three
Version:
JavaScript 3D library
1,262 lines (954 loc) • 28.2 kB
JavaScript
import { clamp } from './MathUtils.js';
import { Quaternion } from './Quaternion.js';
/**
* Class representing a 3D vector. A 3D vector is an ordered triplet of numbers
* (labeled x, y and z), which can be used to represent a number of things, such as:
*
* - A point in 3D space.
* - A direction and length in 3D space. In three.js the length will
* always be the Euclidean distance(straight-line distance) from `(0, 0, 0)` to `(x, y, z)`
* and the direction is also measured from `(0, 0, 0)` towards `(x, y, z)`.
* - Any arbitrary ordered triplet of numbers.
*
* There are other things a 3D vector can be used to represent, such as
* momentum vectors and so on, however these are the most
* common uses in three.js.
*
* Iterating through a vector instance will yield its components `(x, y, z)` in
* the corresponding order.
* ```js
* const a = new THREE.Vector3( 0, 1, 0 );
*
* //no arguments; will be initialised to (0, 0, 0)
* const b = new THREE.Vector3( );
*
* const d = a.distanceTo( b );
* ```
*/
class Vector3 {
/**
* Constructs a new 3D vector.
*
* @param {number} [x=0] - The x value of this vector.
* @param {number} [y=0] - The y value of this vector.
* @param {number} [z=0] - The z value of this vector.
*/
constructor( x = 0, y = 0, z = 0 ) {
/**
* This flag can be used for type testing.
*
* @type {boolean}
* @readonly
* @default true
*/
Vector3.prototype.isVector3 = true;
/**
* The x value of this vector.
*
* @type {number}
*/
this.x = x;
/**
* The y value of this vector.
*
* @type {number}
*/
this.y = y;
/**
* The z value of this vector.
*
* @type {number}
*/
this.z = z;
}
/**
* Sets the vector components.
*
* @param {number} x - The value of the x component.
* @param {number} y - The value of the y component.
* @param {number} z - The value of the z component.
* @return {Vector3} A reference to this vector.
*/
set( x, y, z ) {
if ( z === undefined ) z = this.z; // sprite.scale.set(x,y)
this.x = x;
this.y = y;
this.z = z;
return this;
}
/**
* Sets the vector components to the same value.
*
* @param {number} scalar - The value to set for all vector components.
* @return {Vector3} A reference to this vector.
*/
setScalar( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
return this;
}
/**
* Sets the vector's x component to the given value
*
* @param {number} x - The value to set.
* @return {Vector3} A reference to this vector.
*/
setX( x ) {
this.x = x;
return this;
}
/**
* Sets the vector's y component to the given value
*
* @param {number} y - The value to set.
* @return {Vector3} A reference to this vector.
*/
setY( y ) {
this.y = y;
return this;
}
/**
* Sets the vector's z component to the given value
*
* @param {number} z - The value to set.
* @return {Vector3} A reference to this vector.
*/
setZ( z ) {
this.z = z;
return this;
}
/**
* Allows to set a vector component with an index.
*
* @param {number} index - The component index. `0` equals to x, `1` equals to y, `2` equals to z.
* @param {number} value - The value to set.
* @return {Vector3} A reference to this vector.
*/
setComponent( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
}
/**
* Returns the value of the vector component which matches the given index.
*
* @param {number} index - The component index. `0` equals to x, `1` equals to y, `2` equals to z.
* @return {number} A vector component value.
*/
getComponent( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
default: throw new Error( 'index is out of range: ' + index );
}
}
/**
* Returns a new vector with copied values from this instance.
*
* @return {Vector3} A clone of this instance.
*/
clone() {
return new this.constructor( this.x, this.y, this.z );
}
/**
* Copies the values of the given vector to this instance.
*
* @param {Vector3} v - The vector to copy.
* @return {Vector3} A reference to this vector.
*/
copy( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
return this;
}
/**
* Adds the given vector to this instance.
*
* @param {Vector3} v - The vector to add.
* @return {Vector3} A reference to this vector.
