three
Version: 
JavaScript 3D library
2,522 lines (1,519 loc) • 85.5 kB
JavaScript
import {
	AmbientLight,
	AnimationClip,
	Bone,
	BufferGeometry,
	ClampToEdgeWrapping,
	Color,
	ColorManagement,
	DirectionalLight,
	DoubleSide,
	FileLoader,
	Float32BufferAttribute,
	FrontSide,
	Group,
	Line,
	LineBasicMaterial,
	LineSegments,
	Loader,
	LoaderUtils,
	MathUtils,
	Matrix4,
	Mesh,
	MeshBasicMaterial,
	MeshLambertMaterial,
	MeshPhongMaterial,
	OrthographicCamera,
	PerspectiveCamera,
	PointLight,
	Quaternion,
	QuaternionKeyframeTrack,
	RepeatWrapping,
	Scene,
	Skeleton,
	SkinnedMesh,
	SpotLight,
	TextureLoader,
	Vector2,
	Vector3,
	VectorKeyframeTrack,
	SRGBColorSpace
} from 'three';
import { TGALoader } from '../loaders/TGALoader.js';
/**
 * A loader for the Collada format.
 *
 * The Collada format is very complex so this loader only supports a subset of what
 * is defined in the [official specification]{@link https://www.khronos.org/files/collada_spec_1_5.pdf}.
 *
 * Assets with a Z-UP coordinate system are transformed it into Y-UP by a simple rotation.
 * The vertex data are not converted.
 *
 * ```js
 * const loader = new ColladaLoader();
 *
 * const result = await loader.loadAsync( './models/collada/elf/elf.dae' );
 * scene.add( result.scene );
 * ```
 *
 * @augments Loader
 * @three_import import { ColladaLoader } from 'three/addons/loaders/ColladaLoader.js';
 */
class ColladaLoader extends Loader {
	/**
	 * Starts loading from the given URL and passes the loaded Collada asset
	 * to the `onLoad()` callback.
	 *
	 * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI.
	 * @param {function({scene:Group,animations:Array<AnimationClip>,kinematics:Object})} onLoad - Executed when the loading process has been finished.
	 * @param {onProgressCallback} onProgress - Executed while the loading is in progress.
	 * @param {onErrorCallback} onError - Executed when errors occur.
	 */
	load( url, onLoad, onProgress, onError ) {
		const scope = this;
		const path = ( scope.path === '' ) ? LoaderUtils.extractUrlBase( url ) : scope.path;
		const loader = new FileLoader( scope.manager );
		loader.setPath( scope.path );
		loader.setRequestHeader( scope.requestHeader );
		loader.setWithCredentials( scope.withCredentials );
		loader.load( url, function ( text ) {
			try {
				onLoad( scope.parse( text, path ) );
			} catch ( e ) {
				if ( onError ) {
					onError( e );
				} else {
					console.error( e );
				}
				scope.manager.itemError( url );
			}
		}, onProgress, onError );
	}
	/**
	 * Parses the given Collada data and returns a result oject holding the parsed scene,
	 * an array of animation clips and kinematics.
	 *
	 * @param {string} text - The raw Collada data as a string.
	 * @param {string} path - The asset path.
	 * @return {{scene:Group,animations:Array<AnimationClip>,kinematics:Object}} An object representing the parsed asset.
	 */
	parse( text, path ) {
		function getElementsByTagName( xml, name ) {
			// Non recursive xml.getElementsByTagName() ...
			const array = [];
			const childNodes = xml.childNodes;
			for ( let i = 0, l = childNodes.length; i < l; i ++ ) {
				const child = childNodes[ i ];
				if ( child.nodeName === name ) {
					array.push( child );
				}
			}
			return array;
		}
		function parseStrings( text ) {
			if ( text.length === 0 ) return [];
			const parts = text.trim().split( /\s+/ );
			const array = new Array( parts.length );
			for ( let i = 0, l = parts.length; i < l; i ++ ) {
				array[ i ] = parts[ i ];
			}
			return array;
		}
		function parseFloats( text ) {
			if ( text.length === 0 ) return [];
			const parts = text.trim().split( /\s+/ );
			const array = new Array( parts.length );
			for ( let i = 0, l = parts.length; i < l; i ++ ) {
				array[ i ] = parseFloat( parts[ i ] );
			}
			return array;
		}
		function parseInts( text ) {
			if ( text.length === 0 ) return [];
			const parts = text.trim().split( /\s+/ );
			const array = new Array( parts.length );
			for ( let i = 0, l = parts.length; i < l; i ++ ) {
				array[ i ] = parseInt( parts[ i ] );
			}
			return array;
		}
		function parseId( text ) {
			return text.substring( 1 );
		}
		function generateId() {
			return 'three_default_' + ( count ++ );
		}
		function isEmpty( object ) {
			return Object.keys( object ).length === 0;
		}
		// asset
		function parseAsset( xml ) {
			return {
				unit: parseAssetUnit( getElementsByTagName( xml, 'unit' )[ 0 ] ),
				upAxis: parseAssetUpAxis( getElementsByTagName( xml, 'up_axis' )[ 0 ] )
			};
		}
		function parseAssetUnit( xml ) {
