UNPKG

three

Version:

JavaScript 3D library

2,522 lines (1,519 loc) 85.5 kB
import { AmbientLight, AnimationClip, Bone, BufferGeometry, ClampToEdgeWrapping, Color, ColorManagement, DirectionalLight, DoubleSide, FileLoader, Float32BufferAttribute, FrontSide, Group, Line, LineBasicMaterial, LineSegments, Loader, LoaderUtils, MathUtils, Matrix4, Mesh, MeshBasicMaterial, MeshLambertMaterial, MeshPhongMaterial, OrthographicCamera, PerspectiveCamera, PointLight, Quaternion, QuaternionKeyframeTrack, RepeatWrapping, Scene, Skeleton, SkinnedMesh, SpotLight, TextureLoader, Vector2, Vector3, VectorKeyframeTrack, SRGBColorSpace } from 'three'; import { TGALoader } from '../loaders/TGALoader.js'; /** * A loader for the Collada format. * * The Collada format is very complex so this loader only supports a subset of what * is defined in the [official specification]{@link https://www.khronos.org/files/collada_spec_1_5.pdf}. * * Assets with a Z-UP coordinate system are transformed it into Y-UP by a simple rotation. * The vertex data are not converted. * * ```js * const loader = new ColladaLoader(); * * const result = await loader.loadAsync( './models/collada/elf/elf.dae' ); * scene.add( result.scene ); * ``` * * @augments Loader * @three_import import { ColladaLoader } from 'three/addons/loaders/ColladaLoader.js'; */ class ColladaLoader extends Loader { /** * Starts loading from the given URL and passes the loaded Collada asset * to the `onLoad()` callback. * * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI. * @param {function({scene:Group,animations:Array<AnimationClip>,kinematics:Object})} onLoad - Executed when the loading process has been finished. * @param {onProgressCallback} onProgress - Executed while the loading is in progress. * @param {onErrorCallback} onError - Executed when errors occur. */ load( url, onLoad, onProgress, onError ) { const scope = this; const path = ( scope.path === '' ) ? LoaderUtils.extractUrlBase( url ) : scope.path; const loader = new FileLoader( scope.manager ); loader.setPath( scope.path ); loader.setRequestHeader( scope.requestHeader ); loader.setWithCredentials( scope.withCredentials ); loader.load( url, function ( text ) { try { onLoad( scope.parse( text, path ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); } /** * Parses the given Collada data and returns a result oject holding the parsed scene, * an array of animation clips and kinematics. * * @param {string} text - The raw Collada data as a string. * @param {string} path - The asset path. * @return {{scene:Group,animations:Array<AnimationClip>,kinematics:Object}} An object representing the parsed asset. */ parse( text, path ) { function getElementsByTagName( xml, name ) { // Non recursive xml.getElementsByTagName() ... const array = []; const childNodes = xml.childNodes; for ( let i = 0, l = childNodes.length; i < l; i ++ ) { const child = childNodes[ i ]; if ( child.nodeName === name ) { array.push( child ); } } return array; } function parseStrings( text ) { if ( text.length === 0 ) return []; const parts = text.trim().split( /\s+/ ); const array = new Array( parts.length ); for ( let i = 0, l = parts.length; i < l; i ++ ) { array[ i ] = parts[ i ]; } return array; } function parseFloats( text ) { if ( text.length === 0 ) return []; const parts = text.trim().split( /\s+/ ); const array = new Array( parts.length ); for ( let i = 0, l = parts.length; i < l; i ++ ) { array[ i ] = parseFloat( parts[ i ] ); } return array; } function parseInts( text ) { if ( text.length === 0 ) return []; const parts = text.trim().split( /\s+/ ); const array = new Array( parts.length ); for ( let i = 0, l = parts.length; i < l; i ++ ) { array[ i ] = parseInt( parts[ i ] ); } return array; } function parseId( text ) { return text.substring( 1 ); } function generateId() { return 'three_default_' + ( count ++ ); } function isEmpty( object ) { return Object.keys( object ).length === 0; } // asset function parseAsset( xml ) { return { unit: parseAssetUnit( getElementsByTagName( xml, 'unit' )[ 0 ] ), upAxis: parseAssetUpAxis( getElementsByTagName( xml, 'up_axis' )[ 0 ] ) }; } function parseAssetUnit( xml ) { if ( ( xml !== undefined ) && ( xml.hasAttribute( 'meter' ) === true ) ) { return parseFloat( xml.getAttribute( 'meter' ) ); } else { return 1; // default 1 meter } } function parseAssetUpAxis( xml ) { return xml !== undefined ? xml.textContent : 'Y_UP'; } // library function parseLibrary( xml, libraryName, nodeName, parser ) { const library = getElementsByTagName( xml, libraryName )[ 0 ]; if ( library !== undefined ) { const elements = getElementsByTagName( library, nodeName ); for ( let i = 0; i < elements.length; i ++ ) { parser( elements[ i ] ); } } } function buildLibrary( data, builder ) { for ( const name in data ) { const object = data[ name ]; object.build = builder( data[ name ] ); } } // get function getBuild( data, builder ) { if ( data.build !