UNPKG

three

Version:

JavaScript 3D library

1,064 lines (797 loc) 22.9 kB
import { clamp } from './MathUtils.js'; /** * Class representing a 4D vector. A 4D vector is an ordered quadruplet of numbers * (labeled x, y, z and w), which can be used to represent a number of things, such as: * * - A point in 4D space. * - A direction and length in 4D space. In three.js the length will * always be the Euclidean distance(straight-line distance) from `(0, 0, 0, 0)` to `(x, y, z, w)` * and the direction is also measured from `(0, 0, 0, 0)` towards `(x, y, z, w)`. * - Any arbitrary ordered quadruplet of numbers. * * There are other things a 4D vector can be used to represent, however these * are the most common uses in *three.js*. * * Iterating through a vector instance will yield its components `(x, y, z, w)` in * the corresponding order. * ```js * const a = new THREE.Vector4( 0, 1, 0, 0 ); * * //no arguments; will be initialised to (0, 0, 0, 1) * const b = new THREE.Vector4( ); * * const d = a.dot( b ); * ``` */ class Vector4 { /** * Constructs a new 4D vector. * * @param {number} [x=0] - The x value of this vector. * @param {number} [y=0] - The y value of this vector. * @param {number} [z=0] - The z value of this vector. * @param {number} [w=1] - The w value of this vector. */ constructor( x = 0, y = 0, z = 0, w = 1 ) { /** * This flag can be used for type testing. * * @type {boolean} * @readonly * @default true */ Vector4.prototype.isVector4 = true; /** * The x value of this vector. * * @type {number} */ this.x = x; /** * The y value of this vector. * * @type {number} */ this.y = y; /** * The z value of this vector. * * @type {number} */ this.z = z; /** * The w value of this vector. * * @type {number} */ this.w = w; } /** * Alias for {@link Vector4#z}. * * @type {number} */ get width() { return this.z; } set width( value ) { this.z = value; } /** * Alias for {@link Vector4#w}. * * @type {number} */ get height() { return this.w; } set height( value ) { this.w = value; } /** * Sets the vector components. * * @param {number} x - The value of the x component. * @param {number} y - The value of the y component. * @param {number} z - The value of the z component. * @param {number} w - The value of the w component. * @return {Vector4} A reference to this vector. */ set( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; } /** * Sets the vector components to the same value. * * @param {number} scalar - The value to set for all vector components. * @return {Vector4} A reference to this vector. */ setScalar( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; this.w = scalar; return this; } /** * Sets the vector's x component to the given value * * @param {number} x - The value to set. * @return {Vector4} A reference to this vector. */ setX( x ) { this.x = x; return this; } /** * Sets the vector's y component to the given value * * @param {number} y - The value to set. * @return {Vector4} A reference to this vector. */ setY( y ) { this.y = y; return this; } /** * Sets the vector's z component to the given value * * @param {number} z - The value to set. * @return {Vector4} A reference to this vector. */ setZ( z ) { this.z = z; return this; } /** * Sets the vector's w component to the given value * * @param {number} w - The value to set. * @return {Vector4} A reference to this vector. */ setW( w ) { this.w = w; return this; } /** * Allows to set a vector component with an index. * * @param {number} index - The component index. `0` equals to x, `1` equals to y, * `2` equals to z, `3` equals to w. * @param {number} value - The value to set. * @return {Vector4} A reference to this vector. */ setComponent( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; } /** * Returns the value of the vector component which matches the given index. * * @param {number} index - The component index. `0` equals to x, `1` equals to y, * `2` equals to z, `3` equals to w. * @return {number} A vector component value. */ getComponent( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Error( 'index is out of range: ' + index ); } } /** * Returns a new vector with copied values from this instance. * * @return {Vector4} A clone of this instance. */ clone() { return new this.constructor( this.x, this.y, this.z, this.w ); } /** * Copies the values of the given vector to this instance. * * @param {Vector3|Vector4} v - The vector to copy. * @return {Vector4} A reference to this vector. */ copy( v ) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = ( v.w !