			if ( ( xml !== undefined ) && ( xml.hasAttribute( 'meter' ) === true ) ) {
				return parseFloat( xml.getAttribute( 'meter' ) );
			} else {
				return 1; // default 1 meter
			}
		}
		function parseAssetUpAxis( xml ) {
			return xml !== undefined ? xml.textContent : 'Y_UP';
		}
		// library
		function parseLibrary( xml, libraryName, nodeName, parser ) {
			const library = getElementsByTagName( xml, libraryName )[ 0 ];
			if ( library !== undefined ) {
				const elements = getElementsByTagName( library, nodeName );
				for ( let i = 0; i < elements.length; i ++ ) {
					parser( elements[ i ] );
				}
			}
		}
		function buildLibrary( data, builder ) {
			for ( const name in data ) {
				const object = data[ name ];
				object.build = builder( data[ name ] );
			}
		}
		// get
		function getBuild( data, builder ) {
			if ( data.build !== undefined ) return data.build;
			data.build = builder( data );
			return data.build;
		}
		// animation
		function parseAnimation( xml ) {
			const data = {
				sources: {},
				samplers: {},
				channels: {}
			};
			let hasChildren = false;
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				let id;
				switch ( child.nodeName ) {
					case 'source':
						id = child.getAttribute( 'id' );
						data.sources[ id ] = parseSource( child );
						break;
					case 'sampler':
						id = child.getAttribute( 'id' );
						data.samplers[ id ] = parseAnimationSampler( child );
						break;
					case 'channel':
						id = child.getAttribute( 'target' );
						data.channels[ id ] = parseAnimationChannel( child );
						break;
					case 'animation':
						// hierarchy of related animations
						parseAnimation( child );
						hasChildren = true;
						break;
					default:
						console.log( child );
				}
			}
			if ( hasChildren === false ) {
				// since 'id' attributes can be optional, it's necessary to generate a UUID for unique assignment
				library.animations[ xml.getAttribute( 'id' ) || MathUtils.generateUUID() ] = data;
			}
		}
		function parseAnimationSampler( xml ) {
			const data = {
				inputs: {},
			};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'input':
						const id = parseId( child.getAttribute( 'source' ) );
						const semantic = child.getAttribute( 'semantic' );
						data.inputs[ semantic ] = id;
						break;
				}
			}
			return data;
		}
		function parseAnimationChannel( xml ) {
			const data = {};
			const target = xml.getAttribute( 'target' );
			// parsing SID Addressing Syntax
			let parts = target.split( '/' );
			const id = parts.shift();
			let sid = parts.shift();
			// check selection syntax
			const arraySyntax = ( sid.indexOf( '(' ) !== - 1 );
			const memberSyntax = ( sid.indexOf( '.' ) !== - 1 );
			if ( memberSyntax ) {
				//  member selection access
				parts = sid.split( '.' );
				sid = parts.shift();
				data.member = parts.shift();
			} else if ( arraySyntax ) {
				// array-access syntax. can be used to express fields in one-dimensional vectors or two-dimensional matrices.
				const indices = sid.split( '(' );
				sid = indices.shift();
				for ( let i = 0; i < indices.length; i ++ ) {
					indices[ i ] = parseInt( indices[ i ].replace( /\)/, '' ) );
				}
				data.indices = indices;
			}
			data.id = id;
			data.sid = sid;
			data.arraySyntax = arraySyntax;
			data.memberSyntax = memberSyntax;
			data.sampler = parseId( xml.getAttribute( 'source' ) );
			return data;
		}
		function buildAnimation( data ) {
			const tracks = [];
			const channels = data.channels;
			const samplers = data.samplers;
			const sources = data.sources;
			for ( const target in channels ) {
				if ( channels.hasOwnProperty( target ) ) {
					const channel = channels[ target ];
					const sampler = samplers[ channel.sampler ];
					const inputId = sampler.inputs.INPUT;
					const outputId = sampler.inputs.OUTPUT;
					const inputSource = sources[ inputId ];
					const outputSource = sources[ outputId ];
					const animation = buildAnimationChannel( channel, inputSource, outputSource );
					createKeyframeTracks( animation, tracks );
				}
			}
			return tracks;
		}
		function getAnimation( id ) {
			return getBuild( library.animations[ id ], buildAnimation );
		}
		function buildAnimationChannel( channel, inputSource, outputSource ) {
			const node = library.nodes[ channel.id ];
			const object3D = getNode( node.id );
			const transform = node.transforms[ channel.sid ];
			const defaultMatrix = node.matrix.clone().transpose();
			let time, stride;
			let i, il, j, jl;
			const data = {};
			// the collada spec allows the animation of data in various ways.
