three
Version:
JavaScript 3D library
867 lines (646 loc) • 18.2 kB
JavaScript
import { clamp } from './MathUtils.js';
/**
* Class representing a 2D vector. A 2D vector is an ordered pair of numbers
* (labeled x and y), which can be used to represent a number of things, such as:
*
* - A point in 2D space (i.e. a position on a plane).
* - A direction and length across a plane. In three.js the length will
* always be the Euclidean distance(straight-line distance) from `(0, 0)` to `(x, y)`
* and the direction is also measured from `(0, 0)` towards `(x, y)`.
* - Any arbitrary ordered pair of numbers.
*
* There are other things a 2D vector can be used to represent, such as
* momentum vectors, complex numbers and so on, however these are the most
* common uses in three.js.
*
* Iterating through a vector instance will yield its components `(x, y)` in
* the corresponding order.
* ```js
* const a = new THREE.Vector2( 0, 1 );
*
* //no arguments; will be initialised to (0, 0)
* const b = new THREE.Vector2( );
*
* const d = a.distanceTo( b );
* ```
*/
class Vector2 {
/**
* Constructs a new 2D vector.
*
* @param {number} [x=0] - The x value of this vector.
* @param {number} [y=0] - The y value of this vector.
*/
constructor( x = 0, y = 0 ) {
/**
* This flag can be used for type testing.
*
* @type {boolean}
* @readonly
* @default true
*/
Vector2.prototype.isVector2 = true;
/**
* The x value of this vector.
*
* @type {number}
*/
this.x = x;
/**
* The y value of this vector.
*
* @type {number}
*/
this.y = y;
}
/**
* Alias for {@link Vector2#x}.
*
* @type {number}
*/
get width() {
return this.x;
}
set width( value ) {
this.x = value;
}
/**
* Alias for {@link Vector2#y}.
*
* @type {number}
*/
get height() {
return this.y;
}
set height( value ) {
this.y = value;
}
/**
* Sets the vector components.
*
* @param {number} x - The value of the x component.
* @param {number} y - The value of the y component.
* @return {Vector2} A reference to this vector.
*/
set( x, y ) {
this.x = x;
this.y = y;
return this;
}
/**
* Sets the vector components to the same value.
*
* @param {number} scalar - The value to set for all vector components.
* @return {Vector2} A reference to this vector.
*/
setScalar( scalar ) {
this.x = scalar;
this.y = scalar;
return this;
}
/**
* Sets the vector's x component to the given value
*
* @param {number} x - The value to set.
* @return {Vector2} A reference to this vector.
*/
setX( x ) {
this.x = x;
return this;
}
/**
* Sets the vector's y component to the given value
*
* @param {number} y - The value to set.
* @return {Vector2} A reference to this vector.
*/
setY( y ) {
this.y = y;
return this;
}
/**
* Allows to set a vector component with an index.
*
* @param {number} index - The component index. `0` equals to x, `1` equals to y.
* @param {number} value - The value to set.
* @return {Vector2} A reference to this vector.
*/
setComponent( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
}
/**
* Returns the value of the vector component which matches the given index.
*
* @param {number} index - The component index. `0` equals to x, `1` equals to y.
* @return {number} A vector component value.
*/
getComponent( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
default: throw new Error( 'index is out of range: ' + index );
}
}
/**
* Returns a new vector with copied values from this instance.
*
* @return {Vector2} A clone of this instance.
*/
clone() {
return new this.constructor( this.x, this.y );
}
/**
* Copies the values of the given vector to this instance.
*
* @param {Vector2} v - The vector to copy.
* @return {Vector2} A reference to this vector.
*/
copy( v ) {
this.x = v.x;
this.y = v.y;
return this;
}
/**
* Adds the given vector to this instance.
*
* @param {Vector2} v - The vector to add.
* @return {Vector2} A reference to this vector.