== undefined ) return data.build; data.build = builder( data ); return data.build; } // animation function parseAnimation( xml ) { const data = { sources: {}, samplers: {}, channels: {} }; let hasChildren = false; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; let id; switch ( child.nodeName ) { case 'source': id = child.getAttribute( 'id' ); data.sources[ id ] = parseSource( child ); break; case 'sampler': id = child.getAttribute( 'id' ); data.samplers[ id ] = parseAnimationSampler( child ); break; case 'channel': id = child.getAttribute( 'target' ); data.channels[ id ] = parseAnimationChannel( child ); break; case 'animation': // hierarchy of related animations parseAnimation( child ); hasChildren = true; break; default: console.log( child ); } } if ( hasChildren === false ) { // since 'id' attributes can be optional, it's necessary to generate a UUID for unique assignment library.animations[ xml.getAttribute( 'id' ) || MathUtils.generateUUID() ] = data; } } function parseAnimationSampler( xml ) { const data = { inputs: {}, }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'input': const id = parseId( child.getAttribute( 'source' ) ); const semantic = child.getAttribute( 'semantic' ); data.inputs[ semantic ] = id; break; } } return data; } function parseAnimationChannel( xml ) { const data = {}; const target = xml.getAttribute( 'target' ); // parsing SID Addressing Syntax let parts = target.split( '/' ); const id = parts.shift(); let sid = parts.shift(); // check selection syntax const arraySyntax = ( sid.indexOf( '(' ) !== - 1 ); const memberSyntax = ( sid.indexOf( '.' ) !== - 1 ); if ( memberSyntax ) { // member selection access parts = sid.split( '.' ); sid = parts.shift(); data.member = parts.shift(); } else if ( arraySyntax ) { // array-access syntax. can be used to express fields in one-dimensional vectors or two-dimensional matrices. const indices = sid.split( '(' ); sid = indices.shift(); for ( let i = 0; i < indices.length; i ++ ) { indices[ i ] = parseInt( indices[ i ].replace( /\)/, '' ) ); } data.indices = indices; } data.id = id; data.sid = sid; data.arraySyntax = arraySyntax; data.memberSyntax = memberSyntax; data.sampler = parseId( xml.getAttribute( 'source' ) ); return data; } function buildAnimation( data ) { const tracks = []; const channels = data.channels; const samplers = data.samplers; const sources = data.sources; for ( const target in channels ) { if ( channels.hasOwnProperty( target ) ) { const channel = channels[ target ]; const sampler = samplers[ channel.sampler ]; const inputId = sampler.inputs.INPUT; const outputId = sampler.inputs.OUTPUT; const inputSource = sources[ inputId ]; const outputSource = sources[ outputId ]; const animation = buildAnimationChannel( channel, inputSource, outputSource ); createKeyframeTracks( animation, tracks ); } } return tracks; } function getAnimation( id ) { return getBuild( library.animations[ id ], buildAnimation ); } function buildAnimationChannel( channel, inputSource, outputSource ) { const node = library.nodes[ channel.id ]; const object3D = getNode( node.id ); const transform = node.transforms[ channel.sid ]; const defaultMatrix = node.matrix.clone().transpose(); let time, stride; let i, il, j, jl; const data = {}; // the collada spec allows the animation of data in various ways. // depending on the transform type (matrix, translate, rotate, scale), we execute different logic switch ( transform ) { case 'matrix': for ( i = 0, il = inputSource.array.length; i < il; i ++ ) { time = inputSource.array[ i ]; stride = i * outputSource.stride; if ( data[ time ] === undefined ) data[ time ] = {}; if ( channel.arraySyntax === true ) { const value = outputSource.array[ stride ]; const index = channel.indices[ 0 ] + 4 * channel.indices[ 1 ]; data[ time ][ index ] = value; } else { for ( j = 0, jl = outputSource.stride; j < jl; j ++ ) { data[ time ][ j ] = outputSource.array[ stride + j ]; } } } break; case 'translate': console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform ); break; case 'rotate': console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform ); break; case 'scale': console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform ); break; } const keyframes = prepareAnimationData( data, defaultMatrix ); const animation = { name: object3D.uuid, keyframes: keyframes }; return animation; } function prepareAnimationData( data, defaultMatrix ) { const keyframes = []; // transfer data into a sortable array for ( const time in data ) { keyframes.push( { time: parseFloat( time ), value: data[ time ] } ); } // ensure keyframes are sorted by time keyframes.sort( ascending ); // now we clean up all animation data, so we can use them for keyframe tracks for ( let i = 0; i < 16; i ++ ) { transformAnimationData( keyframes, i, defaultMatrix.elements[ i ] ); } return keyframes; // array sort