			// depending on the transform type (matrix, translate, rotate, scale), we execute different logic
			switch ( transform ) {
				case 'matrix':
					for ( i = 0, il = inputSource.array.length; i < il; i ++ ) {
						time = inputSource.array[ i ];
						stride = i * outputSource.stride;
						if ( data[ time ] === undefined ) data[ time ] = {};
						if ( channel.arraySyntax === true ) {
							const value = outputSource.array[ stride ];
							const index = channel.indices[ 0 ] + 4 * channel.indices[ 1 ];
							data[ time ][ index ] = value;
						} else {
							for ( j = 0, jl = outputSource.stride; j < jl; j ++ ) {
								data[ time ][ j ] = outputSource.array[ stride + j ];
							}
						}
					}
					break;
				case 'translate':
					console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform );
					break;
				case 'rotate':
					console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform );
					break;
				case 'scale':
					console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform );
					break;
			}
			const keyframes = prepareAnimationData( data, defaultMatrix );
			const animation = {
				name: object3D.uuid,
				keyframes: keyframes
			};
			return animation;
		}
		function prepareAnimationData( data, defaultMatrix ) {
			const keyframes = [];
			// transfer data into a sortable array
			for ( const time in data ) {
				keyframes.push( { time: parseFloat( time ), value: data[ time ] } );
			}
			// ensure keyframes are sorted by time
			keyframes.sort( ascending );
			// now we clean up all animation data, so we can use them for keyframe tracks
			for ( let i = 0; i < 16; i ++ ) {
				transformAnimationData( keyframes, i, defaultMatrix.elements[ i ] );
			}
			return keyframes;
			// array sort function
			function ascending( a, b ) {
				return a.time - b.time;
			}
		}
		const position = new Vector3();
		const scale = new Vector3();
		const quaternion = new Quaternion();
		function createKeyframeTracks( animation, tracks ) {
			const keyframes = animation.keyframes;
			const name = animation.name;
			const times = [];
			const positionData = [];
			const quaternionData = [];
			const scaleData = [];
			for ( let i = 0, l = keyframes.length; i < l; i ++ ) {
				const keyframe = keyframes[ i ];
				const time = keyframe.time;
				const value = keyframe.value;
				matrix.fromArray( value ).transpose();
				matrix.decompose( position, quaternion, scale );
				times.push( time );
				positionData.push( position.x, position.y, position.z );
				quaternionData.push( quaternion.x, quaternion.y, quaternion.z, quaternion.w );
				scaleData.push( scale.x, scale.y, scale.z );
			}
			if ( positionData.length > 0 ) tracks.push( new VectorKeyframeTrack( name + '.position', times, positionData ) );
			if ( quaternionData.length > 0 ) tracks.push( new QuaternionKeyframeTrack( name + '.quaternion', times, quaternionData ) );
			if ( scaleData.length > 0 ) tracks.push( new VectorKeyframeTrack( name + '.scale', times, scaleData ) );
			return tracks;
		}
		function transformAnimationData( keyframes, property, defaultValue ) {
			let keyframe;
			let empty = true;
			let i, l;
			// check, if values of a property are missing in our keyframes
			for ( i = 0, l = keyframes.length; i < l; i ++ ) {
				keyframe = keyframes[ i ];
				if ( keyframe.value[ property ] === undefined ) {
					keyframe.value[ property ] = null; // mark as missing
				} else {
					empty = false;
				}
			}
			if ( empty === true ) {
				// no values at all, so we set a default value
				for ( i = 0, l = keyframes.length; i < l; i ++ ) {
					keyframe = keyframes[ i ];
					keyframe.value[ property ] = defaultValue;
				}
			} else {
				// filling gaps
				createMissingKeyframes( keyframes, property );
			}
		}
		function createMissingKeyframes( keyframes, property ) {
			let prev, next;
			for ( let i = 0, l = keyframes.length; i < l; i ++ ) {
				const keyframe = keyframes[ i ];
				if ( keyframe.value[ property ] === null ) {
					prev = getPrev( keyframes, i, property );
					next = getNext( keyframes, i, property );
					if ( prev === null ) {
						keyframe.value[ property ] = next.value[ property ];
						continue;
					}
					if ( next === null ) {
						keyframe.value[ property ] = prev.value[ property ];
						continue;
					}
					interpolate( keyframe, prev, next, property );
				}
			}
		}
		function getPrev( keyframes, i, property ) {
			while ( i >= 0 ) {
				const keyframe = keyframes[ i ];
				if ( keyframe.value[ property ] !== null ) return keyframe;
				i --;
			}
			return null;
		}
		function getNext( keyframes, i, property ) {
			while ( i < keyframes.length ) {
				const keyframe = keyframes[ i ];
				if ( keyframe.value[ property ] !== null ) return keyframe;
				i ++;
			}
			return null;
		}
		function interpolate( key, prev, next, property ) {
			if ( ( next.time - prev.time ) === 0 ) {
				key.value[ property ] = prev.value[ property ];
				return;
			}
			key.value[ property ] = ( ( key.time - prev.time ) * ( next.value[ property ] - prev.value[ property ] ) / ( next.time - prev.time ) ) + prev.value[ property ];
		}
		// animation clips
		function parseAnimationClip( xml ) {
			const data = {
				name: xml.getAttribute( 'id' ) || 'default',
				start: parseFloat( xml.getAttribute( 'start' ) || 0 ),
				end: parseFloat( xml.getAttribute( 'end' ) || 0 ),
				animations: []
			};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'instance_animation':
						data.animations.push( parseId( child.getAttribute( 'url' ) ) );
						break;
				}
			}
			library.clips[ xml.getAttribute( 'id' ) ] = data;
		}
		function buildAnimationClip( data ) {
			const tracks = [];
			const name = data.name;
			const duration = ( data.end - data.start ) || - 1;
			const animations = data.animations;
			for ( let i = 0, il = animations.length; i < il; i ++ ) {
				const animationTracks = getAnimation( animations[ i ] );
				for ( let j = 0, jl = animationTracks.length; j < jl; j ++ ) {
					tracks.push( animationTracks[ j ] );
