UNPKG

three

Version:

JavaScript 3D library

314 lines (237 loc) 8.15 kB
import { AdditiveBlending, Color, HalfFloatType, ShaderMaterial, UniformsUtils, WebGLRenderTarget } from 'three'; import { Pass, FullScreenQuad } from './Pass.js'; import { CopyShader } from '../shaders/CopyShader.js'; /** * Supersample Anti-Aliasing Render Pass. * * This manual approach to SSAA re-renders the scene ones for each sample with camera jitter and accumulates the results. * * ```js * const ssaaRenderPass = new SSAARenderPass( scene, camera ); * ssaaRenderPass.sampleLevel = 3; * composer.addPass( ssaaRenderPass ); * ``` * * @augments Pass * @three_import import { SSAARenderPass } from 'three/addons/postprocessing/SSAARenderPass.js'; */ class SSAARenderPass extends Pass { /** * Constructs a new SSAA render pass. * * @param {Scene} scene - The scene to render. * @param {Camera} camera - The camera. * @param {?(number|Color|string)} [clearColor=0x000000] - The clear color of the render pass. * @param {?number} [clearAlpha=0] - The clear alpha of the render pass. */ constructor( scene, camera, clearColor = 0x000000, clearAlpha = 0 ) { super(); /** * The scene to render. * * @type {Scene} */ this.scene = scene; /** * The camera. * * @type {Camera} */ this.camera = camera; /** * The sample level. Specified as n, where the number of * samples is 2^n, so sampleLevel = 4, is 2^4 samples, 16. * * @type {number} * @default 4 */ this.sampleLevel = 4; /** * Whether the pass should be unbiased or not. This property has the most * visible effect when rendering to a RGBA8 buffer because it mitigates * rounding errors. By default RGBA16F is used. * * @type {boolean} * @default true */ this.unbiased = true; /** * Whether to use a stencil buffer or not. This property can't * be changed after the first render. * * @type {boolean} * @default false */ this.stencilBuffer = false; /** * The clear color of the render pass. * * @type {?(number|Color|string)} * @default 0x000000 */ this.clearColor = clearColor; /** * The clear alpha of the render pass. * * @type {?number} * @default 0 */ this.clearAlpha = clearAlpha; // internals this._sampleRenderTarget = null; this._oldClearColor = new Color(); this._copyUniforms = UniformsUtils.clone( CopyShader.uniforms ); this._copyMaterial = new ShaderMaterial( { uniforms: this._copyUniforms, vertexShader: CopyShader.vertexShader, fragmentShader: CopyShader.fragmentShader, transparent: true, depthTest: false, depthWrite: false, premultipliedAlpha: true, blending: AdditiveBlending } ); this._fsQuad = new FullScreenQuad( this._copyMaterial ); } /** * Frees the GPU-related resources allocated by this instance. Call this * method whenever the pass is no longer used in your app. */ dispose() { if ( this._sampleRenderTarget ) { this._sampleRenderTarget.dispose(); this._sampleRenderTarget = null; } this._copyMaterial.dispose(); this._fsQuad.dispose(); } /** * Sets the size of the pass. * * @param {number} width - The width to set. * @param {number} height - The width to set. */ setSize( width, height ) { if ( this._sampleRenderTarget ) this._sampleRenderTarget.setSize( width, height ); } /** * Performs the SSAA render pass. * * @param {WebGLRenderer} renderer - The renderer. * @param {WebGLRenderTarget} writeBuffer - The write buffer. This buffer is intended as the rendering * destination for the pass. * @param {WebGLRenderTarget} readBuffer - The read buffer. The pass can access the result from the * previous pass from this buffer. * @param {number} deltaTime - The delta time in seconds. * @param {boolean} maskActive - Whether masking is active or not. */ render( renderer, writeBuffer, readBuffer/*, deltaTime, maskActive */ ) { if ( ! this._sampleRenderTarget ) { this._sampleRenderTarget = new WebGLRenderTarget( readBuffer.width, readBuffer.height, { type: HalfFloatType, stencilBuffer: this.stencilBuffer } ); this._sampleRenderTarget.texture.name = 'SSAARenderPass.sample'; } const jitterOffsets = _JitterVectors[ Math.max( 0, Math.min( this.sampleLevel, 5 ) ) ]; const autoClear = renderer.autoClear; renderer.autoClear = false; renderer.getClearColor( this._oldClearColor ); const oldClearAlpha = renderer.getClearAlpha(); const baseSampleWeight = 1.0 / jitterOffsets.length; const roundingRange = 1 / 32; this._copyUniforms[ 'tDiffuse' ].value = this._sampleRenderTarget.texture; const viewOffset = { fullWidth: readBuffer.width, fullHeight: readBuffer.height, offsetX: 0, offsetY: 0, width: readBuffer.width, height: readBuffer.height }; const originalViewOffset = Object.assign( {}, this.camera.view ); if ( originalViewOffset.enabled ) Object.assign( viewOffset, originalViewOffset ); // render the scene multiple times, each slightly jitter offset from the last and accumulate the results. for ( let i = 0; i < jitterOffsets.length; i ++ ) { const jitterOffset = jitterOffsets[ i ]; if ( this.camera.setViewOffset ) { this.camera.setViewOffset( viewOffset.fullWidth, viewOffset.fullHeight, viewOffset.offsetX + jitterOffset[ 0 ] * 0.0625, viewOffset.offsetY + jitterOffset[ 1 ] * 0.0625, // 0.0625 = 1 / 16 viewOffset.width, viewOffset.height ); } let sampleWeight = baseSampleWeight; if ( this.unbiased ) { // the theory is that equal weights for each sample lead to an accumulation of rounding errors. // The following equation varies the sampleWeight per sample so that it is uniformly distributed // across a range of values whose rounding errors cancel each other out. const uniformCenteredDistribution = ( - 0.5 + ( i + 0.5 ) / jitterOffsets.length ); sampleWeight += roundingRange * uniformCenteredDistribution; } this._copyUniforms[ 'opacity' ].value = sampleWeight; renderer.setClearColor( this.clearColor, this.clearAlpha ); renderer.setRenderTarget( this._sampleRenderTarget ); renderer.clear(); renderer.render( this.scene, this.camera ); renderer.setRenderTarget( this.renderToScreen ? null : writeBuffer ); if ( i === 0 ) { renderer.setClearColor( 0x000000, 0.0 ); renderer.clear(); } this._fsQuad.render( renderer ); } if ( this.camera.setViewOffset && originalViewOffset.enabled ) { this.camera.setViewOffset( originalViewOffset.fullWidth, originalViewOffset.fullHeight, originalViewOffset.offsetX, originalViewOffset.offsetY, originalViewOffset.width, originalViewOffset.height ); } else if ( this.camera.clearViewOffset ) { this.camera.clearViewOffset(); } renderer.autoClear = autoClear; renderer.setClearColor( this._oldClearColor, oldClearAlpha ); } } // These jitter vectors are specified in integers because it is easier. // I am assuming a [-8,8) integer grid, but it needs to be mapped onto [-0.5,0.5) // before being used, thus these integers need to be scaled by 1/16. // // Sample patterns reference: https://msdn.microsoft.com/en-us/library/windows/desktop/ff476218%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396 const _JitterVectors = [ [ [ 0, 0 ] ], [ [ 4, 4 ], [ - 4, - 4 ] ], [ [ - 2, - 6 ], [ 6, - 2 ], [ - 6, 2 ], [ 2, 6 ] ], [ [ 1, - 3 ], [ - 1, 3 ], [ 5, 1 ], [ - 3, - 5 ], [ - 5, 5 ], [ - 7, - 1 ], [ 3, 7 ], [ 7, - 7 ] ], [ [ 1, 1 ], [ - 1, - 3 ], [ - 3, 2 ], [ 4, - 1 ], [ - 5, - 2 ], [ 2, 5 ], [ 5, 3 ], [ 3, - 5 ], [ - 2, 6 ], [ 0, - 7 ], [ - 4, - 6 ], [ - 6, 4 ], [ - 8, 0 ], [ 7, - 4 ], [ 6, 7 ], [ - 7, - 8 ] ], [ [ - 4, - 7 ], [ - 7, - 5 ], [ - 3, - 5 ], [ - 5, - 4 ], [ - 1, - 4 ], [ - 2, - 2 ], [ - 6, - 1 ], [ - 4, 0 ], [ - 7, 1 ], [ - 1, 2 ], [ - 6, 3 ], [ - 3, 3 ], [ - 7, 6 ], [ - 3, 6 ], [ - 5, 7 ], [ - 1, 7 ], [ 5, - 7 ], [ 1, - 6 ], [ 6, - 5 ], [ 4, - 4 ], [ 2, - 3 ], [ 7, - 2 ], [ 1, - 1 ], [ 4, - 1 ], [ 2, 1 ], [ 6, 2 ], [ 0, 4 ], [ 4, 4 ], [ 2, 5 ], [ 7, 5 ], [ 5, 6 ], [ 3, 7 ] ] ]; export { SSAARenderPass };