UNPKG

three

Version:

JavaScript 3D library

1,262 lines (954 loc) 28.2 kB
import { clamp } from './MathUtils.js'; import { Quaternion } from './Quaternion.js'; /** * Class representing a 3D vector. A 3D vector is an ordered triplet of numbers * (labeled x, y and z), which can be used to represent a number of things, such as: * * - A point in 3D space. * - A direction and length in 3D space. In three.js the length will * always be the Euclidean distance(straight-line distance) from `(0, 0, 0)` to `(x, y, z)` * and the direction is also measured from `(0, 0, 0)` towards `(x, y, z)`. * - Any arbitrary ordered triplet of numbers. * * There are other things a 3D vector can be used to represent, such as * momentum vectors and so on, however these are the most * common uses in three.js. * * Iterating through a vector instance will yield its components `(x, y, z)` in * the corresponding order. * ```js * const a = new THREE.Vector3( 0, 1, 0 ); * * //no arguments; will be initialised to (0, 0, 0) * const b = new THREE.Vector3( ); * * const d = a.distanceTo( b ); * ``` */ class Vector3 { /** * Constructs a new 3D vector. * * @param {number} [x=0] - The x value of this vector. * @param {number} [y=0] - The y value of this vector. * @param {number} [z=0] - The z value of this vector. */ constructor( x = 0, y = 0, z = 0 ) { /** * This flag can be used for type testing. * * @type {boolean} * @readonly * @default true */ Vector3.prototype.isVector3 = true; /** * The x value of this vector. * * @type {number} */ this.x = x; /** * The y value of this vector. * * @type {number} */ this.y = y; /** * The z value of this vector. * * @type {number} */ this.z = z; } /** * Sets the vector components. * * @param {number} x - The value of the x component. * @param {number} y - The value of the y component. * @param {number} z - The value of the z component. * @return {Vector3} A reference to this vector. */ set( x, y, z ) { if ( z === undefined ) z = this.z; // sprite.scale.set(x,y) this.x = x; this.y = y; this.z = z; return this; } /** * Sets the vector components to the same value. * * @param {number} scalar - The value to set for all vector components. * @return {Vector3} A reference to this vector. */ setScalar( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; return this; } /** * Sets the vector's x component to the given value * * @param {number} x - The value to set. * @return {Vector3} A reference to this vector. */ setX( x ) { this.x = x; return this; } /** * Sets the vector's y component to the given value * * @param {number} y - The value to set. * @return {Vector3} A reference to this vector. */ setY( y ) { this.y = y; return this; } /** * Sets the vector's z component to the given value * * @param {number} z - The value to set. * @return {Vector3} A reference to this vector. */ setZ( z ) { this.z = z; return this; } /** * Allows to set a vector component with an index. * * @param {number} index - The component index. `0` equals to x, `1` equals to y, `2` equals to z. * @param {number} value - The value to set. * @return {Vector3} A reference to this vector. */ setComponent( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; } /** * Returns the value of the vector component which matches the given index. * * @param {number} index - The component index. `0` equals to x, `1` equals to y, `2` equals to z. * @return {number} A vector component value. */ getComponent( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error( 'index is out of range: ' + index ); } } /** * Returns a new vector with copied values from this instance. * * @return {Vector3} A clone of this instance. */ clone() { return new this.constructor( this.x, this.y, this.z ); } /** * Copies the values of the given vector to this instance. * * @param {Vector3} v - The vector to copy. * @return {Vector3} A reference to this vector. */ copy( v ) { this.x = v.x; this.y = v.y; this.z = v.z; return this; } /** * Adds the given vector to this instance. * * @param {Vector3} v - The vector to add. * @return {Vector3} A reference to this vector. */ add( v ) { this.x += v.x; this.y += v.y; this.z += v.z; return this; } /** * Adds the given scalar value to all components of this instance. * * @param {number} s - The scalar to add. * @return {Vector3} A reference to this vector. */ addScalar( s ) { this.x += s; this.y += s; this.z += s; return this; } /** * Adds the given vectors and stores the result in this instance. * * @param {Vector3} a - The first vector. * @param {Vector3} b - The second vector. * @return {Vector3} A reference to this vector. */ addVectors( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; } /** * Adds the given vector scaled by the given factor to this instance. * * @param {Vector3|Vector4} v - The vector. * @param {number} s - The factor that scales `v`. * @return {Vector3} A reference to this vector. */ addScaledVector( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; return