*/
add( v ) {
this.x += v.x;
this.y += v.y;
return this;
}
/**
* Adds the given scalar value to all components of this instance.
*
* @param {number} s - The scalar to add.
* @return {Vector2} A reference to this vector.
*/
addScalar( s ) {
this.x += s;
this.y += s;
return this;
}
/**
* Adds the given vectors and stores the result in this instance.
*
* @param {Vector2} a - The first vector.
* @param {Vector2} b - The second vector.
* @return {Vector2} A reference to this vector.
*/
addVectors( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
return this;
}
/**
* Adds the given vector scaled by the given factor to this instance.
*
* @param {Vector2} v - The vector.
* @param {number} s - The factor that scales `v`.
* @return {Vector2} A reference to this vector.
*/
addScaledVector( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
return this;
}
/**
* Subtracts the given vector from this instance.
*
* @param {Vector2} v - The vector to subtract.
* @return {Vector2} A reference to this vector.
*/
sub( v ) {
this.x -= v.x;
this.y -= v.y;
return this;
}
/**
* Subtracts the given scalar value from all components of this instance.
*
* @param {number} s - The scalar to subtract.
* @return {Vector2} A reference to this vector.
*/
subScalar( s ) {
this.x -= s;
this.y -= s;
return this;
}
/**
* Subtracts the given vectors and stores the result in this instance.
*
* @param {Vector2} a - The first vector.
* @param {Vector2} b - The second vector.
* @return {Vector2} A reference to this vector.
*/
subVectors( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
return this;
}
/**
* Multiplies the given vector with this instance.
*
* @param {Vector2} v - The vector to multiply.
* @return {Vector2} A reference to this vector.
*/
multiply( v ) {
this.x *= v.x;
this.y *= v.y;
return this;
}
/**
* Multiplies the given scalar value with all components of this instance.
*
* @param {number} scalar - The scalar to multiply.
* @return {Vector2} A reference to this vector.
*/
multiplyScalar( scalar ) {
this.x *= scalar;
this.y *= scalar;
return this;
}
/**
* Divides this instance by the given vector.
*
* @param {Vector2} v - The vector to divide.
* @return {Vector2} A reference to this vector.
*/
divide( v ) {
this.x /= v.x;
this.y /= v.y;
return this;
}
/**
* Divides this vector by the given scalar.
*
* @param {number} scalar - The scalar to divide.
* @return {Vector2} A reference to this vector.
*/
divideScalar( scalar ) {
return this.multiplyScalar( 1 / scalar );
}
/**
* Multiplies this vector (with an implicit 1 as the 3rd component) by
* the given 3x3 matrix.
*
* @param {Matrix3} m - The matrix to apply.
* @return {Vector2} A reference to this vector.
*/
applyMatrix3( m ) {
const x = this.x, y = this.y;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ];
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ];
return this;
}
/**
* If this vector's x or y value is greater than the given vector's x or y
* value, replace that value with the corresponding min value.
*
* @param {Vector2} v - The vector.
* @return {Vector2} A reference to this vector.
*/
min( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
return this;
}
/**
* If this vector's x or y value is less than the given vector's x or y
* value, replace that value with the corresponding max value.
*
* @param {Vector2} v - The vector.
* @return {Vector2} A reference to this vector.
*/
max( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
return this;
}
/**
* If this vector's x or y value is greater than the max vector's x or y
* value, it is replaced by the corresponding value.
* If this vector's x or y value is less than the min vector's x or y value,
* it is replaced by the corresponding value.
*
* @param {Vector2} min - The minimum x and y values.
* @param {Vector2} max - The maximum x and y values in the desired range.
* @return {Vector2} A reference to this vector.
*/
clamp( min, max ) {
// assumes min < max, componentwise
this.x = clamp( this.x, min.x, max.x );
this.y = clamp( this.y, min.y, max.y );
return this;
}
/**
* If this vector's x or y values are greater than the max value, they are
* replaced by the max value.