*/
add( v ) {
this.x += v.x;
this.y += v.y;
this.z += v.z;
return this;
}
/**
* Adds the given scalar value to all components of this instance.
*
* @param {number} s - The scalar to add.
* @return {Vector3} A reference to this vector.
*/
addScalar( s ) {
this.x += s;
this.y += s;
this.z += s;
return this;
}
/**
* Adds the given vectors and stores the result in this instance.
*
* @param {Vector3} a - The first vector.
* @param {Vector3} b - The second vector.
* @return {Vector3} A reference to this vector.
*/
addVectors( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
return this;
}
/**
* Adds the given vector scaled by the given factor to this instance.
*
* @param {Vector3|Vector4} v - The vector.
* @param {number} s - The factor that scales `v`.
* @return {Vector3} A reference to this vector.
*/
addScaledVector( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
return this;
}
/**
* Subtracts the given vector from this instance.
*
* @param {Vector3} v - The vector to subtract.
* @return {Vector3} A reference to this vector.
*/
sub( v ) {
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
return this;
}
/**
* Subtracts the given scalar value from all components of this instance.
*
* @param {number} s - The scalar to subtract.
* @return {Vector3} A reference to this vector.
*/
subScalar( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
return this;
}
/**
* Subtracts the given vectors and stores the result in this instance.
*
* @param {Vector3} a - The first vector.
* @param {Vector3} b - The second vector.
* @return {Vector3} A reference to this vector.
*/
subVectors( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
return this;
}
/**
* Multiplies the given vector with this instance.
*
* @param {Vector3} v - The vector to multiply.
* @return {Vector3} A reference to this vector.
*/
multiply( v ) {
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
return this;
}
/**
* Multiplies the given scalar value with all components of this instance.
*
* @param {number} scalar - The scalar to multiply.
* @return {Vector3} A reference to this vector.
*/
multiplyScalar( scalar ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
return this;
}
/**
* Multiplies the given vectors and stores the result in this instance.
*
* @param {Vector3} a - The first vector.
* @param {Vector3} b - The second vector.
* @return {Vector3} A reference to this vector.
*/
multiplyVectors( a, b ) {
this.x = a.x * b.x;
this.y = a.y * b.y;
this.z = a.z * b.z;
return this;
}
/**
* Applies the given Euler rotation to this vector.
*
* @param {Euler} euler - The Euler angles.
* @return {Vector3} A reference to this vector.
*/
applyEuler( euler ) {
return this.applyQuaternion( _quaternion.setFromEuler( euler ) );
}
/**
* Applies a rotation specified by an axis and an angle to this vector.
*
* @param {Vector3} axis - A normalized vector representing the rotation axis.
* @param {number} angle - The angle in radians.
* @return {Vector3} A reference to this vector.
*/
applyAxisAngle( axis, angle ) {
return this.applyQuaternion( _quaternion.setFromAxisAngle( axis, angle ) );
}
/**
* Multiplies this vector with the given 3x3 matrix.
*
* @param {Matrix3} m - The 3x3 matrix.
* @return {Vector3} A reference to this vector.
*/
applyMatrix3( m ) {
const x = this.x, y = this.y, z = this.z;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;
return this;
}
/**
* Multiplies this vector by the given normal matrix and normalizes
* the result.
*
* @param {Matrix3} m - The normal matrix.
* @return {Vector3} A reference to this vector.
*/
applyNormalMatrix( m ) {
return this.applyMatrix3( m ).normalize();
}
/**
* Multiplies this vector (with an implicit 1 in the 4th dimension) by m, and
* divides by perspective.
*
* @param {Matrix4} m - The matrix to apply.
* @return {Vector3} A reference to this vector.
*/
applyMatrix4( m ) {
const x = this.x, y = this.y, z = this.z;
const e = m.elements;
const w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] );
this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w;
this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w;
this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w;
return this;
}
/**
* Applies the given Quaternion to this vector.
*
* @param {Quaternion} q - The Quaternion.
* @return {Vector3} A reference to this vector.