== undefined ) ? v.w : 1; return this; } /** * Adds the given vector to this instance. * * @param {Vector4} v - The vector to add. * @return {Vector4} A reference to this vector. */ add( v ) { this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; } /** * Adds the given scalar value to all components of this instance. * * @param {number} s - The scalar to add. * @return {Vector4} A reference to this vector. */ addScalar( s ) { this.x += s; this.y += s; this.z += s; this.w += s; return this; } /** * Adds the given vectors and stores the result in this instance. * * @param {Vector4} a - The first vector. * @param {Vector4} b - The second vector. * @return {Vector4} A reference to this vector. */ addVectors( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; } /** * Adds the given vector scaled by the given factor to this instance. * * @param {Vector4} v - The vector. * @param {number} s - The factor that scales `v`. * @return {Vector4} A reference to this vector. */ addScaledVector( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; this.w += v.w * s; return this; } /** * Subtracts the given vector from this instance. * * @param {Vector4} v - The vector to subtract. * @return {Vector4} A reference to this vector. */ sub( v ) { this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; } /** * Subtracts the given scalar value from all components of this instance. * * @param {number} s - The scalar to subtract. * @return {Vector4} A reference to this vector. */ subScalar( s ) { this.x -= s; this.y -= s; this.z -= s; this.w -= s; return this; } /** * Subtracts the given vectors and stores the result in this instance. * * @param {Vector4} a - The first vector. * @param {Vector4} b - The second vector. * @return {Vector4} A reference to this vector. */ subVectors( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; } /** * Multiplies the given vector with this instance. * * @param {Vector4} v - The vector to multiply. * @return {Vector4} A reference to this vector. */ multiply( v ) { this.x *= v.x; this.y *= v.y; this.z *= v.z; this.w *= v.w; return this; } /** * Multiplies the given scalar value with all components of this instance. * * @param {number} scalar - The scalar to multiply. * @return {Vector4} A reference to this vector. */ multiplyScalar( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar; return this; } /** * Multiplies this vector with the given 4x4 matrix. * * @param {Matrix4} m - The 4x4 matrix. * @return {Vector4} A reference to this vector. */ applyMatrix4( m ) { const x = this.x, y = this.y, z = this.z, w = this.w; const e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w; this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w; return this; } /** * Divides this instance by the given vector. * * @param {Vector4} v - The vector to divide. * @return {Vector4} A reference to this vector. */ divide( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; this.w /= v.w; return this; } /** * Divides this vector by the given scalar. * * @param {number} scalar - The scalar to divide. * @return {Vector4} A reference to this vector. */ divideScalar( scalar ) { return this.multiplyScalar( 1 / scalar ); } /** * Sets the x, y and z components of this * vector to the quaternion's axis and w to the angle. * * @param {Quaternion} q - The Quaternion to set. * @return {Vector4} A reference to this vector. */ setAxisAngleFromQuaternion( q ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos( q.w ); const s = Math.sqrt( 1 - q.w * q.w ); if ( s < 0.0001 ) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q.x / s; this.y = q.y / s; this.z = q.z / s; } return this; } /** * Sets the x, y and z components of this * vector to the axis of rotation and w to the angle. * * @param {Matrix4} m - A 4x4 matrix of which the upper left 3x3 matrix is a pure rotation matrix. * @return {Vector4} A reference to this vector. */ setAxisAngleFromRotationMatrix( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) let angle, x, y, z; // variables for result const epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; if ( ( Math.abs( m12 - m21 ) < epsilon ) && ( Math.abs( m13 - m31 ) < epsilon ) && ( Math.abs( m23 - m32 ) < epsilon ) ) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && ( Math.abs( m13 + m31 ) < epsilon2 ) && ( Math.abs( m23 + m32 ) < epsilon2 ) && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) { // this singularity is identity matrix so angle = 0 this.set( 1, 0, 0, 0 ); return this; // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI; const xx = ( m11 + 1 ) / 2; const yy = ( m22 + 1 ) / 2; const zz = ( m33 + 1 ) / 2; const xy = ( m12 + m21 ) / 4; const xz = ( m13 + m31 ) / 4; const yz = ( m23 + m32 ) / 4; if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term if ( xx < epsilon ) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = Math.sqrt( xx ); y = xy / x; z = xz / x; } } else if ( yy > zz ) { // m22 is the largest diagonal term if ( yy < epsilon ) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = Math.sqrt( yy ); x = xy / y; z = yz / y; } } else { // m33 is the largest diagonal term so base result on this if ( zz < epsilon ) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = Math.sqrt( zz ); x = xz / z; y = yz / z; } } this.set( x, y, z, angle ); return this; // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally let s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + ( m13 - m31 ) * ( m13 - m31 ) + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize if ( Math.abs( s ) < 0.001 ) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = ( m32 - m23 ) / s; this.y = ( m13 - m31 ) / s; this.z = ( m21 - m12 ) / s; this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 ); return this; } /** * Sets the vector components to the position elements of the * given transformation matrix. * * @param {Matrix4} m - The 4x4 matrix. * @return {Vector4} A reference to this vector. */ setFromMatrixPosition( m ) { const e = m.elements; this.x = e[ 12 ]; this.y = e[ 13 ]; this.z = e[ 14 ]; this.w = e[ 15 ]; return this; } /** * If this vector's x, y, z or w value is greater than the given vector's x, y, z or w * value, replace that value with the corresponding min value. * * @param {Vector4} v - The vector. * @return {Vector4} A reference to this vector. */ min( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); this.w = Math.min( this.w, v.w ); return this; } /** * If this vector's x, y, z or w value is less than the given vector's x, y, z or w * value, replace that value with the corresponding max value. * * @param {Vector4} v - The vector. * @return {Vector4} A reference to this vector. */ max( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); this.w = Math.max( this.w, v.w ); return this; } /** * If this vector's x, y, z or w value is greater than the max vector's x, y, z or w * value, it is replaced by the corresponding value. * If this vector's x, y, z or w value is less than the min vector's x, y, z or w value, * it is replaced by the corresponding value. * * @param {Vector4} min - The minimum x, y and z values. * @param {Vector4} max - The maximum x, y and z values in the desired range. * @return {Vector4} A reference to this vector. */ clamp( min, max ) { // assumes min < max, componentwise this.x = clamp( this.x, min.x, max.x ); this.y = clamp( this.y, min.y, max.y ); this.z = clamp( this.z, min.z, max.z ); this.w = clamp( this.w, min.w, max.w ); return this; } /** * If this vector's x, y, z or w values are greater than the max value, they are * replaced by the max value. * If this vector's x, y, z or w values are less than the min value, they are * replaced by the min value. * * @param {number} minVal - The minimum value the components will be clamped to. * @param {number} maxVal - The maximum value the components will be clamped to. * @return {Vector4} A reference to this vector. */ clampScalar( minVal, maxVal ) { this.x = clamp( this.x, minVal, maxVal ); this.y = clamp( this.y, minVal, maxVal ); this.z = clamp( this.z, minVal, maxVal ); this.w = clamp( this.w, minVal, maxVal ); return this; } /** * If this vector's length is greater than the max value, it is replaced by * the max value. * If this vector's length is less than the min value, it is replaced by the * min value. * * @param {number} min - The minimum value the vector length will be clamped to. * @param {number} max - The maximum value the vector length will be clamped to. * @return {Vector4} A reference to this vector. */ clampLength( min, max ) { const length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( clamp( length, min, max ) ); } /** * The components of this vector are rounded down to the nearest integer value. * * @return {Vector4} A reference to this vector. */ floor() { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); this.w = Math.floor( this.w ); return this; } /** * The components of this vector are rounded up to the nearest integer value. * * @return {Vector4} A reference to this vector. */ ceil() { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); this.w = Math.ceil( this.w ); return this; } /** * The components of this vector are rounded to the nearest integer value * * @return {Vector4} A reference to this vector. */ round() { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); this.w = Math.round( this.w ); return this; } /** * The components of this vector are rounded towards zero (up if negative, * down if positive) to an integer value. * * @return {Vector4} A reference to this vector. */ roundToZero() { this.x = Math.trunc( this.x ); this.y = Math.trunc( this.y ); this.z = Math.trunc( this.z ); this.w = Math.trunc( this.w ); return this; } /** * Inverts this vector - i.e. sets x = -x, y = -y, z = -z, w = -w. * * @return {Vector4} A reference to this