* If this vector's x or y values are less than the min value, they are
* replaced by the min value.
*
* @param {number} minVal - The minimum value the components will be clamped to.
* @param {number} maxVal - The maximum value the components will be clamped to.
* @return {Vector2} A reference to this vector.
*/
clampScalar( minVal, maxVal ) {
this.x = clamp( this.x, minVal, maxVal );
this.y = clamp( this.y, minVal, maxVal );
return this;
}
/**
* If this vector's length is greater than the max value, it is replaced by
* the max value.
* If this vector's length is less than the min value, it is replaced by the
* min value.
*
* @param {number} min - The minimum value the vector length will be clamped to.
* @param {number} max - The maximum value the vector length will be clamped to.
* @return {Vector2} A reference to this vector.
*/
clampLength( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( clamp( length, min, max ) );
}
/**
* The components of this vector are rounded down to the nearest integer value.
*
* @return {Vector2} A reference to this vector.
*/
floor() {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
return this;
}
/**
* The components of this vector are rounded up to the nearest integer value.
*
* @return {Vector2} A reference to this vector.
*/
ceil() {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
return this;
}
/**
* The components of this vector are rounded to the nearest integer value
*
* @return {Vector2} A reference to this vector.
*/
round() {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
return this;
}
/**
* The components of this vector are rounded towards zero (up if negative,
* down if positive) to an integer value.
*
* @return {Vector2} A reference to this vector.
*/
roundToZero() {
this.x = Math.trunc( this.x );
this.y = Math.trunc( this.y );
return this;
}
/**
* Inverts this vector - i.e. sets x = -x and y = -y.
*
* @return {Vector2} A reference to this vector.
*/
negate() {
this.x = - this.x;
this.y = - this.y;
return this;
}
/**
* Calculates the dot product of the given vector with this instance.
*
* @param {Vector2} v - The vector to compute the dot product with.
* @return {number} The result of the dot product.
*/
dot( v ) {
return this.x * v.x + this.y * v.y;
}
/**
* Calculates the cross product of the given vector with this instance.
*
* @param {Vector2} v - The vector to compute the cross product with.
* @return {number} The result of the cross product.
*/
cross( v ) {
return this.x * v.y - this.y * v.x;
}
/**
* Computes the square of the Euclidean length (straight-line length) from
* (0, 0) to (x, y). If you are comparing the lengths of vectors, you should
* compare the length squared instead as it is slightly more efficient to calculate.
*
* @return {number} The square length of this vector.
*/
lengthSq() {
return this.x * this.x + this.y * this.y;
}
/**
* Computes the Euclidean length (straight-line length) from (0, 0) to (x, y).
*
* @return {number} The length of this vector.
*/
length() {
return Math.sqrt( this.x * this.x + this.y * this.y );
}
/**
* Computes the Manhattan length of this vector.
*
* @return {number} The length of this vector.
*/
manhattanLength() {
return Math.abs( this.x ) + Math.abs( this.y );
}
/**
* Converts this vector to a unit vector - that is, sets it equal to a vector
* with the same direction as this one, but with a vector length of `1`.
*
* @return {Vector2} A reference to this vector.
*/
normalize() {
return this.divideScalar( this.length() || 1 );
}
/**
* Computes the angle in radians of this vector with respect to the positive x-axis.
*
* @return {number} The angle in radians.
*/
angle() {
const angle = Math.atan2( - this.y, - this.x ) + Math.PI;
return angle;
}
/**
* Returns the angle between the given vector and this instance in radians.
*
* @param {Vector2} v - The vector to compute the angle with.
* @return {number} The angle in radians.
*/
angleTo( v ) {
const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() );
if ( denominator === 0 ) return Math.PI / 2;
const theta = this.dot( v ) / denominator;
// clamp, to handle numerical problems
return Math.acos( clamp( theta, - 1, 1 ) );
}
/**
* Computes the distance from the given vector to this instance.