*/
applyQuaternion( q ) {
// quaternion q is assumed to have unit length
const vx = this.x, vy = this.y, vz = this.z;
const qx = q.x, qy = q.y, qz = q.z, qw = q.w;
// t = 2 * cross( q.xyz, v );
const tx = 2 * ( qy * vz - qz * vy );
const ty = 2 * ( qz * vx - qx * vz );
const tz = 2 * ( qx * vy - qy * vx );
// v + q.w * t + cross( q.xyz, t );
this.x = vx + qw * tx + qy * tz - qz * ty;
this.y = vy + qw * ty + qz * tx - qx * tz;
this.z = vz + qw * tz + qx * ty - qy * tx;
return this;
}
/**
* Projects this vector from world space into the camera's normalized
* device coordinate (NDC) space.
*
* @param {Camera} camera - The camera.
* @return {Vector3} A reference to this vector.
*/
project( camera ) {
return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix );
}
/**
* Unprojects this vector from the camera's normalized device coordinate (NDC)
* space into world space.
*
* @param {Camera} camera - The camera.
* @return {Vector3} A reference to this vector.
*/
unproject( camera ) {
return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld );
}
/**
* Transforms the direction of this vector by a matrix (the upper left 3 x 3
* subset of the given 4x4 matrix and then normalizes the result.
*
* @param {Matrix4} m - The matrix.
* @return {Vector3} A reference to this vector.
*/
transformDirection( m ) {
// input: THREE.Matrix4 affine matrix
// vector interpreted as a direction
const x = this.x, y = this.y, z = this.z;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
return this.normalize();
}
/**
* Divides this instance by the given vector.
*
* @param {Vector3} v - The vector to divide.
* @return {Vector3} A reference to this vector.
*/
divide( v ) {
this.x /= v.x;
this.y /= v.y;
this.z /= v.z;
return this;
}
/**
* Divides this vector by the given scalar.
*
* @param {number} scalar - The scalar to divide.
* @return {Vector3} A reference to this vector.
*/
divideScalar( scalar ) {
return this.multiplyScalar( 1 / scalar );
}
/**
* If this vector's x, y or z value is greater than the given vector's x, y or z
* value, replace that value with the corresponding min value.
*
* @param {Vector3} v - The vector.
* @return {Vector3} A reference to this vector.
*/
min( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
return this;
}
/**
* If this vector's x, y or z value is less than the given vector's x, y or z
* value, replace that value with the corresponding max value.
*
* @param {Vector3} v - The vector.
* @return {Vector3} A reference to this vector.
*/
max( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
return this;
}
/**
* If this vector's x, y or z value is greater than the max vector's x, y or z
* value, it is replaced by the corresponding value.
* If this vector's x, y or z value is less than the min vector's x, y or z value,
* it is replaced by the corresponding value.
*
* @param {Vector3} min - The minimum x, y and z values.
* @param {Vector3} max - The maximum x, y and z values in the desired range.
* @return {Vector3} A reference to this vector.
*/
clamp( min, max ) {
// assumes min < max, componentwise
this.x = clamp( this.x, min.x, max.x );
this.y = clamp( this.y, min.y, max.y );
this.z = clamp( this.z, min.z, max.z );
return this;
}
/**
* If this vector's x, y or z values are greater than the max value, they are
* replaced by the max value.
* If this vector's x, y or z values are less than the min value, they are
* replaced by the min value.
*
* @param {number} minVal - The minimum value the components will be clamped to.
* @param {number} maxVal - The maximum value the components will be clamped to.
* @return {Vector3} A reference to this vector.
*/
clampScalar( minVal, maxVal ) {
this.x = clamp( this.x, minVal, maxVal );
this.y = clamp( this.y, minVal, maxVal );
this.z = clamp( this.z, minVal, maxVal );
return this;
}
/**
* If this vector's length is greater than the max value, it is replaced by
* the max value.
* If this vector's length is less than the min value, it is replaced by the
* min value.
*
* @param {number} min - The minimum value the vector length will be clamped to.
* @param {number} max - The maximum value the vector length will be clamped to.