vector. */ negate() { this.x = - this.x; this.y = - this.y; this.z = - this.z; this.w = - this.w; return this; } /** * Calculates the dot product of the given vector with this instance. * * @param {Vector4} v - The vector to compute the dot product with. * @return {number} The result of the dot product. */ dot( v ) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; } /** * Computes the square of the Euclidean length (straight-line length) from * (0, 0, 0, 0) to (x, y, z, w). If you are comparing the lengths of vectors, you should * compare the length squared instead as it is slightly more efficient to calculate. * * @return {number} The square length of this vector. */ lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; } /** * Computes the Euclidean length (straight-line length) from (0, 0, 0, 0) to (x, y, z, w). * * @return {number} The length of this vector. */ length() { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); } /** * Computes the Manhattan length of this vector. * * @return {number} The length of this vector. */ manhattanLength() { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w ); } /** * Converts this vector to a unit vector - that is, sets it equal to a vector * with the same direction as this one, but with a vector length of `1`. * * @return {Vector4} A reference to this vector. */ normalize() { return this.divideScalar( this.length() || 1 ); } /** * Sets this vector to a vector with the same direction as this one, but * with the specified length. * * @param {number} length - The new length of this vector. * @return {Vector4} A reference to this vector. */ setLength( length ) { return this.normalize().multiplyScalar( length ); } /** * Linearly interpolates between the given vector and this instance, where * alpha is the percent distance along the line - alpha = 0 will be this * vector, and alpha = 1 will be the given one. * * @param {Vector4} v - The vector to interpolate towards. * @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`. * @return {Vector4} A reference to this vector. */ lerp( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; this.w += ( v.w - this.w ) * alpha; return this; } /** * Linearly interpolates between the given vectors, where alpha is the percent * distance along the line - alpha = 0 will be first vector, and alpha = 1 will * be the second one. The result is stored in this instance. * * @param {Vector4} v1 - The first vector. * @param {Vector4} v2 - The second vector. * @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`. * @return {Vector4} A reference to this vector. */ lerpVectors( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; this.z = v1.z + ( v2.z - v1.z ) * alpha; this.w = v1.w + ( v2.w - v1.w ) * alpha; return this; } /** * Returns `true` if this vector is equal with the given one. * * @param {Vector4} v - The vector to test for equality. * @return {boolean} Whether this vector is equal with the given one. */ equals( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) ); } /** * Sets this vector's x value to be `array[ offset ]`, y value to be `array[ offset + 1 ]`, * z value to be `array[ offset + 2 ]`, w value to be `array[ offset + 3 ]`. * * @param {Array<number>} array - An array holding the vector component values. * @param {number} [offset=0] - The offset into the array. * @return {Vector4} A reference to this vector. */ fromArray( array, offset = 0 ) { this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; this.w = array[ offset + 3 ]; return this; } /** * Writes the components of this vector to the given array. If no array is provided, * the method returns a new instance. * * @param {Array<number>} [array=[]] - The target array holding the vector components. * @param {number} [offset=0] - Index of the first element in the array. * @return {Array<number>} The vector components. */ toArray( array = [], offset = 0 ) { array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; array[ offset + 3 ] = this.w; return array; } /** * Sets the components of this vector from the given buffer attribute. * * @param {BufferAttribute} attribute - The buffer attribute holding vector data. * @param {number} index - The index into the attribute. * @return {Vector4} A reference to this vector. */ fromBufferAttribute( attribute, index ) { this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); this.w = attribute.getW( index ); return this; } /** * Sets each component of this vector to a pseudo-random value between `0` and * `1`, excluding `1`. * * @return {Vector4} A reference to this vector. */ random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); this.w = Math.random(); return this; } *[ Symbol.iterator ]() { yield this.x; yield this.y; yield this.z; yield this.w; } } export { Vector4 };