this; } /** * Subtracts the given vector from this instance. * * @param {Vector3} v - The vector to subtract. * @return {Vector3} A reference to this vector. */ sub( v ) { this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; } /** * Subtracts the given scalar value from all components of this instance. * * @param {number} s - The scalar to subtract. * @return {Vector3} A reference to this vector. */ subScalar( s ) { this.x -= s; this.y -= s; this.z -= s; return this; } /** * Subtracts the given vectors and stores the result in this instance. * * @param {Vector3} a - The first vector. * @param {Vector3} b - The second vector. * @return {Vector3} A reference to this vector. */ subVectors( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; } /** * Multiplies the given vector with this instance. * * @param {Vector3} v - The vector to multiply. * @return {Vector3} A reference to this vector. */ multiply( v ) { this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; } /** * Multiplies the given scalar value with all components of this instance. * * @param {number} scalar - The scalar to multiply. * @return {Vector3} A reference to this vector. */ multiplyScalar( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; return this; } /** * Multiplies the given vectors and stores the result in this instance. * * @param {Vector3} a - The first vector. * @param {Vector3} b - The second vector. * @return {Vector3} A reference to this vector. */ multiplyVectors( a, b ) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; } /** * Applies the given Euler rotation to this vector. * * @param {Euler} euler - The Euler angles. * @return {Vector3} A reference to this vector. */ applyEuler( euler ) { return this.applyQuaternion( _quaternion.setFromEuler( euler ) ); } /** * Applies a rotation specified by an axis and an angle to this vector. * * @param {Vector3} axis - A normalized vector representing the rotation axis. * @param {number} angle - The angle in radians. * @return {Vector3} A reference to this vector. */ applyAxisAngle( axis, angle ) { return this.applyQuaternion( _quaternion.setFromAxisAngle( axis, angle ) ); } /** * Multiplies this vector with the given 3x3 matrix. * * @param {Matrix3} m - The 3x3 matrix. * @return {Vector3} A reference to this vector. */ applyMatrix3( m ) { const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; return this; } /** * Multiplies this vector by the given normal matrix and normalizes * the result. * * @param {Matrix3} m - The normal matrix. * @return {Vector3} A reference to this vector. */ applyNormalMatrix( m ) { return this.applyMatrix3( m ).normalize(); } /** * Multiplies this vector (with an implicit 1 in the 4th dimension) by m, and * divides by perspective. * * @param {Matrix4} m - The matrix to apply. * @return {Vector3} A reference to this vector. */ applyMatrix4( m ) { const x = this.x, y = this.y, z = this.z; const e = m.elements; const w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w; this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w; this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w; return this; } /** * Applies the given Quaternion to this vector. * * @param {Quaternion} q - The Quaternion. * @return {Vector3} A reference to this vector. */ applyQuaternion( q ) { // quaternion q is assumed to have unit length const vx = this.x, vy = this.y, vz = this.z; const qx = q.x, qy = q.y, qz = q.z, qw = q.w; // t = 2 * cross( q.xyz, v ); const tx = 2 * ( qy * vz - qz * vy ); const ty = 2 * ( qz * vx - qx * vz ); const tz = 2 * ( qx * vy - qy * vx ); // v + q.w * t + cross( q.xyz, t ); this.x = vx + qw * tx + qy * tz - qz * ty; this.y = vy + qw * ty + qz * tx - qx * tz; this.z = vz + qw * tz + qx * ty - qy * tx; return this; } /** * Projects this vector from world space into the camera's normalized * device coordinate (NDC) space. * * @param {Camera} camera - The camera. * @return {Vector3} A reference to this vector. */ project( camera ) { return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix ); } /** * Unprojects this vector from the camera's normalized device coordinate (NDC) * space into world space. * * @param {Camera} camera - The camera. * @return {Vector3} A reference to this vector. */ unproject( camera ) { return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld ); } /** * Transforms the direction of this vector by a matrix (the upper left 3 x 3 * subset of the given 4x4 matrix and then normalizes the result. * * @param {Matrix4} m - The matrix. * @return {Vector3} A reference to this vector. */ transformDirection( m ) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; return this.normalize(); } /** * Divides this instance by the given vector. * * @param {Vector3} v - The vector to divide. * @return {Vector3} A reference to this vector. */ divide( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; } /** * Divides this vector by the given scalar. * * @param {number} scalar - The scalar to divide. * @return {Vector3} A reference to this vector. */ divideScalar( scalar ) { return this.multiplyScalar( 1 / scalar ); } /** * If this vector's x, y or z value is greater than the given vector's x, y or z * value, replace that value with the corresponding min value. * * @param {Vector3} v - The vector. * @return {Vector3} A reference to this vector. */ min( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); return this; } /** * If this vector's x, y or z value is less than the given vector's x, y or z * value, replace that value with the corresponding max value. * * @param {Vector3} v - The vector. * @return {Vector3} A reference to this vector. */ max( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); return this; } /** * If this vector's x, y or z value is greater than the max vector's x, y or z * value, it is replaced by the corresponding value. * If this vector's x, y or z value is less than the min vector's x, y or z value, * it is replaced by the corresponding value. * * @param {Vector3} min - The minimum x, y and z values. * @param {Vector3} max - The maximum x, y and z values in the desired range. * @return {Vector3} A reference to this vector. */ clamp( min, max ) { // assumes min < max, componentwise this.x = clamp( this.x, min.x, max.x ); this.y = clamp( this.y, min.y, max.y ); this.z = clamp( this.z, min.z, max.z ); return this; } /** * If this vector's x, y or z values are greater than the max value, they are * replaced by the max value. * If this vector's x, y or z values are less than the min value, they are * replaced by the min value. * * @param {number} minVal - The minimum value the components will be clamped to. * @param {number} maxVal - The maximum value the components will be clamped to. * @return {Vector3} A reference to this vector. */ clampScalar( minVal, maxVal ) { this.x = clamp( this.x, minVal, maxVal ); this.y = clamp( this.y, minVal, maxVal ); this.z = clamp( this.z, minVal, maxVal ); return this; } /** * If this vector's length is greater than the max value, it is replaced by * the max value. * If this vector's length is less than the min value, it is replaced by the * min value. * * @param {number} min - The minimum value the vector length will be clamped to. * @param {number} max - The maximum value the vector length will be clamped to. * @return {Vector3} A reference to this vector. */ clampLength( min, max ) { const length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( clamp( length, min, max ) ); } /** * The components of this vector are rounded down to the nearest integer value. * * @return {Vector3} A reference to this vector. */ floor() { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); return this; } /** * The components of this vector are rounded up to the nearest integer value. * * @return {Vector3} A reference to this vector. */ ceil() { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); return this; } /** * The components of this vector are rounded to the nearest integer value * * @return {Vector3} A reference to this vector. */ round() { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); return this; } /** * The components of this vector are rounded towards zero (up if negative, * down if positive) to an integer value. * * @return {Vector3} A reference to this vector. */ roundToZero() { this.x = Math.trunc( this.x ); this.y = Math.trunc( this.y ); this.z = Math.trunc( this.z ); return this; } /** * Inverts this vector - i.e. sets x = -x, y = -y and z = -z. * * @return {Vector3} A reference to this vector. */ negate() { this.x = - this.x; this.y = - this.y; this.z = - this.z; return this; } /** * Calculates the dot product of the given vector with this instance. * * @param {Vector3} v - The vector to compute the dot product with. * @return {number} The result of the dot product. */ dot( v ) { return this.x * v.x + this.y * v.y + this.z * v.z; } // TODO lengthSquared? /** * Computes the square of the Euclidean length (straight-line length) from * (0, 0, 0) to (x, y, z). If you are comparing the lengths of vectors, you should * compare the length squared instead as it is slightly more efficient to calculate. * * @return {number} The square length of this vector. */ lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z; } /** * Computes the Euclidean length (straight-line length) from (0, 0, 0) to (x, y, z). * * @return {number} The length of this vector. */ length() { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); } /** * Computes the Manhattan length of this vector. * * @return {number} The length of this vector. */ manhattanLength() { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); } /** * Converts this vector to a unit vector - that is, sets it equal to a vector * with the same direction as this one, but with a vector length of `1`. * * @return {Vector3} A reference to this vector. */ normalize() { return