three
Version:
JavaScript 3D library
200 lines (136 loc) • 5.95 kB
JavaScript
import {
Color,
Mesh,
Vector2,
Vector3,
NodeMaterial,
NodeUpdateType,
TempNode
} from 'three/webgpu';
import { Fn, vec2, viewportSafeUV, viewportSharedTexture, reflector, pow, float, abs, texture, uniform, vec4, cameraPosition, positionWorld, uv, mix, vec3, normalize, max, dot, screenUV } from 'three/tsl';
/** @module Water2Mesh */
/**
* An advanced water effect that supports reflections, refractions and flow maps.
*
* Note that this class can only be used with {@link WebGPURenderer}.
* When using {@link WebGLRenderer}, use {@link module:Water2}.
*
* References:
*
* - {@link https://alex.vlachos.com/graphics/Vlachos-SIGGRAPH10-WaterFlow.pdf}
* - {@link http://graphicsrunner.blogspot.de/2010/08/water-using-flow-maps.html}
*
* @augments Mesh
* @three_import import { WaterMesh } from 'three/addons/objects/Water2Mesh.js';
*/
class WaterMesh extends Mesh {
/**
* Constructs a new water mesh.
*
* @param {BufferGeometry} geometry - The water's geometry.
* @param {module:Water2~Options} [options] - The configuration options.
*/
constructor( geometry, options = {} ) {
const material = new NodeMaterial();
material.transparent = true;
super( geometry, material );
/**
* This flag can be used for type testing.
*
* @type {boolean}
* @readonly
* @default true
*/
this.isWater = true;
material.colorNode = new WaterNode( options, this );
}
}
class WaterNode extends TempNode {
constructor( options, waterBody ) {
super( 'vec4' );
this.waterBody = waterBody;
this.normalMap0 = texture( options.normalMap0 );
this.normalMap1 = texture( options.normalMap1 );
this.flowMap = texture( options.flowMap !== undefined ? options.flowMap : null );
this.color = uniform( options.color !== undefined ? new Color( options.color ) : new Color( 0xffffff ) );
this.flowDirection = uniform( options.flowDirection !== undefined ? options.flowDirection : new Vector2( 1, 0 ) );
this.flowSpeed = uniform( options.flowSpeed !== undefined ? options.flowSpeed : 0.03 );
this.reflectivity = uniform( options.reflectivity !== undefined ? options.reflectivity : 0.02 );
this.scale = uniform( options.scale !== undefined ? options.scale : 1 );
this.flowConfig = uniform( new Vector3() );
this.updateBeforeType = NodeUpdateType.RENDER;
this._cycle = 0.15; // a cycle of a flow map phase
this._halfCycle = this._cycle * 0.5;
this._USE_FLOW = options.flowMap !== undefined;
}
updateFlow( delta ) {
this.flowConfig.value.x += this.flowSpeed.value * delta; // flowMapOffset0
this.flowConfig.value.y = this.flowConfig.value.x + this._halfCycle; // flowMapOffset1
// Important: The distance between offsets should be always the value of "halfCycle".
// Moreover, both offsets should be in the range of [ 0, cycle ].
// This approach ensures a smooth water flow and avoids "reset" effects.
if ( this.flowConfig.value.x >= this._cycle ) {
this.flowConfig.value.x = 0;
this.flowConfig.value.y = this._halfCycle;
} else if ( this.flowConfig.value.y >= this._cycle ) {
this.flowConfig.value.y = this.flowConfig.value.y - this._cycle;
}
this.flowConfig.value.z = this._halfCycle;
}
updateBefore( frame ) {
this.updateFlow( frame.deltaTime );
}
setup() {
const outputNode = Fn( () => {
const flowMapOffset0 = this.flowConfig.x;
const flowMapOffset1 = this.flowConfig.y;
const halfCycle = this.flowConfig.z;
const toEye = normalize( cameraPosition.sub( positionWorld ) );
let flow;
if ( this._USE_FLOW === true ) {
flow = this.flowMap.rg.mul( 2 ).sub( 1 );
} else {
flow = vec2( this.flowDirection.x, this.flowDirection.y );
}
flow.x.mulAssign( - 1 );
// sample normal maps (distort uvs with flowdata)
const uvs = uv();
const normalUv0 = uvs.mul( this.scale ).add( flow.mul( flowMapOffset0 ) );
const normalUv1 = uvs.mul( this.scale ).add( flow.mul( flowMapOffset1 ) );
const normalColor0 = this.normalMap0.sample( normalUv0 );
const normalColor1 = this.normalMap1.sample( normalUv1 );
// linear interpolate to get the final normal color
const flowLerp = abs( halfCycle.sub( flowMapOffset0 ) ).div( halfCycle );
const normalColor = mix( normalColor0, normalColor1, flowLerp );
// calculate normal vector
const normal = normalize( vec3( normalColor.r.mul( 2 ).sub( 1 ), normalColor.b, normalColor.g.mul( 2 ).sub( 1 ) ) );
// calculate the fresnel term to blend reflection and refraction maps
const theta = max( dot( toEye, normal ), 0 );
const reflectance = pow( float( 1.0 ).sub( theta ), 5.0 ).mul( float( 1.0 ).sub( this.reflectivity ) ).add( this.reflectivity );
// reflector, refractor
const offset = normal.xz.mul( 0.05 ).toVar();
const reflectionSampler = reflector();
this.waterBody.add( reflectionSampler.target );
reflectionSampler.uvNode = reflectionSampler.uvNode.add( offset );
const refractorUV = screenUV.add( offset );
const refractionSampler = viewportSharedTexture( viewportSafeUV( refractorUV ) );
// calculate final uv coords
return vec4( this.color, 1.0 ).mul( mix( refractionSampler, reflectionSampler, reflectance ) );
} )();
return outputNode;
}
}
/**
* Constructor options of `WaterMesh`.
*
* @typedef {Object} module:Water2Mesh~Options
* @property {number|Color|string} [color=0xFFFFFF] - The water color.
* @property {Vector2} [flowDirection=(1,0)] - The water's flow direction.
* @property {number} [flowSpeed=0.03] - The water's flow speed.
* @property {number} [reflectivity=0.02] - The water's reflectivity.
* @property {number} [scale=1] - The water's scale.
* @property {?Texture} [flowMap=null] - The flow map. If no flow map is assigned, the water flow is defined by `flowDirection`.
* @property {Texture} normalMap0 - The first water normal map.
* @property {Texture} normalMap1 - The second water normal map.
**/
export { WaterMesh };