				}
			}
			return new AnimationClip( name, duration, tracks );
		}
		function getAnimationClip( id ) {
			return getBuild( library.clips[ id ], buildAnimationClip );
		}
		// controller
		function parseController( xml ) {
			const data = {};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'skin':
						// there is exactly one skin per controller
						data.id = parseId( child.getAttribute( 'source' ) );
						data.skin = parseSkin( child );
						break;
					case 'morph':
						data.id = parseId( child.getAttribute( 'source' ) );
						console.warn( 'THREE.ColladaLoader: Morph target animation not supported yet.' );
						break;
				}
			}
			library.controllers[ xml.getAttribute( 'id' ) ] = data;
		}
		function parseSkin( xml ) {
			const data = {
				sources: {}
			};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'bind_shape_matrix':
						data.bindShapeMatrix = parseFloats( child.textContent );
						break;
					case 'source':
						const id = child.getAttribute( 'id' );
						data.sources[ id ] = parseSource( child );
						break;
					case 'joints':
						data.joints = parseJoints( child );
						break;
					case 'vertex_weights':
						data.vertexWeights = parseVertexWeights( child );
						break;
				}
			}
			return data;
		}
		function parseJoints( xml ) {
			const data = {
				inputs: {}
			};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'input':
						const semantic = child.getAttribute( 'semantic' );
						const id = parseId( child.getAttribute( 'source' ) );
						data.inputs[ semantic ] = id;
						break;
				}
			}
			return data;
		}
		function parseVertexWeights( xml ) {
			const data = {
				inputs: {}
			};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'input':
						const semantic = child.getAttribute( 'semantic' );
						const id = parseId( child.getAttribute( 'source' ) );
						const offset = parseInt( child.getAttribute( 'offset' ) );
						data.inputs[ semantic ] = { id: id, offset: offset };
						break;
					case 'vcount':
						data.vcount = parseInts( child.textContent );
						break;
					case 'v':
						data.v = parseInts( child.textContent );
						break;
				}
			}
			return data;
		}
		function buildController( data ) {
			const build = {
				id: data.id
			};
			const geometry = library.geometries[ build.id ];
			if ( data.skin !== undefined ) {
				build.skin = buildSkin( data.skin );
				// we enhance the 'sources' property of the corresponding geometry with our skin data
				geometry.sources.skinIndices = build.skin.indices;
				geometry.sources.skinWeights = build.skin.weights;
			}
			return build;
		}
		function buildSkin( data ) {
			const BONE_LIMIT = 4;
			const build = {
				joints: [], // this must be an array to preserve the joint order
				indices: {
					array: [],
					stride: BONE_LIMIT
				},
				weights: {
					array: [],
					stride: BONE_LIMIT
				}
			};
			const sources = data.sources;
			const vertexWeights = data.vertexWeights;
			const vcount = vertexWeights.vcount;
			const v = vertexWeights.v;
			const jointOffset = vertexWeights.inputs.JOINT.offset;
			const weightOffset = vertexWeights.inputs.WEIGHT.offset;
			const jointSource = data.sources[ data.joints.inputs.JOINT ];
			const inverseSource = data.sources[ data.joints.inputs.INV_BIND_MATRIX ];
			const weights = sources[ vertexWeights.inputs.WEIGHT.id ].array;
			let stride = 0;
			let i, j, l;
			// process skin data for each vertex
			for ( i = 0, l = vcount.length; i < l; i ++ ) {
				const jointCount = vcount[ i ]; // this is the amount of joints that affect a single vertex
				const vertexSkinData = [];
				for ( j = 0; j < jointCount; j ++ ) {
					const skinIndex = v[ stride + jointOffset ];
					const weightId = v[ stride + weightOffset ];
					const skinWeight = weights[ weightId ];
					vertexSkinData.push( { index: skinIndex, weight: skinWeight } );
					stride += 2;
				}
				// we sort the joints in descending order based on the weights.
				// this ensures, we only proceed the most important joints of the vertex
				vertexSkinData.sort( descending );
				// now we provide for each vertex a set of four index and weight values.
				// the order of the skin data matches the order of vertices
				for ( j = 0; j < BONE_LIMIT; j ++ ) {
					const d = vertexSkinData[ j ];
					if ( d !== undefined ) {
						build.indices.array.push( d.index );
						build.weights.array.push( d.weight );
					} else {
						build.indices.array.push( 0 );
						build.weights.array.push( 0 );
					}
				}
			}
			// setup bind matrix
			if ( data.bindShapeMatrix ) {
				build.bindMatrix = new Matrix4().fromArray( data.bindShapeMatrix ).transpose();
			} else {
				build.bindMatrix = new Matrix4().identity();
			}
			// process bones and inverse bind matrix data
			for ( i = 0, l = jointSource.array.length; i < l; i ++ ) {
				const name = jointSource.array[ i ];
				const boneInverse = new Matrix4().fromArray( inverseSource.array, i * inverseSource.stride ).transpose();
				build.joints.push( { name: name, boneInverse: boneInverse } );
			}
			return build;
			// array sort function
			function descending( a, b ) {
				return b.weight - a.weight;
			}
		}
		function getController( id ) {
			return getBuild( library.controllers[ id ], buildController );
		}
		// image
		function parseImage( xml ) {
			const data = {
				init_from: getElementsByTagName( xml, 'init_from' )[ 0 ].textContent
			};
			library.images[ xml.getAttribute( 'id' ) ] = data;
		}
		function buildImage( data ) {
			if ( data.build !== undefined ) return data.build;
			return data.init_from;
		}
		function getImage( id ) {
			const data = library.images[ id ];
			if ( data !== undefined ) {
				return getBuild( data, buildImage );
			}
			console.warn( 'THREE.ColladaLoader: Couldn\'t find image with ID:', id );
			return null;
		}
		// effect
		function parseEffect( xml ) {
			const data = {};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'profile_COMMON':
						data.profile = parseEffectProfileCOMMON( child );
						break;