* @return {Vector3} A reference to this vector.
*/
clampLength( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( clamp( length, min, max ) );
}
/**
* The components of this vector are rounded down to the nearest integer value.
*
* @return {Vector3} A reference to this vector.
*/
floor() {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
return this;
}
/**
* The components of this vector are rounded up to the nearest integer value.
*
* @return {Vector3} A reference to this vector.
*/
ceil() {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
return this;
}
/**
* The components of this vector are rounded to the nearest integer value
*
* @return {Vector3} A reference to this vector.
*/
round() {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
return this;
}
/**
* The components of this vector are rounded towards zero (up if negative,
* down if positive) to an integer value.
*
* @return {Vector3} A reference to this vector.
*/
roundToZero() {
this.x = Math.trunc( this.x );
this.y = Math.trunc( this.y );
this.z = Math.trunc( this.z );
return this;
}
/**
* Inverts this vector - i.e. sets x = -x, y = -y and z = -z.
*
* @return {Vector3} A reference to this vector.
*/
negate() {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
return this;
}
/**
* Calculates the dot product of the given vector with this instance.
*
* @param {Vector3} v - The vector to compute the dot product with.
* @return {number} The result of the dot product.
*/
dot( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z;
}
// TODO lengthSquared?
/**
* Computes the square of the Euclidean length (straight-line length) from
* (0, 0, 0) to (x, y, z). If you are comparing the lengths of vectors, you should
* compare the length squared instead as it is slightly more efficient to calculate.
*
* @return {number} The square length of this vector.
*/
lengthSq() {
return this.x * this.x + this.y * this.y + this.z * this.z;
}
/**
* Computes the Euclidean length (straight-line length) from (0, 0, 0) to (x, y, z).
*
* @return {number} The length of this vector.
*/
length() {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );
}
/**
* Computes the Manhattan length of this vector.
*
* @return {number} The length of this vector.
*/
manhattanLength() {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );
}
/**
* Converts this vector to a unit vector - that is, sets it equal to a vector
* with the same direction as this one, but with a vector length of `1`.
*
* @return {Vector3} A reference to this vector.
*/
normalize() {
return this.divideScalar( this.length() || 1 );
}
/**
* Sets this vector to a vector with the same direction as this one, but
* with the specified length.
*
* @param {number} length - The new length of this vector.
* @return {Vector3} A reference to this vector.
*/
setLength( length ) {
return this.normalize().multiplyScalar( length );
}
/**
* Linearly interpolates between the given vector and this instance, where
* alpha is the percent distance along the line - alpha = 0 will be this
* vector, and alpha = 1 will be the given one.
*
* @param {Vector3} v - The vector to interpolate towards.
* @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`.
* @return {Vector3} A reference to this vector.
*/
lerp( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
return this;
}
/**
* Linearly interpolates between the given vectors, where alpha is the percent
* distance along the line - alpha = 0 will be first vector, and alpha = 1 will
* be the second one. The result is stored in this instance.
*
* @param {Vector3} v1 - The first vector.
* @param {Vector3} v2 - The second vector.
* @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`.
* @return {Vector3} A reference to this vector.
*/
lerpVectors( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
this.z = v1.z + ( v2.z - v1.z ) * alpha;
return this;
}
/**
* Calculates the cross product of the given vector with this instance.
*
* @param {Vector3} v - The vector to compute the cross product with.
* @return {Vector3} The result of the cross product.
*/
cross( v ) {
return this.crossVectors( this, v );
}
/**
* Calculates the cross product of the given vectors and stores the result
* in this instance.
*
* @param {Vector3} a - The first vector.
* @param {Vector3} b - The second vector.
* @return {Vector3} A reference to this vector.
*/
crossVectors( a, b ) {
const ax = a.x, ay = a.y, az = a.z;
const bx = b.x, by = b.y, bz = b.z;
this.x = ay * bz - az * by;
this.y = az * bx - ax * bz;
this.z = ax * by - ay * bx;
return this;
}
/**
* Projects this vector onto the given one.