this.divideScalar( this.length() || 1 ); } /** * Sets this vector to a vector with the same direction as this one, but * with the specified length. * * @param {number} length - The new length of this vector. * @return {Vector3} A reference to this vector. */ setLength( length ) { return this.normalize().multiplyScalar( length ); } /** * Linearly interpolates between the given vector and this instance, where * alpha is the percent distance along the line - alpha = 0 will be this * vector, and alpha = 1 will be the given one. * * @param {Vector3} v - The vector to interpolate towards. * @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`. * @return {Vector3} A reference to this vector. */ lerp( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; return this; } /** * Linearly interpolates between the given vectors, where alpha is the percent * distance along the line - alpha = 0 will be first vector, and alpha = 1 will * be the second one. The result is stored in this instance. * * @param {Vector3} v1 - The first vector. * @param {Vector3} v2 - The second vector. * @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`. * @return {Vector3} A reference to this vector. */ lerpVectors( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; this.z = v1.z + ( v2.z - v1.z ) * alpha; return this; } /** * Calculates the cross product of the given vector with this instance. * * @param {Vector3} v - The vector to compute the cross product with. * @return {Vector3} The result of the cross product. */ cross( v ) { return this.crossVectors( this, v ); } /** * Calculates the cross product of the given vectors and stores the result * in this instance. * * @param {Vector3} a - The first vector. * @param {Vector3} b - The second vector. * @return {Vector3} A reference to this vector. */ crossVectors( a, b ) { const ax = a.x, ay = a.y, az = a.z; const bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; } /** * Projects this vector onto the given one. * * @param {Vector3} v - The vector to project to. * @return {Vector3} A reference to this vector. */ projectOnVector( v ) { const denominator = v.lengthSq(); if ( denominator === 0 ) return this.set( 0, 0, 0 ); const scalar = v.dot( this ) / denominator; return this.copy( v ).multiplyScalar( scalar ); } /** * Projects this vector onto a plane by subtracting this * vector projected onto the plane's normal from this vector. * * @param {Vector3} planeNormal - The plane normal. * @return {Vector3} A reference to this vector. */ projectOnPlane( planeNormal ) { _vector.copy( this ).projectOnVector( planeNormal ); return this.sub( _vector ); } /** * Reflects this vector off a plane orthogonal to the given normal vector. * * @param {Vector3} normal - The (normalized) normal vector. * @return {Vector3} A reference to this vector. */ reflect( normal ) { return this.sub( _vector.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); } /** * Returns the angle between the given vector and this instance in radians. * * @param {Vector3} v - The vector to compute the angle with. * @return {number} The angle in radians. */ angleTo( v ) { const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() ); if ( denominator === 0 ) return Math.PI / 2; const theta = this.dot( v ) / denominator; // clamp, to handle numerical problems return Math.acos( clamp( theta, - 1, 1 ) ); } /** * Computes the distance from the given vector to this instance. * * @param {Vector3} v - The vector to compute the distance to. * @return {number} The distance. */ distanceTo( v ) { return Math.sqrt( this.distanceToSquared( v ) ); } /** * Computes the squared distance from the given vector to this instance. * If you are just comparing the distance with another distance, you should compare * the distance squared instead as it is slightly more efficient to calculate. * * @param {Vector3} v - The vector to compute the squared distance to. * @return {number} The squared distance. */ distanceToSquared( v ) { const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; } /** * Computes the Manhattan distance from the given vector to this instance. * * @param {Vector3} v - The vector to compute the Manhattan distance to. * @return {number} The Manhattan distance. */ manhattanDistanceTo( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z ); } /** * Sets the vector components from the given spherical coordinates. * * @param {Spherical} s - The spherical coordinates. * @return {Vector3} A reference to this vector. */ setFromSpherical( s ) { return this.setFromSphericalCoords( s.radius, s.phi, s.theta ); } /** * Sets the vector components from the given spherical coordinates. * * @param {number} radius - The radius. * @param {number} phi - The phi angle in radians. * @param {number} theta - The theta angle in radians. * @return {Vector3} A reference to this vector. */ setFromSphericalCoords( radius, phi, theta ) { const sinPhiRadius = Math.sin( phi ) * radius; this.x = sinPhiRadius * Math.sin( theta ); this.y = Math.cos( phi ) * radius; this.z = sinPhiRadius * Math.cos( theta ); return this; } /** * Sets the vector components from the given cylindrical coordinates. * * @param {Cylindrical} c - The cylindrical coordinates. * @return {Vector3} A reference to this vector. */ setFromCylindrical( c ) { return this.setFromCylindricalCoords( c.radius, c.theta, c.y ); } /** * Sets the vector components from the given cylindrical coordinates. * * @param {number} radius - The radius. * @param {number} theta - The theta angle in radians. * @param {number} y - The y value. * @return {Vector3} A reference to this vector. */ setFromCylindricalCoords( radius, theta, y ) { this.x = radius * Math.sin( theta ); this.y = y; this.z = radius * Math.cos( theta ); return this; } /** * Sets the vector components to the position elements of the * given transformation matrix. * * @param {Matrix4} m - The 4x4 matrix. * @return {Vector3} A reference to this vector. */ setFromMatrixPosition( m ) { const e = m.elements; this.x = e[ 12 ]; this.y = e[ 13 ]; this.z = e[ 14 ]; return this; } /** * Sets the vector components to the scale elements of the * given transformation matrix. * * @param {Matrix4} m - The 4x4 matrix. * @return {Vector3} A reference to this vector. */ setFromMatrixScale( m ) { const sx = this.setFromMatrixColumn( m, 0 ).length(); const sy = this.setFromMatrixColumn( m, 1 ).length(); const sz = this.setFromMatrixColumn( m, 2 ).length(); this.x = sx; this.y = sy; this.z = sz; return this; } /** * Sets the vector components from the specified matrix column. * * @param {Matrix4} m - The 4x4 matrix. * @param {number} index - The column index. * @return {Vector3} A reference to this vector. */ setFromMatrixColumn( m, index ) { return this.fromArray( m.elements, index * 4 ); } /** * Sets the vector components from the specified matrix column. * * @param {Matrix3} m - The 3x3 matrix. * @param {number} index - The column index. * @return {Vector3} A reference to this vector. */ setFromMatrix3Column( m, index ) { return this.fromArray( m.elements, index * 3 ); } /** * Sets the vector components from the given Euler angles. * * @param {Euler} e - The Euler angles to set. * @return {Vector3} A reference to this vector. */ setFromEuler( e ) { this.x = e._x; this.y = e._y; this.z = e._z; return this; } /** * Sets the vector components from the RGB components of the * given color. * * @param {Color} c - The color to set. * @return {Vector3} A reference to this vector. */ setFromColor( c ) { this.x = c.r; this.y = c.g; this.z = c.b; return this; } /** * Returns `true` if this vector is equal with the given one. * * @param {Vector3} v - The vector to test for equality. * @return {boolean} Whether this vector is equal with the given one. */ equals( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); } /** * Sets this vector's x value to be `array[ offset ]`, y value to be `array[ offset + 1 ]` * and z value to be `array[ offset + 2 ]`. * * @param {Array<number>} array - An array holding the vector component values. * @param {number} [offset=0] - The offset into the array. * @return {Vector3} A reference to this vector. */ fromArray( array, offset = 0 ) { this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; return this; } /** * Writes the components of this vector to the given array. If no array is provided, * the method returns a new instance. * * @param {Array<number>} [array=[]] - The target array holding the vector components. * @param {number} [offset=0] - Index of the first element in the array. * @return {Array<number>} The vector components. */ toArray( array = [], offset = 0 ) { array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; return array; } /** * Sets the components of this vector from the given buffer attribute. * * @param {BufferAttribute} attribute - The buffer attribute holding vector data. * @param {number} index - The index into the attribute. * @return {Vector3} A reference to this vector. */ fromBufferAttribute( attribute, index ) { this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); return this; } /** * Sets each component of this vector to a pseudo-random value between `0` and * `1`, excluding `1`. * * @return {Vector3} A reference to this vector. */ random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); return this; } /** * Sets this vector to a uniformly random point on a unit sphere. * * @return {Vector3} A reference to this vector. */ randomDirection() { // https://mathworld.wolfram.com/SpherePointPicking.html const theta = Math.random() * Math.PI * 2; const u = Math.random() * 2 - 1; const c = Math.sqrt( 1 - u * u ); this.x = c * Math.cos( theta ); this.y = u; this.z = c * Math.sin( theta ); return this; } *[ Symbol.iterator ]() { yield this.x; yield this.y; yield this.z; } } const _vector = /*@__PURE__*/ new Vector3(); const _quaternion = /*@__PURE__*/ new Quaternion(); export { Vector3 };