				}
			}
			library.effects[ xml.getAttribute( 'id' ) ] = data;
		}
		function parseEffectProfileCOMMON( xml ) {
			const data = {
				surfaces: {},
				samplers: {}
			};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'newparam':
						parseEffectNewparam( child, data );
						break;
					case 'technique':
						data.technique = parseEffectTechnique( child );
						break;
					case 'extra':
						data.extra = parseEffectExtra( child );
						break;
				}
			}
			return data;
		}
		function parseEffectNewparam( xml, data ) {
			const sid = xml.getAttribute( 'sid' );
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'surface':
						data.surfaces[ sid ] = parseEffectSurface( child );
						break;
					case 'sampler2D':
						data.samplers[ sid ] = parseEffectSampler( child );
						break;
				}
			}
		}
		function parseEffectSurface( xml ) {
			const data = {};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'init_from':
						data.init_from = child.textContent;
						break;
				}
			}
			return data;
		}
		function parseEffectSampler( xml ) {
			const data = {};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'source':
						data.source = child.textContent;
						break;
				}
			}
			return data;
		}
		function parseEffectTechnique( xml ) {
			const data = {};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'constant':
					case 'lambert':
					case 'blinn':
					case 'phong':
						data.type = child.nodeName;
						data.parameters = parseEffectParameters( child );
						break;
					case 'extra':
						data.extra = parseEffectExtra( child );
						break;
				}
			}
			return data;
		}
		function parseEffectParameters( xml ) {
			const data = {};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'emission':
					case 'diffuse':
					case 'specular':
					case 'bump':
					case 'ambient':
					case 'shininess':
					case 'transparency':
						data[ child.nodeName ] = parseEffectParameter( child );
						break;
					case 'transparent':
						data[ child.nodeName ] = {
							opaque: child.hasAttribute( 'opaque' ) ? child.getAttribute( 'opaque' ) : 'A_ONE',
							data: parseEffectParameter( child )
						};
						break;
				}
			}
			return data;
		}
		function parseEffectParameter( xml ) {
			const data = {};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'color':
						data[ child.nodeName ] = parseFloats( child.textContent );
						break;
					case 'float':
						data[ child.nodeName ] = parseFloat( child.textContent );
						break;
					case 'texture':
						data[ child.nodeName ] = { id: child.getAttribute( 'texture' ), extra: parseEffectParameterTexture( child ) };
						break;
				}
			}
			return data;
		}
		function parseEffectParameterTexture( xml ) {
			const data = {
				technique: {}
			};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'extra':
						parseEffectParameterTextureExtra( child, data );
						break;
				}
			}
			return data;
		}
		function parseEffectParameterTextureExtra( xml, data ) {
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'technique':
						parseEffectParameterTextureExtraTechnique( child, data );
						break;
				}
			}
		}
		function parseEffectParameterTextureExtraTechnique( xml, data ) {
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'repeatU':
					case 'repeatV':
					case 'offsetU':
					case 'offsetV':
						data.technique[ child.nodeName ] = parseFloat( child.textContent );
						break;
					case 'wrapU':
					case 'wrapV':
						// some files have values for wrapU/wrapV which become NaN via parseInt
						if ( child.textContent.toUpperCase() === 'TRUE' ) {
							data.technique[ child.nodeName ] = 1;
						} else if ( child.textContent.toUpperCase() === 'FALSE' ) {
							data.technique[ child.nodeName ] = 0;
						} else {
							data.technique[ child.nodeName ] = parseInt( child.textContent );
						}
						break;
					case 'bump':
						data[ child.nodeName ] = parseEffectExtraTechniqueBump( child );
						break;
				}
			}
		}
		function parseEffectExtra( xml ) {
			const data = {};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'technique':
						data.technique = parseEffectExtraTechnique( child );
						break;
				}
			}
			return data;
		}
		function parseEffectExtraTechnique( xml ) {
			const data = {};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'double_sided':
						data[ child.nodeName ] = parseInt( child.textContent );
						break;
					case 'bump':
						data[ child.nodeName ] = parseEffectExtraTechniqueBump( child );
						break;
				}
			}
			return data;
		}
		function parseEffectExtraTechniqueBump( xml ) {
			const data = {};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'texture':
						data[ child.nodeName ] = { id: child.getAttribute( 'texture' ), texcoord: child.getAttribute( 'texcoord' ), extra: parseEffectParameterTexture( child ) };
						break;
				}
			}
			return data;
		}
		function buildEffect( data ) {
			return data;
		}
		function getEffect( id ) {
			return getBuild( library.effects[ id ], buildEffect );
		}
		// material
		function parseMaterial( xml ) {
			const data = {
				name: xml.getAttribute( 'name' )
			};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'instance_effect':
						data.url = parseId( child.getAttribute( 'url' ) );
						break;
				}
			}
			library.materials[ xml.getAttribute( 'id' ) ] = data;
		}
		function getTextureLoader( image ) {
			let loader;
			let extension = image.slice( ( image.lastIndexOf( '.' ) - 1 >>> 0 ) + 2 ); // http://www.jstips.co/en/javascript/get-file-extension/
			extension = extension.toLowerCase();
			switch ( extension ) {
				case 'tga':
					loader = tgaLoader;
					break;
				default:
					loader = textureLoader;
			}
			return loader;
		}
		function buildMaterial( data ) {
			const effect = getEffect( data.url );
			const technique = effect.profile.technique;
			let material;
			switch ( technique.type ) {
				case 'phong':
				case 'blinn':
					material = new MeshPhongMaterial();
					break;
				case 'lambert':