function function ascending( a, b ) { return a.time - b.time; } } const position = new Vector3(); const scale = new Vector3(); const quaternion = new Quaternion(); function createKeyframeTracks( animation, tracks ) { const keyframes = animation.keyframes; const name = animation.name; const times = []; const positionData = []; const quaternionData = []; const scaleData = []; for ( let i = 0, l = keyframes.length; i < l; i ++ ) { const keyframe = keyframes[ i ]; const time = keyframe.time; const value = keyframe.value; matrix.fromArray( value ).transpose(); matrix.decompose( position, quaternion, scale ); times.push( time ); positionData.push( position.x, position.y, position.z ); quaternionData.push( quaternion.x, quaternion.y, quaternion.z, quaternion.w ); scaleData.push( scale.x, scale.y, scale.z ); } if ( positionData.length > 0 ) tracks.push( new VectorKeyframeTrack( name + '.position', times, positionData ) ); if ( quaternionData.length > 0 ) tracks.push( new QuaternionKeyframeTrack( name + '.quaternion', times, quaternionData ) ); if ( scaleData.length > 0 ) tracks.push( new VectorKeyframeTrack( name + '.scale', times, scaleData ) ); return tracks; } function transformAnimationData( keyframes, property, defaultValue ) { let keyframe; let empty = true; let i, l; // check, if values of a property are missing in our keyframes for ( i = 0, l = keyframes.length; i < l; i ++ ) { keyframe = keyframes[ i ]; if ( keyframe.value[ property ] === undefined ) { keyframe.value[ property ] = null; // mark as missing } else { empty = false; } } if ( empty === true ) { // no values at all, so we set a default value for ( i = 0, l = keyframes.length; i < l; i ++ ) { keyframe = keyframes[ i ]; keyframe.value[ property ] = defaultValue; } } else { // filling gaps createMissingKeyframes( keyframes, property ); } } function createMissingKeyframes( keyframes, property ) { let prev, next; for ( let i = 0, l = keyframes.length; i < l; i ++ ) { const keyframe = keyframes[ i ]; if ( keyframe.value[ property ] === null ) { prev = getPrev( keyframes, i, property ); next = getNext( keyframes, i, property ); if ( prev === null ) { keyframe.value[ property ] = next.value[ property ]; continue; } if ( next === null ) { keyframe.value[ property ] = prev.value[ property ]; continue; } interpolate( keyframe, prev, next, property ); } } } function getPrev( keyframes, i, property ) { while ( i >= 0 ) { const keyframe = keyframes[ i ]; if ( keyframe.value[ property ] !== null ) return keyframe; i --; } return null; } function getNext( keyframes, i, property ) { while ( i < keyframes.length ) { const keyframe = keyframes[ i ]; if ( keyframe.value[ property ] !== null ) return keyframe; i ++; } return null; } function interpolate( key, prev, next, property ) { if ( ( next.time - prev.time ) === 0 ) { key.value[ property ] = prev.value[ property ]; return; } key.value[ property ] = ( ( key.time - prev.time ) * ( next.value[ property ] - prev.value[ property ] ) / ( next.time - prev.time ) ) + prev.value[ property ]; } // animation clips function parseAnimationClip( xml ) { const data = { name: xml.getAttribute( 'id' ) || 'default', start: parseFloat( xml.getAttribute( 'start' ) || 0 ), end: parseFloat( xml.getAttribute( 'end' ) || 0 ), animations: [] }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'instance_animation': data.animations.push( parseId( child.getAttribute( 'url' ) ) ); break; } } library.clips[ xml.getAttribute( 'id' ) ] = data; } function buildAnimationClip( data ) { const tracks = []; const name = data.name; const duration = ( data.end - data.start ) || - 1; const animations = data.animations; for ( let i = 0, il = animations.length; i < il; i ++ ) { const animationTracks = getAnimation( animations[ i ] ); for ( let j = 0, jl = animationTracks.length; j < jl; j ++ ) { tracks.push( animationTracks[ j ] ); } } return new AnimationClip( name, duration, tracks ); } function getAnimationClip( id ) { return getBuild( library.clips[ id ], buildAnimationClip ); } // controller function parseController( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'skin': // there is exactly one skin per controller data.id = parseId( child.getAttribute( 'source' ) ); data.skin = parseSkin( child ); break; case 'morph': data.id = parseId( child.getAttribute( 'source' ) ); console.warn( 'THREE.ColladaLoader: Morph target animation not supported yet.' ); break; } } library.controllers[ xml.getAttribute( 'id' ) ] = data; } function parseSkin( xml ) { const data = { sources: {} }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'bind_shape_matrix': data.bindShapeMatrix = parseFloats( child.textContent ); break; case 'source': const id = child.getAttribute( 'id' ); data.sources[ id ] = parseSource( child ); break; case 'joints': data.joints = parseJoints( child ); break; case 'vertex_weights': data.vertexWeights = parseVertexWeights( child ); break; } } return data; } function parseJoints( xml ) { const data = { inputs: {} }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'input': const semantic = child.getAttribute( 'semantic' ); const id = parseId( child.getAttribute( 'source' ) ); data.inputs[ semantic ] = id; break; } } return data; } function parseVertexWeights( xml ) { const data = { inputs: {} }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'input': const semantic = child.getAttribute( 'semantic' ); const id = parseId( child.getAttribute( 'source' ) ); const offset = parseInt( child.getAttribute( 'offset' ) ); data.inputs[ semantic ] = { id: id, offset: offset }; break; case 'vcount': data.vcount = parseInts( child.textContent ); break; case 'v': data.v = parseInts( child.textContent ); break; } } return data; } function buildController( data ) { const build = { id: data.id }; const geometry = library.geometries[ build.id ]; if ( data.skin !== undefined ) { build.skin = buildSkin( data.skin ); // we enhance the 'sources' property of the corresponding geometry with our skin data geometry.sources.skinIndices = build.skin.indices; geometry.sources.skinWeights = build.skin.weights; } return build; } function buildSkin( data ) { const BONE_LIMIT = 4; const build = { joints: [], // this must be an array to preserve the joint order indices: { array: [], stride: BONE_LIMIT }, weights: { array: [], stride: BONE_LIMIT } }; const sources = data.sources; const vertexWeights = data.vertexWeights; const vcount = vertexWeights.vcount; const v = vertexWeights.v; const jointOffset = vertexWeights.inputs.JOINT.offset; const weightOffset = vertexWeights.inputs.WEIGHT.offset; const jointSource = data.sources[ data.joints.inputs.JOINT ]; const inverseSource = data.sources[ data.joints.inputs.INV_BIND_MATRIX ]; const weights = sources[ vertexWeights.inputs.WEIGHT.id ].array; let stride = 0; let i, j, l; // process skin data for each vertex for ( i = 0, l = vcount.length; i < l; i ++ ) { const jointCount = vcount[ i ]; // this is the amount of joints that affect a single vertex const vertexSkinData = []; for ( j = 0; j < jointCount; j ++ ) { const skinIndex = v[ stride + jointOffset ]; const weightId = v[ stride + weightOffset ]; const skinWeight = weights[ weightId ]; vertexSkinData.push( { index: skinIndex, weight: skinWeight } ); stride += 2; } // we sort the joints in descending order based on the weights. // this ensures, we only proceed the most important joints of the vertex vertexSkinData.sort( descending ); // now we provide for each vertex a set of four index and weight values. // the order of the skin data matches the order of vertices for ( j = 0; j < BONE_LIMIT; j ++ ) { const d = vertexSkinData[ j ]; if ( d !== undefined ) { build.indices.array.push( d.index ); build.weights.array.push( d.weight ); } else { build.indices.array.push( 0 ); build.weights.array.push( 0 ); } } } // setup bind matrix if ( data.bindShapeMatrix ) { build.bindMatrix = new Matrix4().fromArray( data.bindShapeMatrix ).transpose(); } else { build.bindMatrix = new Matrix4().identity(); } // process bones and inverse bind matrix data for ( i = 0, l = jointSource.array.length; i < l; i ++ ) { const name = jointSource.array[ i ]; const boneInverse = new Matrix4().fromArray( inverseSource.array, i * inverseSource.stride ).transpose(); build.joints.push( { name: name, boneInverse: boneInverse } ); } return build; // array sort function function descending( a, b ) { return b.weight - a.weight; } } function getController( id ) { return getBuild( library.controllers[ id ], buildController ); } // image function parseImage( xml ) { const data = { init_from: getElementsByTagName( xml, 'init_from' )[ 0 ].textContent }; library.images[ xml.getAttribute( 'id' ) ] = data; } function buildImage( data ) { if ( data.build !== undefined ) return data.build; return data.init_from; } function getImage( id ) { const data = library.images[ id ]; if ( data !== undefined ) { return getBuild( data, buildImage ); } console.warn( 'THREE.ColladaLoader: Couldn\'t find image with ID:', id ); return null; } // effect function parseEffect( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'profile_COMMON': data.profile = parseEffectProfileCOMMON( child ); break; } } library.effects[ xml.getAttribute( 'id' ) ] = data; } function parseEffectProfileCOMMON( xml ) { const data = { surfaces: {}, samplers: {} }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'newparam': parseEffectNewparam( child, data ); break; case 'technique': data.technique = parseEffectTechnique( child ); break; case 'extra': data.extra = parseEffectExtra( child ); break; } } return data; } function parseEffectNewparam( xml, data ) { const sid = xml.getAttribute( 'sid' ); for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'surface': data.surfaces[ sid ] = parseEffectSurface( child ); break; case 