCameraDepthArray( renderContext ); for ( let i = 0; i < textures.length; i ++ ) { const textureData = this.get( textures[ i ] ); const viewDescriptor = { label: `colorAttachment_${ i }`, baseMipLevel: renderContext.activeMipmapLevel, mipLevelCount: 1, baseArrayLayer: renderContext.activeCubeFace, arrayLayerCount: 1, dimension: GPUTextureViewDimension.TwoD }; if ( renderTarget.isRenderTarget3D ) { sliceIndex = renderContext.activeCubeFace; viewDescriptor.baseArrayLayer = 0; viewDescriptor.dimension = GPUTextureViewDimension.ThreeD; viewDescriptor.depthOrArrayLayers = textures[ i ].image.depth; } else if ( renderTarget.isRenderTargetArray ) { if ( isRenderCameraDepthArray === true ) { const cameras = renderContext.camera.cameras; for ( let layer = 0; layer < cameras.length; layer ++ ) { const layerViewDescriptor = { ...viewDescriptor, baseArrayLayer: layer, arrayLayerCount: 1, dimension: GPUTextureViewDimension.TwoD }; const textureView = textureData.texture.createView( layerViewDescriptor ); textureViews.push( { view: textureView, resolveTarget: undefined, depthSlice: undefined } ); } } else { viewDescriptor.dimension = GPUTextureViewDimension.TwoDArray; viewDescriptor.depthOrArrayLayers = textures[ i ].image.depth; } } if ( isRenderCameraDepthArray !== true ) { const textureView = textureData.texture.createView( viewDescriptor ); let view, resolveTarget; if ( textureData.msaaTexture !== undefined ) { view = textureData.msaaTexture.createView(); resolveTarget = textureView; } else { view = textureView; resolveTarget = undefined; } textureViews.push( { view, resolveTarget, depthSlice: sliceIndex } ); } } descriptorBase = { textureViews }; if ( renderContext.depth ) { const depthTextureData = this.get( renderContext.depthTexture ); const options = {}; if ( renderContext.depthTexture.isDepthArrayTexture ) { options.dimension = GPUTextureViewDimension.TwoD; options.arrayLayerCount = 1; options.baseArrayLayer = renderContext.activeCubeFace; } descriptorBase.depthStencilView = depthTextureData.texture.createView( options ); } descriptors[ cacheKey ] = descriptorBase; renderTargetData.width = renderTarget.width; renderTargetData.height = renderTarget.height; renderTargetData.samples = renderTarget.samples; renderTargetData.activeMipmapLevel = renderContext.activeMipmapLevel; renderTargetData.activeCubeFace = renderContext.activeCubeFace; renderTargetData.dimensions = renderTarget.dimensions; } const descriptor = { colorAttachments: [] }; // Apply dynamic properties to cached views for ( let i = 0; i < descriptorBase.textureViews.length; i ++ ) { const viewInfo = descriptorBase.textureViews[ i ]; let clearValue = { r: 0, g: 0, b: 0, a: 1 }; if ( i === 0 && colorAttachmentsConfig.clearValue ) { clearValue = colorAttachmentsConfig.clearValue; } descriptor.colorAttachments.push( { view: viewInfo.view, depthSlice: viewInfo.depthSlice, resolveTarget: viewInfo.resolveTarget, loadOp: colorAttachmentsConfig.loadOp || GPULoadOp.Load, storeOp: colorAttachmentsConfig.storeOp || GPUStoreOp.Store, clearValue: clearValue } ); } if ( descriptorBase.depthStencilView ) { descriptor.depthStencilAttachment = { view: descriptorBase.depthStencilView }; } return descriptor; } /** * This method is executed at the beginning of a render call and prepares * the WebGPU state for upcoming render calls * * @param {RenderContext} renderContext - The render context. */ beginRender( renderContext ) { const renderContextData = this.get( renderContext ); const device = this.device; const occlusionQueryCount = renderContext.occlusionQueryCount; let occlusionQuerySet; if ( occlusionQueryCount > 0 ) { if ( renderContextData.currentOcclusionQuerySet ) renderContextData.currentOcclusionQuerySet.destroy(); if ( renderContextData.currentOcclusionQueryBuffer ) renderContextData.currentOcclusionQueryBuffer.destroy(); // Get a reference to the array of objects with queries. The renderContextData property // can be changed by another render pass before the buffer.mapAsyc() completes. renderContextData.currentOcclusionQuerySet = renderContextData.occlusionQuerySet; renderContextData.currentOcclusionQueryBuffer = renderContextData.occlusionQueryBuffer; renderContextData.currentOcclusionQueryObjects = renderContextData.occlusionQueryObjects; // occlusionQuerySet = device.createQuerySet( { type: 'occlusion', count: occlusionQueryCount, label: `occlusionQuerySet_${ renderContext.id }` } ); renderContextData.occlusionQuerySet = occlusionQuerySet; renderContextData.occlusionQueryIndex = 0; renderContextData.occlusionQueryObjects = new Array( occlusionQueryCount ); renderContextData.lastOcclusionObject = null; } let descriptor; if ( renderContext.textures === null ) { descriptor = this._getDefaultRenderPassDescriptor(); } else { descriptor = this._getRenderPassDescriptor( renderContext, { loadOp: GPULoadOp.Load } ); } this.initTimestampQuery( renderContext, descriptor ); descriptor.occlusionQuerySet = occlusionQuerySet; const depthStencilAttachment = descriptor.depthStencilAttachment; if ( renderContext.textures !== null ) { const colorAttachments = descriptor.colorAttachments; for ( let i = 0; i < colorAttachments.length; i ++ ) { const colorAttachment = colorAttachments[ i ]; if ( renderContext.clearColor ) { colorAttachment.clearValue = i === 0 ? renderContext.clearColorValue : { r: 0, g: 0, b: 0, a: 1 }; colorAttachment.loadOp = GPULoadOp.Clear; } else { colorAttachment.loadOp = GPULoadOp.Load; } colorAttachment.storeOp = GPUStoreOp.Store; } } else { const colorAttachment = descriptor.colorAttachments[ 0 ]; if ( renderContext.clearColor ) { colorAttachment.clearValue = renderContext.clearColorValue; colorAttachment.loadOp = GPULoadOp.Clear; } else { colorAttachment.loadOp = GPULoadOp.Load; } colorAttachment.storeOp = GPUStoreOp.Store; } // if ( renderContext.depth ) { if ( renderContext.clearDepth ) { depthStencilAttachment.depthClearValue = renderContext.clearDepthValue; depthStencilAttachment.depthLoadOp = GPULoadOp.Clear; } else { depthStencilAttachment.depthLoadOp = GPULoadOp.Load; } depthStencilAttachment.depthStoreOp = GPUStoreOp.Store; } if ( renderContext.stencil ) { if ( renderContext.clearStencil ) { depthStencilAttachment.stencilClearValue = renderContext.clearStencilValue; depthStencilAttachment.stencilLoadOp = GPULoadOp.Clear; } else { depthStencilAttachment.stencilLoadOp = GPULoadOp.Load; } depthStencilAttachment.stencilStoreOp = GPUStoreOp.Store; } // const encoder = device.createCommandEncoder( { label: 'renderContext_' + renderContext.id } ); // shadow arrays - prepare bundle encoders for each camera in an array camera if ( this._isRenderCameraDepthArray( renderContext ) === true ) { const cameras = renderContext.camera.cameras; if ( ! renderContextData.layerDescriptors || renderContextData.layerDescriptors.length !== cameras.length ) { this._createDepthLayerDescriptors( renderContext, renderContextData, descriptor, cameras ); } else { this._updateDepthLayerDescriptors( renderContext, renderContextData, cameras ); } // Create bundle encoders for each layer renderContextData.bundleEncoders = []; renderContextData.bundleSets = []; // Create separate bundle encoders for each camera in the array for ( let i = 0; i < cameras.length; i ++ ) { const bundleEncoder = this.pipelineUtils.createBundleEncoder( renderContext, 'renderBundleArrayCamera_' + i ); // Initialize state tracking for this bundle const bundleSets = { attributes: {}, bindingGroups: [], pipeline: null, index: null }; renderContextData.bundleEncoders.push( bundleEncoder ); renderContextData.bundleSets.push( bundleSets ); } // We'll complete the bundles in finishRender renderContextData.currentPass = null; } else { const currentPass = encoder.beginRenderPass( descriptor ); renderContextData.currentPass = currentPass; if ( renderContext.viewport ) { this.updateViewport( renderContext ); } if ( renderContext.scissor ) { const { x, y, width, height } = renderContext.scissorValue; currentPass.setScissorRect( x, y, width, height ); } } // renderContextData.descriptor = descriptor; renderContextData.encoder = encoder; renderContextData.currentSets = { attributes: {}, bindingGroups: [], pipeline: null, index: null }; renderContextData.renderBundles = []; } /** * This method creates layer descriptors for each camera in an array camera * to prepare for rendering to a depth array texture. * * @param {RenderContext} renderContext - The render context. * @param {Object} renderContextData - The render context data. * @param {Object} descriptor - The render pass descriptor. * @param {ArrayCamera} cameras - The array camera. * * @private */ _createDepthLayerDescriptors( renderContext, renderContextData, descriptor, cameras ) { const depthStencilAttachment = descriptor.depthStencilAttachment; renderContextData.layerDescriptors = []; const depthTextureData = this.get( renderContext.depthTexture ); if ( ! depthTextureData.viewCache ) { depthTextureData.viewCache = []; } for ( let i = 0; i < cameras.length; i ++ ) { const layerDescriptor = { ...descriptor, colorAttachments: [ { ...descriptor.colorAttachments[ 0 ], view: descriptor.colorAttachments[ i ].view } ] }; if ( descriptor.depthStencilAttachment ) { const layerIndex = i; if ( ! depthTextureData.viewCache[ layerIndex ] ) { depthTextureData.viewCache[ layerIndex ] = depthTextureData.texture.createView( { dimension: GPUTextureViewDimension.TwoD, baseArrayLayer: i, arrayLayerCount: 1 } ); } layerDescriptor.depthStencilAttachment = { view: depthTextureData.viewCache[ layerIndex ], depthLoadOp: depthStencilAttachment.depthLoadOp || GPULoadOp.Clear, depthStoreOp: depthStencilAttachment.depthStoreOp || GPUStoreOp.Store, depthClearValue: depthStencilAttachment.depthClearValue || 1.0 }; if ( renderContext.stencil ) { layerDescriptor.depthStencilAttachment.stencilLoadOp = depthStencilAttachment.stencilLoadOp; layerDescriptor.depthStencilAttachment.stencilStoreOp = depthStencilAttachment.stencilStoreOp; layerDescriptor.depthStencilAttachment.stencilClearValue = depthStencilAttachment.stencilClearValue; } } else { layerDescriptor.depthStencilAttachment = { ...depthStencilAttachment }; } renderContextData.layerDescriptors.push( layerDescriptor ); } } /** * This method updates the layer descriptors for each camera in an array camera * to prepare for rendering to a depth array texture. * * @param {RenderContext} renderContext - The render context. * @param {Object} renderContextData - The render context data. * @param {ArrayCamera} cameras - The array camera. * */ _updateDepthLayerDescriptors( renderContext, renderContextData, cameras ) { for ( let i = 0; i < cameras.length; i ++ ) { const layerDescriptor = renderContextData.layerDescriptors[ i ]; if ( layerDescriptor.depthStencilAttachment ) { const depthAttachment = layerDescriptor.depthStencilAttachment; if ( renderContext.depth ) { if ( renderContext.clearDepth ) { depthAttachment.depthClearValue = renderContext.clearDepthValue; depthAttachment.depthLoadOp = GPULoadOp.Clear; } else { depthAttachment.depthLoadOp = GPULoadOp.Load; } } if ( renderContext.stencil ) { if ( renderContext.clearStencil ) { depthAttachment.stencilClearValue = renderContext.clearStencilValue; depthAttachment.stencilLoadOp = GPULoadOp.Clear; } else { depthAttachment.stencilLoadOp = GPULoadOp.Load; } } } } } /** * This method is executed at the end of a render call and finalizes work * after draw calls. * * @param {RenderContext} renderContext - The render context. */ finishRender( renderContext ) { const renderContextData = this.get( renderContext ); const occlusionQueryCount = renderContext.occlusionQueryCount; if ( renderContextData.renderBundles.length > 0 ) { renderContextData.currentPass.executeBundles( renderContextData.renderBundles ); } if ( occlusionQueryCount > renderContextData.occlusionQueryIndex ) { renderContextData.currentPass.endOcclusionQuery(); } // shadow arrays - Execute bundles for each layer const encoder = renderContextData.encoder; if ( this._isRenderCameraDepthArray( renderContext ) === true ) { const bundles = []; for ( let i = 0; i < renderContextData.bundleEncoders.length; i ++ ) { const bundleEncoder = renderContextData.bundleEncoders[ i ]; bundles.push( bundleEncoder.finish() ); } for ( let i = 0; i < renderContextData.layerDescriptors.length; i ++ ) { if ( i < bundles.length ) { const layerDescriptor = renderContextData.layerDescriptors[ i ]; const renderPass = encoder.beginRenderPass( layerDescriptor ); if ( renderContext.viewport ) { const { x, y, width, height, minDepth, maxDepth } = renderContext.viewportValue; renderPass.setViewport( x, y, width, height, minDepth, maxDepth ); } if ( renderContext.scissor ) { const { x, y, width, height } = renderContext.scissorValue; renderPass.setScissorRect( x, y, width, height ); } renderPass.executeBundles( [ bundles[ i ] ] ); renderPass.end(); } } } else if ( renderContextData.currentPass ) { renderContextData.currentPass.end(); } if ( occlusionQueryCount > 0 ) { const bufferSize = occlusionQueryCount * 8; // 8 byte entries for query results // let queryResolveBuffer = this.occludedResolveCache.get( bufferSize ); if ( queryResolveBuffer === undefined ) { queryResolveBuffer = this.device.createBuffer( { size: bufferSize, usage: GPUBufferUsage.QUERY_RESOLVE | GPUBufferUsage.COPY_SRC } ); this.occludedResolveCache.set( bufferSize, queryResolveBuffer ); } // const readBuffer = this.device.createBuffer( { size: bufferSize, usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ } ); // two buffers required here - WebGPU doesn't allow usage of QUERY_RESOLVE & MAP_READ to be combined renderContextData.encoder.resolveQuerySet( renderContextData.occlusionQuerySet, 0, occlusionQueryCount, queryResolveBuffer, 0 ); renderContextData.encoder.copyBufferToBuffer( queryResolveBuffer, 0, readBuffer, 0, bufferSize ); renderContextData.occlusionQueryBuffer = readBuffer; // this.resolveOccludedAsync( renderContext ); } this.device.queue.submit( [ renderContextData.encoder.finish() ] ); // if ( renderContext.textures !== null ) { const textures = renderContext.textures; for ( let i = 0; i < textures.length; i ++ ) { const texture = textures[ i ]; if ( texture.generateMipmaps === true ) { this.textureUtils.generateMipmaps( texture ); } } } } /** * Returns `true` if the given 3D object is fully occluded by other * 3D objects in the scene. * * @param {RenderContext} renderContext - The render context. * @param {Object3D} object - The 3D object to test. * @return {boolean} Whether the 3D object is fully occluded or not. */ isOccluded( renderContext, object ) { const renderContextData = this.get( renderContext ); return renderContextData.occluded && renderContextData.occluded.has( object ); } /** * This method processes the result of occlusion queries and writes it * into render context data. * * @async * @param {RenderContext} renderContext - The render context. * @return {Promise} A Promise that resolves when the occlusion query results have been processed. */ async resolveOccludedAsync( renderContext ) { const renderContextData = this.get( renderContext ); // handle occlusion query results const { currentOcclusionQueryBuffer, currentOcclusionQueryObjects } = renderContextData; if ( currentOcclusionQueryBuffer && currentOcclusionQueryObjects ) { const occluded = new WeakSet(); renderContextData.currentOcclusionQueryObjects = null; renderContextData.currentOcclusionQueryBuffer = null; await currentOcclusionQueryBuffer.mapAsync( GPUMapMode.READ ); const buffer = currentOcclusionQueryBuffer.getMappedRange(); const results = new BigUint64Array( buffer ); for ( let i = 0; i < currentOcclusionQueryObjects.length; i ++ ) { if ( results[ i ] === BigInt( 0 ) ) { occluded.add( currentOcclusionQueryObjects[ i ] ); } } currentOcclusionQueryBuffer.destroy(); renderContextData.occluded = occluded; } } /** * Updates the viewport with the values from the given render context. * * @param {RenderContext} renderContext - The render context. */ updateViewport( renderContext ) { const { currentPass } = this.get( renderContext ); const { x, y, width, height, minDepth, maxDepth } = renderContext.viewportValue; currentPass.setViewport( x, y, width, height, minDepth, maxDepth ); } /** * Returns the clear color and alpha into a single * color object. * * @return {Color4} The clear color. */ getClearColor() { const clearColor = super.getClearColor(); // only premultiply alpha when alphaMode is "premultiplied" if ( this.renderer.alpha === true ) { clearColor.r *= clearColor.a; clearColor.g *= clearColor.a; clearColor.b *= clearColor.a; } return clearColor; } /** * Performs a clear operation. * * @param {boolean} color - Whether the color buffer should be cleared or not. * @param {boolean} depth - Whether the depth buffer should be cleared or not. * @param {boolean} stencil - Whether the stencil buffer should be cleared or not. * @param {?RenderContext} [renderTargetContext=null] - The render context of the current set render target. */ clear( color, depth, stencil, renderTargetContext = null ) { const device = this.device; const renderer = this.renderer; let colorAttachments = []; let depthStencilAttachment; let clearValue; let supportsDepth; let supportsStencil; if ( color ) { const clearColor = this.getClearColor(); clearValue = { r: clearColor.r, g: clearColor.g, b: clearColor.b, a: clearColor.a }; } if ( renderTargetContext === null ) { supportsDepth = renderer.depth; supportsStencil = renderer.stencil; const descriptor = this._getDefaultRenderPassDescriptor(); if ( color ) { colorAttachments = descriptor.colorAttachments; const colorAttachment = colorAttachments[ 0 ]; colorAttachment.clearValue = clearValue; colorAttachment.loadOp = GPULoadOp.Clear; colorAttachment.storeOp = GPUStoreOp.Store; } if ( supportsDepth || supportsStencil ) { depthStencilAttachment = descriptor.depthStencilAttachment; } } else { supportsDepth = renderTargetContext.depth; supportsStencil = renderTargetContext.stencil; const clearConfig = { loadOp: color ? GPULoadOp.Clear : GPULoadOp.Load, clearValue: color ? clearValue : undefined }; if ( supportsDepth ) { clearConfig.depthLoadOp = depth ? GPULoadOp.Clear : GPULoadOp.Load; clearConfig.depthClearValue = depth ? renderer.getClearDepth() : undefined; clearConfig.depthStoreOp = GPUStoreOp.Store; } if ( supportsStencil ) { clearConfig.stencilLoadOp = stencil ? GPULoadOp.Clear : GPULoadOp.Load; clearConfig.stencilClearValue = stencil ? renderer.getClearStencil() : undefined; clearConfig.stencilStoreOp = GPUStoreOp.Store; } const descriptor = this._getRenderPassDescriptor( renderTargetContext, clearConfig ); colorAttachments = descriptor.colorAttachments; depthStencilAttachment = descriptor.depthStencilAttachment; } if ( supportsDepth && depthStencilAttachment && depthStencilAttachment.depthLoadOp === undefined ) { if ( depth ) { depthStencilAttachment.depthLoadOp = GPULoadOp.Clear; depthStencilAttachment.depthClearValue = renderer.getClearDepth(); depthStencilAttachment.depthStoreOp = GPUStoreOp.Store; } else { depthStencilAttachment.depthLoadOp = GPULoadOp.Load; depthStencilAttachment.depthStoreOp = GPUStoreOp.Store; } } // if ( supportsStencil && depthStencilAttachment && depthStencilAttachment.stencilLoadOp === undefined ) { if ( stencil ) { depthStencilAttachment.stencilLoadOp = GPULoadOp.Clear; depthStencilAttachment.stencilClearValue = renderer.getClearStencil(); depthStencilAttachment.stencilStoreOp = GPUStoreOp.Store; } else { depthStencilAttachment.stencilLoadOp = GPULoadOp.Load; depthStencilAttachment.stencilStoreOp = GPUStoreOp.Store; } } // const encoder = device.createCommandEncoder( { label: 'clear' } ); const currentPass = encoder.beginRenderPass( { colorAttachments, depthStencilAttachment } ); currentPass.end(); device.queue.submit( [ encoder.finish() ] ); } // compute /** * This method is executed at the beginning of a compute call and * prepares the state for upcoming compute tasks. * * @param {Node|Array<Node>} computeGroup - The compute node(s). */ beginCompute( computeGroup ) { const groupGPU = this.get( computeGroup ); const descriptor = { label: 'computeGroup_' + computeGroup.id }; this.initTimestampQuery( computeGroup, descriptor ); groupGPU.cmdEncoderGPU = this.device.createCommandEncoder( { label: 'computeGroup_' + computeGroup.id } ); groupGPU.passEncoderGPU = groupGPU.cmdEncoderGPU.beginComputePass( descriptor ); } /** * Executes a compute command for the given compute node. * * @param {Node|Array<Node>} computeGroup - The group of compute nodes of a compute call. Can be a single compute node. * @param {Node} computeNode - The compute node. * @param {Array<BindGroup>} bindings - The bindings. * @param {ComputePipeline} pipeline - The compute pipeline. */ compute( computeGroup, computeNode, bindings, pipeline ) { const { passEncoderGPU } = this.get( computeGroup ); // pipeline const pipelineGPU = this.get( pipeline ).pipeline; passEncoderGPU.setPipeline( pipelineGPU ); // bind groups for ( let i = 0, l = bindings.length; i < l; i ++ ) { const bindGroup = bindings[ i ]; const bindingsData = this.get( bindGroup ); passEncoderGPU.setBindGroup( i, bindingsData.group ); } const maxComputeWorkgroupsPerDimension = this.device.limits.maxComputeWorkgroupsPerDimension; const computeNodeData = this.get( computeNode ); if ( computeNodeData.dispatchSize === undefined ) computeNodeData.dispatchSize = { x: 0, y: 1, z: 1 }; const { dispatchSize } = computeNodeData; if ( computeNode.dispatchCount > maxComputeWorkgroupsPerDimension ) { dispatchSize.x = Math.min( computeNode.dispatchCount, maxComputeWorkgroupsPerDimension ); dispatchSize.y = Math.ceil( computeNode.dispatchCount / maxComputeWorkgroupsPerDimension ); } else { dispatchSize.x = computeNode.dispatchCount; } passEncoderGPU.dispatchWorkgroups( dispatchSize.x, dispatchSize.y, dispatchSize.z ); } /** * This method is executed