					material = new MeshLambertMaterial();
					break;
				default:
					material = new MeshBasicMaterial();
					break;
			}
			material.name = data.name || '';
			function getTexture( textureObject, colorSpace = null ) {
				const sampler = effect.profile.samplers[ textureObject.id ];
				let image = null;
				// get image
				if ( sampler !== undefined ) {
					const surface = effect.profile.surfaces[ sampler.source ];
					image = getImage( surface.init_from );
				} else {
					console.warn( 'THREE.ColladaLoader: Undefined sampler. Access image directly (see #12530).' );
					image = getImage( textureObject.id );
				}
				// create texture if image is available
				if ( image !== null ) {
					const loader = getTextureLoader( image );
					if ( loader !== undefined ) {
						const texture = loader.load( image );
						const extra = textureObject.extra;
						if ( extra !== undefined && extra.technique !== undefined && isEmpty( extra.technique ) === false ) {
							const technique = extra.technique;
							texture.wrapS = technique.wrapU ? RepeatWrapping : ClampToEdgeWrapping;
							texture.wrapT = technique.wrapV ? RepeatWrapping : ClampToEdgeWrapping;
							texture.offset.set( technique.offsetU || 0, technique.offsetV || 0 );
							texture.repeat.set( technique.repeatU || 1, technique.repeatV || 1 );
						} else {
							texture.wrapS = RepeatWrapping;
							texture.wrapT = RepeatWrapping;
						}
						if ( colorSpace !== null ) {
							texture.colorSpace = colorSpace;
						}
						return texture;
					} else {
						console.warn( 'THREE.ColladaLoader: Loader for texture %s not found.', image );
						return null;
					}
				} else {
					console.warn( 'THREE.ColladaLoader: Couldn\'t create texture with ID:', textureObject.id );
					return null;
				}
			}
			const parameters = technique.parameters;
			for ( const key in parameters ) {
				const parameter = parameters[ key ];
				switch ( key ) {
					case 'diffuse':
						if ( parameter.color ) material.color.fromArray( parameter.color );
						if ( parameter.texture ) material.map = getTexture( parameter.texture, SRGBColorSpace );
						break;
					case 'specular':
						if ( parameter.color && material.specular ) material.specular.fromArray( parameter.color );
						if ( parameter.texture ) material.specularMap = getTexture( parameter.texture );
						break;
					case 'bump':
						if ( parameter.texture ) material.normalMap = getTexture( parameter.texture );
						break;
					case 'ambient':
						if ( parameter.texture ) material.lightMap = getTexture( parameter.texture, SRGBColorSpace );
						break;
					case 'shininess':
						if ( parameter.float && material.shininess ) material.shininess = parameter.float;
						break;
					case 'emission':
						if ( parameter.color && material.emissive ) material.emissive.fromArray( parameter.color );
						if ( parameter.texture ) material.emissiveMap = getTexture( parameter.texture, SRGBColorSpace );
						break;
				}
			}
			ColorManagement.toWorkingColorSpace( material.color, SRGBColorSpace );
			if ( material.specular ) ColorManagement.toWorkingColorSpace( material.specular, SRGBColorSpace );
			if ( material.emissive ) ColorManagement.toWorkingColorSpace( material.emissive, SRGBColorSpace );
			//
			let transparent = parameters[ 'transparent' ];
			let transparency = parameters[ 'transparency' ];
			// <transparency> does not exist but <transparent>
			if ( transparency === undefined && transparent ) {
				transparency = {
					float: 1
				};
			}
			// <transparent> does not exist but <transparency>
			if ( transparent === undefined && transparency ) {
				transparent = {
					opaque: 'A_ONE',
					data: {
						color: [ 1, 1, 1, 1 ]
					} };
			}
			if ( transparent && transparency ) {
				// handle case if a texture exists but no color
				if ( transparent.data.texture ) {
					// we do not set an alpha map (see #13792)
					material.transparent = true;
				} else {
					const color = transparent.data.color;
					switch ( transparent.opaque ) {
						case 'A_ONE':
							material.opacity = color[ 3 ] * transparency.float;
							break;
						case 'RGB_ZERO':
							material.opacity = 1 - ( color[ 0 ] * transparency.float );
							break;
						case 'A_ZERO':
							material.opacity = 1 - ( color[ 3 ] * transparency.float );
							break;
						case 'RGB_ONE':
							material.opacity = color[ 0 ] * transparency.float;
							break;
						default:
							console.warn( 'THREE.ColladaLoader: Invalid opaque type "%s" of transparent tag.', transparent.opaque );
					}
					if ( material.opacity < 1 ) material.transparent = true;
				}
			}
			//
			if ( technique.extra !== undefined && technique.extra.technique !== undefined ) {
				const techniques = technique.extra.technique;
				for ( const k in techniques ) {
					const v = techniques[ k ];
					switch ( k ) {
						case 'double_sided':
							material.side = ( v === 1 ? DoubleSide : FrontSide );
							break;
						case 'bump':
							material.normalMap = getTexture( v.texture );
							material.normalScale = new Vector2( 1, 1 );
							break;
					}
				}
			}
			return material;
		}
		function getMaterial( id ) {
			return getBuild( library.materials[ id ], buildMaterial );
		}
		// camera
		function parseCamera( xml ) {
			const data = {
				name: xml.getAttribute( 'name' )
			};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'optics':
						data.optics = parseCameraOptics( child );
						break;
				}
			}
			library.cameras[ xml.getAttribute( 'id' ) ] = data;
		}
		function parseCameraOptics( xml ) {
			for ( let i = 0; i < xml.childNodes.length; i ++ ) {
				const child = xml.childNodes[ i ];
				switch ( child.nodeName ) {
					case 'technique_common':
						return parseCameraTechnique( child );
				}
			}
			return {};
		}
		function parseCameraTechnique( xml ) {
			const data = {};
			for ( let i = 0; i < xml.childNodes.length; i ++ ) {
				const child = xml.childNodes[ i ];
				switch ( child.nodeName ) {
					case 'perspective':
					case 'orthographic':