'sampler2D': data.samplers[ sid ] = parseEffectSampler( child ); break; } } } function parseEffectSurface( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'init_from': data.init_from = child.textContent; break; } } return data; } function parseEffectSampler( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'source': data.source = child.textContent; break; } } return data; } function parseEffectTechnique( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'constant': case 'lambert': case 'blinn': case 'phong': data.type = child.nodeName; data.parameters = parseEffectParameters( child ); break; case 'extra': data.extra = parseEffectExtra( child ); break; } } return data; } function parseEffectParameters( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'emission': case 'diffuse': case 'specular': case 'bump': case 'ambient': case 'shininess': case 'transparency': data[ child.nodeName ] = parseEffectParameter( child ); break; case 'transparent': data[ child.nodeName ] = { opaque: child.hasAttribute( 'opaque' ) ? child.getAttribute( 'opaque' ) : 'A_ONE', data: parseEffectParameter( child ) }; break; } } return data; } function parseEffectParameter( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'color': data[ child.nodeName ] = parseFloats( child.textContent ); break; case 'float': data[ child.nodeName ] = parseFloat( child.textContent ); break; case 'texture': data[ child.nodeName ] = { id: child.getAttribute( 'texture' ), extra: parseEffectParameterTexture( child ) }; break; } } return data; } function parseEffectParameterTexture( xml ) { const data = { technique: {} }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'extra': parseEffectParameterTextureExtra( child, data ); break; } } return data; } function parseEffectParameterTextureExtra( xml, data ) { for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'technique': parseEffectParameterTextureExtraTechnique( child, data ); break; } } } function parseEffectParameterTextureExtraTechnique( xml, data ) { for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'repeatU': case 'repeatV': case 'offsetU': case 'offsetV': data.technique[ child.nodeName ] = parseFloat( child.textContent ); break; case 'wrapU': case 'wrapV': // some files have values for wrapU/wrapV which become NaN via parseInt if ( child.textContent.toUpperCase() === 'TRUE' ) { data.technique[ child.nodeName ] = 1; } else if ( child.textContent.toUpperCase() === 'FALSE' ) { data.technique[ child.nodeName ] = 0; } else { data.technique[ child.nodeName ] = parseInt( child.textContent ); } break; case 'bump': data[ child.nodeName ] = parseEffectExtraTechniqueBump( child ); break; } } } function parseEffectExtra( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'technique': data.technique = parseEffectExtraTechnique( child ); break; } } return data; } function parseEffectExtraTechnique( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'double_sided': data[ child.nodeName ] = parseInt( child.textContent ); break; case 'bump': data[ child.nodeName ] = parseEffectExtraTechniqueBump( child ); break; } } return data; } function parseEffectExtraTechniqueBump( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'texture': data[ child.nodeName ] = { id: child.getAttribute( 'texture' ), texcoord: child.getAttribute( 'texcoord' ), extra: parseEffectParameterTexture( child ) }; break; } } return data; } function buildEffect( data ) { return data; } function getEffect( id ) { return getBuild( library.effects[ id ], buildEffect ); } // material function parseMaterial( xml ) { const data = { name: xml.getAttribute( 'name' ) }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'instance_effect': data.url = parseId( child.getAttribute( 'url' ) ); break; } } library.materials[ xml.getAttribute( 'id' ) ] = data; } function getTextureLoader( image ) { let loader; let extension = image.slice( ( image.lastIndexOf( '.' ) - 1 >>> 0 ) + 2 ); // http://www.jstips.co/en/javascript/get-file-extension/ extension = extension.toLowerCase(); switch ( extension ) { case 'tga': loader = tgaLoader; break; default: loader = textureLoader; } return loader; } function buildMaterial( data ) { const effect = getEffect( data.url ); const technique = effect.profile.technique; let material; switch ( technique.type ) { case 'phong': case 'blinn': material = new MeshPhongMaterial(); break; case 'lambert': material = new MeshLambertMaterial(); break; default: material = new MeshBasicMaterial(); break; } material.name = data.name || ''; function getTexture( textureObject, colorSpace = null ) { const sampler = effect.profile.samplers[ textureObject.id ]; let image = null; // get image if ( sampler !== undefined ) { const surface = effect.profile.surfaces[ sampler.source ]; image = getImage( surface.init_from ); } else { console.warn( 'THREE.ColladaLoader: Undefined sampler. Access image directly (see #12530).' ); image = getImage( textureObject.id ); } // create texture if image is available if ( image !