at the end of a compute call and * finalizes work after compute tasks. * * @param {Node|Array<Node>} computeGroup - The compute node(s). */ finishCompute( computeGroup ) { const groupData = this.get( computeGroup ); groupData.passEncoderGPU.end(); this.device.queue.submit( [ groupData.cmdEncoderGPU.finish() ] ); } /** * Can be used to synchronize CPU operations with GPU tasks. So when this method is called, * the CPU waits for the GPU to complete its operation (e.g. a compute task). * * @async * @return {Promise} A Promise that resolves when synchronization has been finished. */ async waitForGPU() { await this.device.queue.onSubmittedWorkDone(); } // render object /** * Executes a draw command for the given render object. * * @param {RenderObject} renderObject - The render object to draw. * @param {Info} info - Holds a series of statistical information about the GPU memory and the rendering process. */ draw( renderObject, info ) { const { object, material, context, pipeline } = renderObject; const bindings = renderObject.getBindings(); const renderContextData = this.get( context ); const pipelineGPU = this.get( pipeline ).pipeline; const index = renderObject.getIndex(); const hasIndex = ( index !== null ); const drawParams = renderObject.getDrawParameters(); if ( drawParams === null ) return; // pipeline const setPipelineAndBindings = ( passEncoderGPU, currentSets ) => { // pipeline passEncoderGPU.setPipeline( pipelineGPU ); currentSets.pipeline = pipelineGPU; // bind groups const currentBindingGroups = currentSets.bindingGroups; for ( let i = 0, l = bindings.length; i < l; i ++ ) { const bindGroup = bindings[ i ]; const bindingsData = this.get( bindGroup ); if ( currentBindingGroups[ bindGroup.index ] !== bindGroup.id ) { passEncoderGPU.setBindGroup( bindGroup.index, bindingsData.group ); currentBindingGroups[ bindGroup.index ] = bindGroup.id; } } // attributes // index if ( hasIndex === true ) { if ( currentSets.index !== index ) { const buffer = this.get( index ).buffer; const indexFormat = ( index.array instanceof Uint16Array ) ? GPUIndexFormat.Uint16 : GPUIndexFormat.Uint32; passEncoderGPU.setIndexBuffer( buffer, indexFormat ); currentSets.index = index; } } // vertex buffers const vertexBuffers = renderObject.getVertexBuffers(); for ( let i = 0, l = vertexBuffers.length; i < l; i ++ ) { const vertexBuffer = vertexBuffers[ i ]; if ( currentSets.attributes[ i ] !== vertexBuffer ) { const buffer = this.get( vertexBuffer ).buffer; passEncoderGPU.setVertexBuffer( i, buffer ); currentSets.attributes[ i ] = vertexBuffer; } } // stencil if ( context.stencil === true && material.stencilWrite === true && renderContextData.currentStencilRef !== material.stencilRef ) { passEncoderGPU.setStencilReference( material.stencilRef ); renderContextData.currentStencilRef = material.stencilRef; } }; // Define draw function const draw = ( passEncoderGPU, currentSets ) => { setPipelineAndBindings( passEncoderGPU, currentSets ); if ( object.isBatchedMesh === true ) { const starts = object._multiDrawStarts; const counts = object._multiDrawCounts; const drawCount = object._multiDrawCount; const drawInstances = object._multiDrawInstances; if ( drawInstances !== null ) { // @deprecated, r174 warnOnce( 'THREE.WebGPUBackend: renderMultiDrawInstances has been deprecated and will be removed in r184. Append to renderMultiDraw arguments and use indirection.' ); } for ( let i = 0; i < drawCount; i ++ ) { const count = drawInstances ? drawInstances[ i ] : 1; const firstInstance = count > 1 ? 0 : i; if ( hasIndex === true ) { passEncoderGPU.drawIndexed( counts[ i ], count, starts[ i ] / index.array.BYTES_PER_ELEMENT, 0, firstInstance ); } else { passEncoderGPU.draw( counts[ i ], count, starts[ i ], firstInstance ); } info.update( object, counts[ i ], count ); } } else if ( hasIndex === true ) { const { vertexCount: indexCount, instanceCount, firstVertex: firstIndex } = drawParams; const indirect = renderObject.getIndirect(); if ( indirect !== null ) { const buffer = this.get( indirect ).buffer; passEncoderGPU.drawIndexedIndirect( buffer, 0 ); } else { passEncoderGPU.drawIndexed( indexCount, instanceCount, firstIndex, 0, 0 ); } info.update( object, indexCount, instanceCount ); } else { const { vertexCount, instanceCount, firstVertex } = drawParams; const indirect = renderObject.getIndirect(); if ( indirect !