*
* @param {Vector3} v - The vector to project to.
* @return {Vector3} A reference to this vector.
*/
projectOnVector( v ) {
const denominator = v.lengthSq();
if ( denominator === 0 ) return this.set( 0, 0, 0 );
const scalar = v.dot( this ) / denominator;
return this.copy( v ).multiplyScalar( scalar );
}
/**
* Projects this vector onto a plane by subtracting this
* vector projected onto the plane's normal from this vector.
*
* @param {Vector3} planeNormal - The plane normal.
* @return {Vector3} A reference to this vector.
*/
projectOnPlane( planeNormal ) {
_vector.copy( this ).projectOnVector( planeNormal );
return this.sub( _vector );
}
/**
* Reflects this vector off a plane orthogonal to the given normal vector.
*
* @param {Vector3} normal - The (normalized) normal vector.
* @return {Vector3} A reference to this vector.
*/
reflect( normal ) {
return this.sub( _vector.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );
}
/**
* Returns the angle between the given vector and this instance in radians.
*
* @param {Vector3} v - The vector to compute the angle with.
* @return {number} The angle in radians.
*/
angleTo( v ) {
const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() );
if ( denominator === 0 ) return Math.PI / 2;
const theta = this.dot( v ) / denominator;
// clamp, to handle numerical problems
return Math.acos( clamp( theta, - 1, 1 ) );
}
/**
* Computes the distance from the given vector to this instance.
*
* @param {Vector3} v - The vector to compute the distance to.
* @return {number} The distance.
*/
distanceTo( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
}
/**
* Computes the squared distance from the given vector to this instance.
* If you are just comparing the distance with another distance, you should compare
* the distance squared instead as it is slightly more efficient to calculate.
*
* @param {Vector3} v - The vector to compute the squared distance to.
* @return {number} The squared distance.
*/
distanceToSquared( v ) {
const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;
return dx * dx + dy * dy + dz * dz;
}
/**
* Computes the Manhattan distance from the given vector to this instance.
*
* @param {Vector3} v - The vector to compute the Manhattan distance to.
* @return {number} The Manhattan distance.
*/
manhattanDistanceTo( v ) {
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );
}
/**
* Sets the vector components from the given spherical coordinates.
*
* @param {Spherical} s - The spherical coordinates.
* @return {Vector3} A reference to this vector.
*/
setFromSpherical( s ) {
return this.setFromSphericalCoords( s.radius, s.phi, s.theta );
}
/**
* Sets the vector components from the given spherical coordinates.
*
* @param {number} radius - The radius.
* @param {number} phi - The phi angle in radians.
* @param {number} theta - The theta angle in radians.
* @return {Vector3} A reference to this vector.
*/
setFromSphericalCoords( radius, phi, theta ) {
const sinPhiRadius = Math.sin( phi ) * radius;
this.x = sinPhiRadius * Math.sin( theta );
this.y = Math.cos( phi ) * radius;
this.z = sinPhiRadius * Math.cos( theta );
return this;
}
/**
* Sets the vector components from the given cylindrical coordinates.
*
* @param {Cylindrical} c - The cylindrical coordinates.
* @return {Vector3} A reference to this vector.
*/
setFromCylindrical( c ) {
return this.setFromCylindricalCoords( c.radius, c.theta, c.y );
}
/**
* Sets the vector components from the given cylindrical coordinates.
*
* @param {number} radius - The radius.
* @param {number} theta - The theta angle in radians.
* @param {number} y - The y value.
* @return {Vector3} A reference to this vector.
*/
setFromCylindricalCoords( radius, theta, y ) {
this.x = radius * Math.sin( theta );
this.y = y;
this.z = radius * Math.cos( theta );
return this;
}
/**
* Sets the vector components to the position elements of the
* given transformation matrix.
*
* @param {Matrix4} m - The 4x4 matrix.
* @return {Vector3} A reference to this vector.
*/
setFromMatrixPosition( m ) {
const e = m.elements;
this.x = e[ 12 ];
this.y = e[ 13 ];
this.z = e[ 14 ];
return this;
}
/**
* Sets the vector components to the scale elements of the
* given transformation matrix.