						data.technique = child.nodeName;
						data.parameters = parseCameraParameters( child );
						break;
				}
			}
			return data;
		}
		function parseCameraParameters( xml ) {
			const data = {};
			for ( let i = 0; i < xml.childNodes.length; i ++ ) {
				const child = xml.childNodes[ i ];
				switch ( child.nodeName ) {
					case 'xfov':
					case 'yfov':
					case 'xmag':
					case 'ymag':
					case 'znear':
					case 'zfar':
					case 'aspect_ratio':
						data[ child.nodeName ] = parseFloat( child.textContent );
						break;
				}
			}
			return data;
		}
		function buildCamera( data ) {
			let camera;
			switch ( data.optics.technique ) {
				case 'perspective':
					camera = new PerspectiveCamera(
						data.optics.parameters.yfov,
						data.optics.parameters.aspect_ratio,
						data.optics.parameters.znear,
						data.optics.parameters.zfar
					);
					break;
				case 'orthographic':
					let ymag = data.optics.parameters.ymag;
					let xmag = data.optics.parameters.xmag;
					const aspectRatio = data.optics.parameters.aspect_ratio;
					xmag = ( xmag === undefined ) ? ( ymag * aspectRatio ) : xmag;
					ymag = ( ymag === undefined ) ? ( xmag / aspectRatio ) : ymag;
					xmag *= 0.5;
					ymag *= 0.5;
					camera = new OrthographicCamera(
						- xmag, xmag, ymag, - ymag, // left, right, top, bottom
						data.optics.parameters.znear,
						data.optics.parameters.zfar
					);
					break;
				default:
					camera = new PerspectiveCamera();
					break;
			}
			camera.name = data.name || '';
			return camera;
		}
		function getCamera( id ) {
			const data = library.cameras[ id ];
			if ( data !== undefined ) {
				return getBuild( data, buildCamera );
			}
			console.warn( 'THREE.ColladaLoader: Couldn\'t find camera with ID:', id );
			return null;
		}
		// light
		function parseLight( xml ) {
			let data = {};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'technique_common':
						data = parseLightTechnique( child );
						break;
				}
			}
			library.lights[ xml.getAttribute( 'id' ) ] = data;
		}
		function parseLightTechnique( xml ) {
			const data = {};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'directional':
					case 'point':
					case 'spot':
					case 'ambient':
						data.technique = child.nodeName;
						data.parameters = parseLightParameters( child );
				}
			}
			return data;
		}
		function parseLightParameters( xml ) {
			const data = {};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'color':
						const array = parseFloats( child.textContent );
						data.color = new Color().fromArray( array );
						ColorManagement.toWorkingColorSpace( data.color, SRGBColorSpace );
						break;
					case 'falloff_angle':
						data.falloffAngle = parseFloat( child.textContent );
						break;
					case 'quadratic_attenuation':
						const f = parseFloat( child.textContent );
						data.distance = f ? Math.sqrt( 1 / f ) : 0;
						break;
				}
			}
			return data;
		}
		function buildLight( data ) {
			let light;
			switch ( data.technique ) {
				case 'directional':
					light = new DirectionalLight();
					break;
				case 'point':
					light = new PointLight();
					break;
				case 'spot':
					light = new SpotLight();
					break;
				case 'ambient':
					light = new AmbientLight();
					break;
			}
			if ( data.parameters.color ) light.color.copy( data.parameters.color );
			if ( data.parameters.distance ) light.distance = data.parameters.distance;
			return light;
		}
		function getLight( id ) {
			const data = library.lights[ id ];
			if ( data !== undefined ) {
				return getBuild( data, buildLight );
			}
			console.warn( 'THREE.ColladaLoader: Couldn\'t find light with ID:', id );
			return null;
		}
		// geometry
		function parseGeometry( xml ) {
			const data = {
				name: xml.getAttribute( 'name' ),
				sources: {},
				vertices: {},
				primitives: []
			};
			const mesh = getElementsByTagName( xml, 'mesh' )[ 0 ];
			// the following tags inside geometry are not supported yet (see https://github.com/mrdoob/three.js/pull/12606): convex_mesh, spline, brep
			if ( mesh === undefined ) return;
			for ( let i = 0; i < mesh.childNodes.length; i ++ ) {
				const child = mesh.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				const id = child.getAttribute( 'id' );
				switch ( child.nodeName ) {
					case 'source':
						data.sources[ id ] = parseSource( child );
						break;
					case 'vertices':
						// data.sources[ id ] = data.sources[ parseId( getElementsByTagName( child, 'input' )[ 0 ].getAttribute( 'source' ) ) ];
						data.vertices = parseGeometryVertices( child );
						break;
					case 'polygons':
						console.warn( 'THREE.ColladaLoader: Unsupported primitive type: ', child.nodeName );
						break;
					case 'lines':
					case 'linestrips':
					case 'polylist':
					case 'triangles':
						data.primitives.push( parseGeometryPrimitive( child ) );
						break;
					default:
						console.log( child );
				}
			}
			library.geometries[ xml.getAttribute( 'id' ) ] = data;
		}
		function parseSource( xml ) {
			const data = {
				array: [],
				stride: 3
			};
			for ( let i = 0; i < xml.childNodes.length; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'float_array':
						data.array = parseFloats( child.textContent );
						break;
					case 'Name_array':
						data.array = parseStrings( child.textContent );
						break;
					case 'technique_common':
						const accessor = getElementsByTagName( child, 'accessor' )[ 0 ];
						if ( accessor !== undefined ) {
							data.stride = parseInt( accessor.getAttribute( 'stride' ) );
						}
						break;
				}
			}
			return data;
		}
		function parseGeometryVertices( xml ) {
			const data = {};
			for ( let i = 0; i < xml.childNodes.length; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				data[ child.getAttribute( 'semantic' ) ] = parseId( child.getAttribute( 'source' ) );
			}
			return data;
		}
		function parseGeometryPrimitive( xml ) {
			const primitive = {
				type: xml.nodeName,
				material: xml.getAttribute( 'material' ),