== null ) { const buffer = this.get( indirect ).buffer; passEncoderGPU.drawIndirect( buffer, 0 ); } else { passEncoderGPU.draw( vertexCount, instanceCount, firstVertex, 0 ); } info.update( object, vertexCount, instanceCount ); } }; if ( renderObject.camera.isArrayCamera && renderObject.camera.cameras.length > 0 ) { const cameraData = this.get( renderObject.camera ); const cameras = renderObject.camera.cameras; const cameraIndex = renderObject.getBindingGroup( 'cameraIndex' ); if ( cameraData.indexesGPU === undefined || cameraData.indexesGPU.length !== cameras.length ) { const bindingsData = this.get( cameraIndex ); const indexesGPU = []; const data = new Uint32Array( [ 0, 0, 0, 0 ] ); for ( let i = 0, len = cameras.length; i < len; i ++ ) { data[ 0 ] = i; const bindGroupIndex = this.bindingUtils.createBindGroupIndex( data, bindingsData.layout ); indexesGPU.push( bindGroupIndex ); } cameraData.indexesGPU = indexesGPU; // TODO: Create a global library for this } const pixelRatio = this.renderer.getPixelRatio(); for ( let i = 0, len = cameras.length; i < len; i ++ ) { const subCamera = cameras[ i ]; if ( object.layers.test( subCamera.layers ) ) { const vp = subCamera.viewport; let pass = renderContextData.currentPass; let sets = renderContextData.currentSets; if ( renderContextData.bundleEncoders ) { const bundleEncoder = renderContextData.bundleEncoders[ i ]; const bundleSets = renderContextData.bundleSets[ i ]; pass = bundleEncoder; sets = bundleSets; } if ( vp ) { pass.setViewport( Math.floor( vp.x * pixelRatio ), Math.floor( vp.y * pixelRatio ), Math.floor( vp.width * pixelRatio ), Math.floor( vp.height * pixelRatio ), context.viewportValue.minDepth, context.viewportValue.maxDepth ); } // Set camera index binding for this layer if ( cameraIndex && cameraData.indexesGPU ) { pass.setBindGroup( cameraIndex.index, cameraData.indexesGPU[ i ] ); sets.bindingGroups[ cameraIndex.index ] = cameraIndex.id; } draw( pass, sets ); } } } else { // Regular single camera rendering if ( renderContextData.currentPass ) { // Handle occlusion queries if ( renderContextData.occlusionQuerySet !== undefined ) { const lastObject = renderContextData.lastOcclusionObject; if ( lastObject !== object ) { if ( lastObject !== null && lastObject.occlusionTest === true ) { renderContextData.currentPass.endOcclusionQuery(); renderContextData.occlusionQueryIndex ++; } if ( object.occlusionTest === true ) { renderContextData.currentPass.beginOcclusionQuery( renderContextData.occlusionQueryIndex ); renderContextData.occlusionQueryObjects[ renderContextData.occlusionQueryIndex ] = object; } renderContextData.lastOcclusionObject = object; } } draw( renderContextData.currentPass, renderContextData.currentSets ); } } } // cache key /** * Returns `true` if the render pipeline requires an update. * * @param {RenderObject} renderObject - The render object. * @return {boolean} Whether the render pipeline requires an update or not. */ needsRenderUpdate( renderObject ) { const data = this.get( renderObject ); const { object, material } = renderObject; const utils = this.utils; const sampleCount = utils.getSampleCountRenderContext( renderObject.context ); const colorSpace = utils.getCurrentColorSpace( renderObject.context ); const colorFormat = utils.getCurrentColorFormat( renderObject.context ); const depthStencilFormat = utils.getCurrentDepthStencilFormat( renderObject.context ); const primitiveTopology = utils.getPrimitiveTopology( object, material ); let needsUpdate = false; if ( data.material !== material || data.materialVersion !== material.version || data.transparent !== material.transparent || data.blending !== material.blending || data.premultipliedAlpha !== material.premultipliedAlpha || data.blendSrc !== material.blendSrc || data.blendDst !== material.blendDst || data.blendEquation !== material.blendEquation || data.blendSrcAlpha !== material.blendSrcAlpha || data.blendDstAlpha !== material.blendDstAlpha || data.blendEquationAlpha !== material.blendEquationAlpha || data.colorWrite !== material.colorWrite || data.depthWrite !== material.depthWrite || data.depthTest !== material.depthTest || data.depthFunc !== material.depthFunc || data.stencilWrite !== material.stencilWrite || data.stencilFunc !== material.stencilFunc || data.stencilFail !== material.stencilFail || data.stencilZFail !== material.stencilZFail || data.stencilZPass !