UNPKG

three

Version:

JavaScript 3D library

316 lines (226 loc) 8.16 kB
import { Triangle, Vector2, Vector3 } from 'three'; const _face = new Triangle(); const _color = new Vector3(); const _uva = new Vector2(), _uvb = new Vector2(), _uvc = new Vector2(); /** * Utility class for sampling weighted random points on the surface of a mesh. * * Building the sampler is a one-time O(n) operation. Once built, any number of * random samples may be selected in O(logn) time. Memory usage is O(n). * * References: * - {@link http://www.joesfer.com/?p=84} * - {@link https://stackoverflow.com/a/4322940/1314762} * * ```js * const sampler = new MeshSurfaceSampler( surfaceMesh ) * .setWeightAttribute( 'color' ) * .build(); * * const mesh = new THREE.InstancedMesh( sampleGeometry, sampleMaterial, 100 ); * * const position = new THREE.Vector3(); * const matrix = new THREE.Matrix4(); * * // Sample randomly from the surface, creating an instance of the sample geometry at each sample point. * * for ( let i = 0; i < 100; i ++ ) { * * sampler.sample( position ); * matrix.makeTranslation( position.x, position.y, position.z ); * mesh.setMatrixAt( i, matrix ); * * } * * scene.add( mesh ); * ``` * * @three_import import { MeshSurfaceSampler } from 'three/addons/math/MeshSurfaceSampler.js'; */ class MeshSurfaceSampler { /** * Constructs a mesh surface sampler. * * @param {Mesh} mesh - Surface mesh from which to sample. */ constructor( mesh ) { this.geometry = mesh.geometry; this.randomFunction = Math.random; this.indexAttribute = this.geometry.index; this.positionAttribute = this.geometry.getAttribute( 'position' ); this.normalAttribute = this.geometry.getAttribute( 'normal' ); this.colorAttribute = this.geometry.getAttribute( 'color' ); this.uvAttribute = this.geometry.getAttribute( 'uv' ); this.weightAttribute = null; this.distribution = null; } /** * Specifies a vertex attribute to be used as a weight when sampling from the surface. * Faces with higher weights are more likely to be sampled, and those with weights of * zero will not be sampled at all. For vector attributes, only .x is used in sampling. * * If no weight attribute is selected, sampling is randomly distributed by area. * * @param {string} name - The attribute name. * @return {MeshSurfaceSampler} A reference to this sampler. */ setWeightAttribute( name ) { this.weightAttribute = name ? this.geometry.getAttribute( name ) : null; return this; } /** * Processes the input geometry and prepares to return samples. Any configuration of the * geometry or sampler must occur before this method is called. Time complexity is O(n) * for a surface with n faces. * * @return {MeshSurfaceSampler} A reference to this sampler. */ build() { const indexAttribute = this.indexAttribute; const positionAttribute = this.positionAttribute; const weightAttribute = this.weightAttribute; const totalFaces = indexAttribute ? ( indexAttribute.count / 3 ) : ( positionAttribute.count / 3 ); const faceWeights = new Float32Array( totalFaces ); // Accumulate weights for each mesh face. for ( let i = 0; i < totalFaces; i ++ ) { let faceWeight = 1; let i0 = 3 * i; let i1 = 3 * i + 1; let i2 = 3 * i + 2; if ( indexAttribute ) { i0 = indexAttribute.getX( i0 ); i1 = indexAttribute.getX( i1 ); i2 = indexAttribute.getX( i2 ); } if ( weightAttribute ) { faceWeight = weightAttribute.getX( i0 ) + weightAttribute.getX( i1 ) + weightAttribute.getX( i2 ); } _face.a.fromBufferAttribute( positionAttribute, i0 ); _face.b.fromBufferAttribute( positionAttribute, i1 ); _face.c.fromBufferAttribute( positionAttribute, i2 ); faceWeight *= _face.getArea(); faceWeights[ i ] = faceWeight; } // Store cumulative total face weights in an array, where weight index // corresponds to face index. const distribution = new Float32Array( totalFaces ); let cumulativeTotal = 0; for ( let i = 0; i < totalFaces; i ++ ) { cumulativeTotal += faceWeights[ i ]; distribution[ i ] = cumulativeTotal; } this.distribution = distribution; return this; } /** * Allows to set a custom random number generator. Default is `Math.random()`. * * @param {Function} randomFunction - A random number generator. * @return {MeshSurfaceSampler} A reference to this sampler. */ setRandomGenerator( randomFunction ) { this.randomFunction = randomFunction; return this; } /** * Selects a random point on the surface of the input geometry, returning the * position and optionally the normal vector, color and UV Coordinate at that point. * Time complexity is O(log n) for a surface with n faces. * * @param {Vector3} targetPosition - The target object holding the sampled position. * @param {Vector3} targetNormal - The target object holding the sampled normal. * @param {Color} targetColor - The target object holding the sampled color. * @param {Vector2} targetUV - The target object holding the sampled uv coordinates. * @return {MeshSurfaceSampler} A reference to this sampler. */ sample( targetPosition, targetNormal, targetColor, targetUV ) { const faceIndex = this._sampleFaceIndex(); return this._sampleFace( faceIndex, targetPosition, targetNormal, targetColor, targetUV ); } // private _sampleFaceIndex() { const cumulativeTotal = this.distribution[ this.distribution.length - 1 ]; return this._binarySearch( this.randomFunction() * cumulativeTotal ); } _binarySearch( x ) { const dist = this.distribution; let start = 0; let end = dist.length - 1; let index = - 1; while ( start <= end ) { const mid = Math.ceil( ( start + end ) / 2 ); if ( mid === 0 || dist[ mid - 1 ] <= x && dist[ mid ] > x ) { index = mid; break; } else if ( x < dist[ mid ] ) { end = mid - 1; } else { start = mid + 1; } } return index; } _sampleFace( faceIndex, targetPosition, targetNormal, targetColor, targetUV ) { let u = this.randomFunction(); let v = this.randomFunction(); if ( u + v > 1 ) { u = 1 - u; v = 1 - v; } // get the vertex attribute indices const indexAttribute = this.indexAttribute; let i0 = faceIndex * 3; let i1 = faceIndex * 3 + 1; let i2 = faceIndex * 3 + 2; if ( indexAttribute ) { i0 = indexAttribute.getX( i0 ); i1 = indexAttribute.getX( i1 ); i2 = indexAttribute.getX( i2 ); } _face.a.fromBufferAttribute( this.positionAttribute, i0 ); _face.b.fromBufferAttribute( this.positionAttribute, i1 ); _face.c.fromBufferAttribute( this.positionAttribute, i2 ); targetPosition .set( 0, 0, 0 ) .addScaledVector( _face.a, u ) .addScaledVector( _face.b, v ) .addScaledVector( _face.c, 1 - ( u + v ) ); if ( targetNormal !== undefined ) { if ( this.normalAttribute !== undefined ) { _face.a.fromBufferAttribute( this.normalAttribute, i0 ); _face.b.fromBufferAttribute( this.normalAttribute, i1 ); _face.c.fromBufferAttribute( this.normalAttribute, i2 ); targetNormal.set( 0, 0, 0 ).addScaledVector( _face.a, u ).addScaledVector( _face.b, v ).addScaledVector( _face.c, 1 - ( u + v ) ).normalize(); } else { _face.getNormal( targetNormal ); } } if ( targetColor !== undefined && this.colorAttribute !== undefined ) { _face.a.fromBufferAttribute( this.colorAttribute, i0 ); _face.b.fromBufferAttribute( this.colorAttribute, i1 ); _face.c.fromBufferAttribute( this.colorAttribute, i2 ); _color .set( 0, 0, 0 ) .addScaledVector( _face.a, u ) .addScaledVector( _face.b, v ) .addScaledVector( _face.c, 1 - ( u + v ) ); targetColor.r = _color.x; targetColor.g = _color.y; targetColor.b = _color.z; } if ( targetUV !== undefined && this.uvAttribute !== undefined ) { _uva.fromBufferAttribute( this.uvAttribute, i0 ); _uvb.fromBufferAttribute( this.uvAttribute, i1 ); _uvc.fromBufferAttribute( this.uvAttribute, i2 ); targetUV.set( 0, 0 ).addScaledVector( _uva, u ).addScaledVector( _uvb, v ).addScaledVector( _uvc, 1 - ( u + v ) ); } return this; } } export { MeshSurfaceSampler };