== null ) { const loader = getTextureLoader( image ); if ( loader !== undefined ) { const texture = loader.load( image ); const extra = textureObject.extra; if ( extra !== undefined && extra.technique !== undefined && isEmpty( extra.technique ) === false ) { const technique = extra.technique; texture.wrapS = technique.wrapU ? RepeatWrapping : ClampToEdgeWrapping; texture.wrapT = technique.wrapV ? RepeatWrapping : ClampToEdgeWrapping; texture.offset.set( technique.offsetU || 0, technique.offsetV || 0 ); texture.repeat.set( technique.repeatU || 1, technique.repeatV || 1 ); } else { texture.wrapS = RepeatWrapping; texture.wrapT = RepeatWrapping; } if ( colorSpace !== null ) { texture.colorSpace = colorSpace; } return texture; } else { console.warn( 'THREE.ColladaLoader: Loader for texture %s not found.', image ); return null; } } else { console.warn( 'THREE.ColladaLoader: Couldn\'t create texture with ID:', textureObject.id ); return null; } } const parameters = technique.parameters; for ( const key in parameters ) { const parameter = parameters[ key ]; switch ( key ) { case 'diffuse': if ( parameter.color ) material.color.fromArray( parameter.color ); if ( parameter.texture ) material.map = getTexture( parameter.texture, SRGBColorSpace ); break; case 'specular': if ( parameter.color && material.specular ) material.specular.fromArray( parameter.color ); if ( parameter.texture ) material.specularMap = getTexture( parameter.texture ); break; case 'bump': if ( parameter.texture ) material.normalMap = getTexture( parameter.texture ); break; case 'ambient': if ( parameter.texture ) material.lightMap = getTexture( parameter.texture, SRGBColorSpace ); break; case 'shininess': if ( parameter.float && material.shininess ) material.shininess = parameter.float; break; case 'emission': if ( parameter.color && material.emissive ) material.emissive.fromArray( parameter.color ); if ( parameter.texture ) material.emissiveMap = getTexture( parameter.texture, SRGBColorSpace ); break; } } ColorManagement.toWorkingColorSpace( material.color, SRGBColorSpace ); if ( material.specular ) ColorManagement.toWorkingColorSpace( material.specular, SRGBColorSpace ); if ( material.emissive ) ColorManagement.toWorkingColorSpace( material.emissive, SRGBColorSpace ); // let transparent = parameters[ 'transparent' ]; let transparency = parameters[ 'transparency' ]; // <transparency> does not exist but <transparent> if ( transparency === undefined && transparent ) { transparency = { float: 1 }; } // <transparent> does not exist but <transparency> if ( transparent === undefined && transparency ) { transparent = { opaque: 'A_ONE', data: { color: [ 1, 1, 1, 1 ] } }; } if ( transparent && transparency ) { // handle case if a texture exists but no color if ( transparent.data.texture ) { // we do not set an alpha map (see #13792) material.transparent = true; } else { const color = transparent.data.color; switch ( transparent.opaque ) { case 'A_ONE': material.opacity = color[ 3 ] * transparency.float; break; case 'RGB_ZERO': material.opacity = 1 - ( color[ 0 ] * transparency.float ); break; case 'A_ZERO': material.opacity = 1 - ( color[ 3 ] * transparency.float ); break; case 'RGB_ONE': material.opacity = color[ 0 ] * transparency.float; break; default: console.warn( 'THREE.ColladaLoader: Invalid opaque type "%s" of transparent tag.', transparent.opaque ); } if ( material.opacity < 1 ) material.transparent = true; } } // if ( technique.extra !== undefined && technique.extra.technique !== undefined ) { const techniques = technique.extra.technique; for ( const k in techniques ) { const v = techniques[ k ]; switch ( k ) { case 'double_sided': material.side = ( v === 1 ? DoubleSide : FrontSide ); break; case 'bump': material.normalMap = getTexture( v.texture ); material.normalScale = new Vector2( 1, 1 ); break; } } } return material; } function getMaterial( id ) { return getBuild( library.materials[ id ], buildMaterial ); } // camera function parseCamera( xml ) { const data = { name: xml.getAttribute( 'name' ) }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'optics': data.optics = parseCameraOptics( child ); break; } } library.cameras[ xml.getAttribute( 'id' ) ] = data; } function parseCameraOptics( xml ) { for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; switch ( child.nodeName ) { case 'technique_common': return parseCameraTechnique( child ); } } return {}; } function parseCameraTechnique( xml ) { const data = {}; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; switch ( child.nodeName ) { case 'perspective': case 'orthographic': data.technique = child.nodeName; data.parameters = parseCameraParameters( child ); break; } } return data; } function parseCameraParameters( xml ) { const data = {}; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; switch ( child.nodeName ) { case 'xfov': case 'yfov': case 'xmag': case 'ymag': case 'znear': case 'zfar': case 'aspect_ratio': data[ child.nodeName ] = parseFloat( child.textContent ); break; } } return data; } function buildCamera( data ) { let camera; switch ( data.optics.technique ) { case 'perspective': camera = new PerspectiveCamera( data.optics.parameters.yfov, data.optics.parameters.aspect_ratio, data.optics.parameters.znear, data.optics.parameters.zfar ); break; case 'orthographic': let ymag = data.optics.parameters.ymag; let xmag = data.optics.parameters.xmag; const aspectRatio = data.optics.parameters.aspect_ratio; xmag = ( xmag === undefined ) ? ( ymag * aspectRatio ) : xmag; ymag = ( ymag === undefined ) ? ( xmag / aspectRatio ) : ymag; xmag *= 0.5; ymag *= 0.5; camera = new OrthographicCamera( - xmag, xmag, ymag, - ymag, // left, right, top, bottom data.optics.parameters.znear, data.optics.parameters.zfar ); break; default: camera = new PerspectiveCamera(); break; } camera.name = data.name || ''; return camera; } function getCamera( id ) { const data = library.cameras[ id ]; if ( data !== undefined ) { return getBuild( data, buildCamera ); } console.warn( 'THREE.ColladaLoader: Couldn\'t find camera with ID:', id ); return null; } // light function parseLight( xml ) { let data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'technique_common': data = parseLightTechnique( child ); break; } } library.lights[ xml.getAttribute( 'id' ) ] = data; } function parseLightTechnique( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'directional': case 'point': case 'spot': case 'ambient': data.technique = child.nodeName; data.parameters = parseLightParameters( child ); } } return data; } function parseLightParameters( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'color': const array = parseFloats( child.textContent ); data.color = new Color().fromArray( array ); ColorManagement.toWorkingColorSpace( data.color, SRGBColorSpace ); break; case 'falloff_angle': data.falloffAngle = parseFloat( child.textContent ); break; case 'quadratic_attenuation': const f = parseFloat( child.textContent ); data.distance = f ? Math.sqrt( 1 / f ) : 0; break; } } return data; } function buildLight( data ) { let light; switch ( data.technique ) { case 'directional': light = new DirectionalLight(); break; case 'point': light = new PointLight(); break; case 'spot': light = new SpotLight(); break; case 'ambient': light = new AmbientLight(); break; } if ( data.parameters.color ) light.color.copy( data.parameters.color ); if ( data.parameters.distance ) light.distance = data.parameters.distance; return light; } function getLight( id ) { const data = library.lights[ id ]; if ( data !== undefined ) { return getBuild( data, buildLight ); } console.warn( 'THREE.ColladaLoader: Couldn\'t find light with ID:', id ); return null; } // geometry function parseGeometry( xml ) { const data = { name: xml.getAttribute( 'name' ), sources: {}, vertices: {}, primitives: [] }; const mesh = getElementsByTagName( xml, 'mesh' )[ 0 ]; // the following tags inside geometry are not supported yet (see https://github.com/mrdoob/three.js/pull/12606): convex_mesh, spline, brep if ( mesh === undefined ) return; for ( let i = 0; i < mesh.childNodes.length; i ++ ) { const child = mesh.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; const id = child.getAttribute( 'id' ); switch ( child.nodeName ) { case 'source': data.sources[ id ] = parseSource( child ); break; case 'vertices': // data.sources[ id ] = data.sources[ parseId( getElementsByTagName( child, 'input' )[ 0 ].getAttribute( 'source' ) ) ]; data.vertices = parseGeometryVertices( child ); break; case 'polygons': console.warn( 'THREE.ColladaLoader: Unsupported primitive type: ', child.nodeName ); break; case 'lines': case 'linestrips': case 'polylist': case 'triangles': data.primitives.push( parseGeometryPrimitive( child ) ); break; default: console.log( child ); } } library.geometries[ xml.getAttribute( 'id' ) ] = data; } function parseSource( xml ) { const data = { array: [], stride: 3 }; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'float_array': data.array = parseFloats( child.textContent ); break; case 'Name_array': data.array = parseStrings( child.textContent ); break; case 'technique_common': const accessor = getElementsByTagName( child, 'accessor' )[ 0 ]; if ( accessor !