== material.stencilZPass || data.stencilFuncMask !== material.stencilFuncMask || data.stencilWriteMask !== material.stencilWriteMask || data.side !== material.side || data.alphaToCoverage !== material.alphaToCoverage || data.sampleCount !== sampleCount || data.colorSpace !== colorSpace || data.colorFormat !== colorFormat || data.depthStencilFormat !== depthStencilFormat || data.primitiveTopology !== primitiveTopology || data.clippingContextCacheKey !== renderObject.clippingContextCacheKey ) { data.material = material; data.materialVersion = material.version; data.transparent = material.transparent; data.blending = material.blending; data.premultipliedAlpha = material.premultipliedAlpha; data.blendSrc = material.blendSrc; data.blendDst = material.blendDst; data.blendEquation = material.blendEquation; data.blendSrcAlpha = material.blendSrcAlpha; data.blendDstAlpha = material.blendDstAlpha; data.blendEquationAlpha = material.blendEquationAlpha; data.colorWrite = material.colorWrite; data.depthWrite = material.depthWrite; data.depthTest = material.depthTest; data.depthFunc = material.depthFunc; data.stencilWrite = material.stencilWrite; data.stencilFunc = material.stencilFunc; data.stencilFail = material.stencilFail; data.stencilZFail = material.stencilZFail; data.stencilZPass = material.stencilZPass; data.stencilFuncMask = material.stencilFuncMask; data.stencilWriteMask = material.stencilWriteMask; data.side = material.side; data.alphaToCoverage = material.alphaToCoverage; data.sampleCount = sampleCount; data.colorSpace = colorSpace; data.colorFormat = colorFormat; data.depthStencilFormat = depthStencilFormat; data.primitiveTopology = primitiveTopology; data.clippingContextCacheKey = renderObject.clippingContextCacheKey; needsUpdate = true; } return needsUpdate; } /** * Returns a cache key that is used to identify render pipelines. * * @param {RenderObject} renderObject - The render object. * @return {string} The cache key. */ getRenderCacheKey( renderObject ) { const { object, material } = renderObject; const utils = this.utils; const renderContext = renderObject.context; return [ material.transparent, material.blending, material.premultipliedAlpha, material.blendSrc, material.blendDst, material.blendEquation, material.blendSrcAlpha, material.blendDstAlpha, material.blendEquationAlpha, material.colorWrite, material.depthWrite, material.depthTest, material.depthFunc, material.stencilWrite, material.stencilFunc, material.stencilFail, material.stencilZFail, material.stencilZPass, material.stencilFuncMask, material.stencilWriteMask, material.side, utils.getSampleCountRenderContext( renderContext ), utils.getCurrentColorSpace( renderContext ), utils.getCurrentColorFormat( renderContext ), utils.getCurrentDepthStencilFormat( renderContext ), utils.getPrimitiveTopology( object, material ), renderObject.getGeometryCacheKey(), renderObject.clippingContextCacheKey ].join(); } // textures /** * Creates a GPU sampler for the given texture. * * @param {Texture} texture - The texture to create the sampler for. */ createSampler( texture ) { this.textureUtils.createSampler( texture ); } /** * Destroys the GPU sampler for the given texture. * * @param {Texture} texture - The texture to destroy the sampler for. */ destroySampler( texture ) { this.textureUtils.destroySampler( texture ); } /** * Creates a default texture for the given texture that can be used * as a placeholder until the actual texture is ready for usage. * * @param {Texture} texture - The texture to create a default texture for. */ createDefaultTexture( texture ) { this.textureUtils.createDefaultTexture( texture ); } /** * Defines a texture on the GPU for the given texture object. * * @param {Texture} texture - The texture. * @param {Object} [options={}] - Optional configuration parameter. */ createTexture( texture, options ) { this.textureUtils.createTexture( texture, options ); } /** * Uploads the updated texture data to the GPU. * * @param {Texture} texture - The texture. * @param {Object} [options={}] - Optional configuration parameter. */ updateTexture( texture, options ) { this.textureUtils.updateTexture( texture, options ); } /** * Generates mipmaps for the given texture. * * @param {Texture} texture - The texture. */ generateMipmaps( texture ) { this.textureUtils.generateMipmaps( texture ); } /** * Destroys the GPU data for the