*
* @param {Vector2} v - The vector to compute the distance to.
* @return {number} The distance.
*/
distanceTo( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
}
/**
* Computes the squared distance from the given vector to this instance.
* If you are just comparing the distance with another distance, you should compare
* the distance squared instead as it is slightly more efficient to calculate.
*
* @param {Vector2} v - The vector to compute the squared distance to.
* @return {number} The squared distance.
*/
distanceToSquared( v ) {
const dx = this.x - v.x, dy = this.y - v.y;
return dx * dx + dy * dy;
}
/**
* Computes the Manhattan distance from the given vector to this instance.
*
* @param {Vector2} v - The vector to compute the Manhattan distance to.
* @return {number} The Manhattan distance.
*/
manhattanDistanceTo( v ) {
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );
}
/**
* Sets this vector to a vector with the same direction as this one, but
* with the specified length.
*
* @param {number} length - The new length of this vector.
* @return {Vector2} A reference to this vector.
*/
setLength( length ) {
return this.normalize().multiplyScalar( length );
}
/**
* Linearly interpolates between the given vector and this instance, where
* alpha is the percent distance along the line - alpha = 0 will be this
* vector, and alpha = 1 will be the given one.
*
* @param {Vector2} v - The vector to interpolate towards.
* @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`.
* @return {Vector2} A reference to this vector.
*/
lerp( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
return this;
}
/**
* Linearly interpolates between the given vectors, where alpha is the percent
* distance along the line - alpha = 0 will be first vector, and alpha = 1 will
* be the second one. The result is stored in this instance.
*
* @param {Vector2} v1 - The first vector.
* @param {Vector2} v2 - The second vector.
* @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`.
* @return {Vector2} A reference to this vector.
*/
lerpVectors( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
return this;
}
/**
* Returns `true` if this vector is equal with the given one.
*
* @param {Vector2} v - The vector to test for equality.
* @return {boolean} Whether this vector is equal with the given one.
*/
equals( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) );
}
/**
* Sets this vector's x value to be `array[ offset ]` and y
* value to be `array[ offset + 1 ]`.
*
* @param {Array<number>} array - An array holding the vector component values.
* @param {number} [offset=0] - The offset into the array.
* @return {Vector2} A reference to this vector.
*/
fromArray( array, offset = 0 ) {
this.x = array[ offset ];
this.y = array[ offset + 1 ];
return this;
}
/**
* Writes the components of this vector to the given array. If no array is provided,
* the method returns a new instance.
*
* @param {Array<number>} [array=[]] - The target array holding the vector components.
* @param {number} [offset=0] - Index of the first element in the array.
* @return {Array<number>} The vector components.
*/
toArray( array = [], offset = 0 ) {
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
return array;
}
/**
* Sets the components of this vector from the given buffer attribute.
*
* @param {BufferAttribute} attribute - The buffer attribute holding vector data.
* @param {number} index - The index into the attribute.
* @return {Vector2} A reference to this vector.
*/
fromBufferAttribute( attribute, index ) {
this.x = attribute.getX( index );
this.y = attribute.getY( index );
return this;
}
/**
* Rotates this vector around the given center by the given angle.
*
* @param {Vector2} center - The point around which to rotate.
* @param {number} angle - The angle to rotate, in radians.
* @return {Vector2} A reference to this vector.
*/
rotateAround( center, angle ) {
const c = Math.cos( angle ), s = Math.sin( angle );
const x = this.x - center.x;
const y = this.y - center.y;
this.x = x * c - y * s + center.x;
this.y = x * s + y * c + center.y;
return this;
}
/**
* Sets each component of this vector to a pseudo-random value between `0` and
* `1`, excluding `1`.
*
* @return {Vector2} A reference to this vector.
*/
random() {
this.x = Math.random();
this.y = Math.random();
return this;
}
*[ Symbol.iterator ]() {
yield this.x;
yield this.y;
}
}
export { Vector2 };