				count: parseInt( xml.getAttribute( 'count' ) ),
				inputs: {},
				stride: 0,
				hasUV: false
			};
			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
				const child = xml.childNodes[ i ];
				if ( child.nodeType !== 1 ) continue;
				switch ( child.nodeName ) {
					case 'input':
						const id = parseId( child.getAttribute( 'source' ) );
						const semantic = child.getAttribute( 'semantic' );
						const offset = parseInt( child.getAttribute( 'offset' ) );
						const set = parseInt( child.getAttribute( 'set' ) );
						const inputname = ( set > 0 ? semantic + set : semantic );
						primitive.inputs[ inputname ] = { id: id, offset: offset };
						primitive.stride = Math.max( primitive.stride, offset + 1 );
						if ( semantic === 'TEXCOORD' ) primitive.hasUV = true;
						break;
					case 'vcount':
						primitive.vcount = parseInts( child.textContent );
						break;
					case 'p':
						primitive.p = parseInts( child.textContent );
						break;
				}
			}
			return primitive;
		}
		function groupPrimitives( primitives ) {
			const build = {};
			for ( let i = 0; i < primitives.length; i ++ ) {
				const primitive = primitives[ i ];
				if ( build[ primitive.type ] === undefined ) build[ primitive.type ] = [];
				build[ primitive.type ].push( primitive );
			}
			return build;
		}
		function checkUVCoordinates( primitives ) {
			let count = 0;
			for ( let i = 0, l = primitives.length; i < l; i ++ ) {
				const primitive = primitives[ i ];
				if ( primitive.hasUV === true ) {
					count ++;
				}
			}
			if ( count > 0 && count < primitives.length ) {
				primitives.uvsNeedsFix = true;
			}
		}
		function buildGeometry( data ) {
			const build = {};
			const sources = data.sources;
			const vertices = data.vertices;
			const primitives = data.primitives;
			if ( primitives.length === 0 ) return {};
			// our goal is to create one buffer geometry for a single type of primitives
			// first, we group all primitives by their type
			const groupedPrimitives = groupPrimitives( primitives );
			for ( const type in groupedPrimitives ) {
				const primitiveType = groupedPrimitives[ type ];
				// second, ensure consistent uv coordinates for each type of primitives (polylist,triangles or lines)
				checkUVCoordinates( primitiveType );
				// third, create a buffer geometry for each type of primitives
				build[ type ] = buildGeometryType( primitiveType, sources, vertices );
			}
			return build;
		}
		function buildGeometryType( primitives, sources, vertices ) {
			const build = {};
			const position = { array: [], stride: 0 };
			const normal = { array: [], stride: 0 };
			const uv = { array: [], stride: 0 };
			const uv1 = { array: [], stride: 0 };
			const color = { array: [], stride: 0 };
			const skinIndex = { array: [], stride: 4 };
			const skinWeight = { array: [], stride: 4 };
			const geometry = new BufferGeometry();
			const materialKeys = [];
			let start = 0;
			for ( let p = 0; p < primitives.length; p ++ ) {
				const primitive = primitives[ p ];
				const inputs = primitive.inputs;
				// groups
				let count = 0;
				switch ( primitive.type ) {
					case 'lines':
					case 'linestrips':
						count = primitive.count * 2;
						break;
					case 'triangles':
						count = primitive.count * 3;
						break;
					case 'polylist':
						for ( let g = 0; g < primitive.count; g ++ ) {
							const vc = primitive.vcount[ g ];
							switch ( vc ) {
								case 3:
									count += 3; // single triangle
									break;
								case 4:
									count += 6; // quad, subdivided into two triangles
									break;
								default:
									count += ( vc - 2 ) * 3; // polylist with more than four vertices
									break;
							}
						}
						break;
					default:
						console.warn( 'THREE.ColladaLoader: Unknown primitive type:', primitive.type );
				}
				geometry.addGroup( start, count, p );
				start += count;
				// material
				if ( primitive.material ) {
					materialKeys.push( primitive.material );
				}
				// geometry data
				for ( const name in inputs ) {
					const input = inputs[ name ];
					switch ( name )	{
						case 'VERTEX':
							for ( const key in vertices ) {
								const id = vertices[ key ];
								switch ( key ) {
									case 'POSITION':
										const prevLength = position.array.length;
										buildGeometryData( primitive, sources[ id ], input.offset, position.array );
										position.stride = sources[ id ].stride;
										if ( sources.skinWeights && sources.skinIndices ) {
											buildGeometryData( primitive, sources.skinIndices, input.offset, skinIndex.array );
											buildGeometryData( primitive, sources.skinWeights, input.offset, skinWeight.array );
										}
										// see #3803
										if ( primitive.hasUV === false && primitives.uvsNeedsFix === true ) {
											const count = ( position.array.length - prevLength ) / position.stride;
											for ( let i = 0; i < count; i ++ ) {
												// fill missing uv coordinates
												uv.array.push( 0, 0 );
											}
										}
										break;
									case 'NORMAL':
										buildGeometryData( primitive, sources[ id ], input.offset, normal.array );
										normal.stride = sources[ id ].stride;
										break;
									case 'COLOR':
										buildGeometryData( primitive, sources[ id ], input.offset, color.array );
										color.stride = sources[ id ].stride;
										break;
									case 'TEXCOORD':
										buildGeometryData( primitive, sources[ id ], input.offset, uv.array );
										uv.stride = sources[ id ].stride;
										break;
									case 'TEXCOORD1':
										buildGeometryData( primitive, sources[ id ], input.offset, uv1.array );
										uv.stride = sources[ id ].stride;
										break;
									default:
										console.warn( 'THREE.ColladaLoader: Semantic "%s" not handled in geometry build process.', key );
								}
							}
							break;
						case 'NORMAL':
							buildGeometryData( primitive, sources[ input.id ], input.offset, normal.array );
							n