== undefined ) { data.stride = parseInt( accessor.getAttribute( 'stride' ) ); } break; } } return data; } function parseGeometryVertices( xml ) { const data = {}; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; data[ child.getAttribute( 'semantic' ) ] = parseId( child.getAttribute( 'source' ) ); } return data; } function parseGeometryPrimitive( xml ) { const primitive = { type: xml.nodeName, material: xml.getAttribute( 'material' ), count: parseInt( xml.getAttribute( 'count' ) ), inputs: {}, stride: 0, hasUV: false }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'input': const id = parseId( child.getAttribute( 'source' ) ); const semantic = child.getAttribute( 'semantic' ); const offset = parseInt( child.getAttribute( 'offset' ) ); const set = parseInt( child.getAttribute( 'set' ) ); const inputname = ( set > 0 ? semantic + set : semantic ); primitive.inputs[ inputname ] = { id: id, offset: offset }; primitive.stride = Math.max( primitive.stride, offset + 1 ); if ( semantic === 'TEXCOORD' ) primitive.hasUV = true; break; case 'vcount': primitive.vcount = parseInts( child.textContent ); break; case 'p': primitive.p = parseInts( child.textContent ); break; } } return primitive; } function groupPrimitives( primitives ) { const build = {}; for ( let i = 0; i < primitives.length; i ++ ) { const primitive = primitives[ i ]; if ( build[ primitive.type ] === undefined ) build[ primitive.type ] = []; build[ primitive.type ].push( primitive ); } return build; } function checkUVCoordinates( primitives ) { let count = 0; for ( let i = 0, l = primitives.length; i < l; i ++ ) { const primitive = primitives[ i ]; if ( primitive.hasUV === true ) { count ++; } } if ( count > 0 && count < primitives.length ) { primitives.uvsNeedsFix = true; } } function buildGeometry( data ) { const build = {}; const sources = data.sources; const vertices = data.vertices; const primitives = data.primitives; if ( primitives.length === 0 ) return {}; // our goal is to create one buffer geometry for a single type of primitives // first, we group all primitives by their type const groupedPrimitives = groupPrimitives( primitives ); for ( const type in groupedPrimitives ) { const primitiveType = groupedPrimitives[ type ]; // second, ensure consistent uv coordinates for each type of primitives (polylist,triangles or lines) checkUVCoordinates( primitiveType ); // third, create a buffer geometry for each type of primitives build[ type ] = buildGeometryType( primitiveType, sources, vertices ); } return build; } function buildGeometryType( primitives, sources, vertices ) { const build = {}; const position = { array: [], stride: 0 }; const normal = { array: [], stride: 0 }; const uv = { array: [], stride: 0 }; const uv1 = { array: [], stride: 0 }; const color = { array: [], stride: 0 }; const skinIndex = { array: [], stride: 4 }; const skinWeight = { array: [], stride: 4 }; const geometry = new BufferGeometry(); const materialKeys = []; let start = 0; for ( let p = 0; p < primitives.length; p ++ ) { const primitive = primitives[ p ]; const inputs = primitive.inputs; // groups let count = 0; switch ( primitive.type ) { case 'lines': case 'linestrips': count = primitive.count * 2; break; case 'triangles': count = primitive.count * 3; break; case 'polylist': for ( let g = 0; g < primitive.count; g ++ ) { const vc = primitive.vcount[ g ]; switch ( vc ) { case 3: count += 3; // single triangle break; case 4: count += 6; // quad, subdivided into two triangles break; default: count += ( vc - 2 ) * 3; // polylist with more than four vertices break; } } break; default: console.warn( 'THREE.ColladaLoader: Unknown primitive type:', primitive.type ); } geometry.addGroup( start, count, p ); start += count; // material if ( primitive.material ) { materialKeys.push( primitive.material ); } // geometry data for ( const name in inputs ) { const input = inputs[ name ]; switch ( name ) { case 'VERTEX': for ( const key in vertices ) { const id = vertices[ key ]; switch ( key ) { case 'POSITION': const prevLength = position.array.length; buildGeometryData( primitive, sources[ id ], input.offset, position.array ); position.stride = sources[ id ].stride; if ( sources.skinWeights && sources.skinIndices ) { buildGeometryData( primitive, sources.skinIndices, input.offset, skinIndex.array ); buildGeometryData( primitive, sources.skinWeights, input.offset, skinWeight.array ); } // see #3803 if ( primitive.hasUV === false && primitives.uvsNeedsFix === true ) { const count = ( position.array.length - prevLength ) / position.stride; for ( let i = 0; i < count; i ++ ) { // fill missing uv coordinates uv.array.push( 0, 0 ); } } break; case 'NORMAL': buildGeometryData( primitive, sources[ id ], input.offset, normal.array ); normal.stride = sources[ id ].stride; break; case 'COLOR': buildGeometryData( primitive, sources[ id ], input.offset, color.array ); color.stride = sources[ id ].stride; break; case 'TEXCOORD': buildGeometryData( primitive, sources[ id ], input.offset, uv.array ); uv.stride = sources[ id ].stride; break; case 'TEXCOORD1': buildGeometryData( primitive, sources[ id ], input.offset, uv1.array ); uv.stride = sources[ id ].stride; break; default: console.warn( 'THREE.ColladaLoader: Semantic "%s" not handled in geometry build process.', key ); } } break; case 'NORMAL': buildGeometryData( primitive, sources[ input.id ], input.offset, normal.array ); n