*
* @param {Matrix4} m - The 4x4 matrix.
* @return {Vector3} A reference to this vector.
*/
setFromMatrixScale( m ) {
const sx = this.setFromMatrixColumn( m, 0 ).length();
const sy = this.setFromMatrixColumn( m, 1 ).length();
const sz = this.setFromMatrixColumn( m, 2 ).length();
this.x = sx;
this.y = sy;
this.z = sz;
return this;
}
/**
* Sets the vector components from the specified matrix column.
*
* @param {Matrix4} m - The 4x4 matrix.
* @param {number} index - The column index.
* @return {Vector3} A reference to this vector.
*/
setFromMatrixColumn( m, index ) {
return this.fromArray( m.elements, index * 4 );
}
/**
* Sets the vector components from the specified matrix column.
*
* @param {Matrix3} m - The 3x3 matrix.
* @param {number} index - The column index.
* @return {Vector3} A reference to this vector.
*/
setFromMatrix3Column( m, index ) {
return this.fromArray( m.elements, index * 3 );
}
/**
* Sets the vector components from the given Euler angles.
*
* @param {Euler} e - The Euler angles to set.
* @return {Vector3} A reference to this vector.
*/
setFromEuler( e ) {
this.x = e._x;
this.y = e._y;
this.z = e._z;
return this;
}
/**
* Sets the vector components from the RGB components of the
* given color.
*
* @param {Color} c - The color to set.
* @return {Vector3} A reference to this vector.
*/
setFromColor( c ) {
this.x = c.r;
this.y = c.g;
this.z = c.b;
return this;
}
/**
* Returns `true` if this vector is equal with the given one.
*
* @param {Vector3} v - The vector to test for equality.
* @return {boolean} Whether this vector is equal with the given one.
*/
equals( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );
}
/**
* Sets this vector's x value to be `array[ offset ]`, y value to be `array[ offset + 1 ]`
* and z value to be `array[ offset + 2 ]`.
*
* @param {Array<number>} array - An array holding the vector component values.
* @param {number} [offset=0] - The offset into the array.
* @return {Vector3} A reference to this vector.
*/
fromArray( array, offset = 0 ) {
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
return this;
}
/**
* Writes the components of this vector to the given array. If no array is provided,
* the method returns a new instance.
*
* @param {Array<number>} [array=[]] - The target array holding the vector components.
* @param {number} [offset=0] - Index of the first element in the array.
* @return {Array<number>} The vector components.
*/
toArray( array = [], offset = 0 ) {
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
return array;
}
/**
* Sets the components of this vector from the given buffer attribute.
*
* @param {BufferAttribute} attribute - The buffer attribute holding vector data.
* @param {number} index - The index into the attribute.
* @return {Vector3} A reference to this vector.
*/
fromBufferAttribute( attribute, index ) {
this.x = attribute.getX( index );
this.y = attribute.getY( index );
this.z = attribute.getZ( index );
return this;
}
/**
* Sets each component of this vector to a pseudo-random value between `0` and
* `1`, excluding `1`.
*
* @return {Vector3} A reference to this vector.
*/
random() {
this.x = Math.random();
this.y = Math.random();
this.z = Math.random();
return this;
}
/**
* Sets this vector to a uniformly random point on a unit sphere.
*
* @return {Vector3} A reference to this vector.
*/
randomDirection() {
// https://mathworld.wolfram.com/SpherePointPicking.html
const theta = Math.random() * Math.PI * 2;
const u = Math.random() * 2 - 1;
const c = Math.sqrt( 1 - u * u );
this.x = c * Math.cos( theta );
this.y = u;
this.z = c * Math.sin( theta );
return this;
}
*[ Symbol.iterator ]() {
yield this.x;
yield this.y;
yield this.z;
}
}
const _vector = /*@__PURE__*/ new Vector3();
const _quaternion = /*@__PURE__*/ new Quaternion();
export { Vector3 };