UNPKG

three

Version:

JavaScript 3D library

1,281 lines (963 loc) 33.9 kB
import { WebGLCoordinateSystem, WebGPUCoordinateSystem } from '../constants.js'; import { Vector3 } from './Vector3.js'; /** * Represents a 4x4 matrix. * * The most common use of a 4x4 matrix in 3D computer graphics is as a transformation matrix. * For an introduction to transformation matrices as used in WebGL, check out [this tutorial]{@link https://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices} * * This allows a 3D vector representing a point in 3D space to undergo * transformations such as translation, rotation, shear, scale, reflection, * orthogonal or perspective projection and so on, by being multiplied by the * matrix. This is known as `applying` the matrix to the vector. * * A Note on Row-Major and Column-Major Ordering: * * The constructor and {@link Matrix3#set} method take arguments in * [row-major]{@link https://en.wikipedia.org/wiki/Row-_and_column-major_order#Column-major_order} * order, while internally they are stored in the {@link Matrix3#elements} array in column-major order. * This means that calling: * ```js * const m = new THREE.Matrix4(); * m.set( 11, 12, 13, 14, * 21, 22, 23, 24, * 31, 32, 33, 34, * 41, 42, 43, 44 ); * ``` * will result in the elements array containing: * ```js * m.elements = [ 11, 21, 31, 41, * 12, 22, 32, 42, * 13, 23, 33, 43, * 14, 24, 34, 44 ]; * ``` * and internally all calculations are performed using column-major ordering. * However, as the actual ordering makes no difference mathematically and * most people are used to thinking about matrices in row-major order, the * three.js documentation shows matrices in row-major order. Just bear in * mind that if you are reading the source code, you'll have to take the * transpose of any matrices outlined here to make sense of the calculations. */ class Matrix4 { /** * Constructs a new 4x4 matrix. The arguments are supposed to be * in row-major order. If no arguments are provided, the constructor * initializes the matrix as an identity matrix. * * @param {number} [n11] - 1-1 matrix element. * @param {number} [n12] - 1-2 matrix element. * @param {number} [n13] - 1-3 matrix element. * @param {number} [n14] - 1-4 matrix element. * @param {number} [n21] - 2-1 matrix element. * @param {number} [n22] - 2-2 matrix element. * @param {number} [n23] - 2-3 matrix element. * @param {number} [n24] - 2-4 matrix element. * @param {number} [n31] - 3-1 matrix element. * @param {number} [n32] - 3-2 matrix element. * @param {number} [n33] - 3-3 matrix element. * @param {number} [n34] - 3-4 matrix element. * @param {number} [n41] - 4-1 matrix element. * @param {number} [n42] - 4-2 matrix element. * @param {number} [n43] - 4-3 matrix element. * @param {number} [n44] - 4-4 matrix element. */ constructor( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { /** * This flag can be used for type testing. * * @type {boolean} * @readonly * @default true */ Matrix4.prototype.isMatrix4 = true; /** * A column-major list of matrix values. * * @type {Array<number>} */ this.elements = [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ]; if ( n11 !== undefined ) { this.set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ); } } /** * Sets the elements of the matrix.The arguments are supposed to be * in row-major order. * * @param {number} [n11] - 1-1 matrix element. * @param {number} [n12] - 1-2 matrix element. * @param {number} [n13] - 1-3 matrix element. * @param {number} [n14] - 1-4 matrix element. * @param {number} [n21] - 2-1 matrix element. * @param {number} [n22] - 2-2 matrix element. * @param {number} [n23] - 2-3 matrix element. * @param {number} [n24] - 2-4 matrix element. * @param {number} [n31] - 3-1 matrix element. * @param {number} [n32] - 3-2 matrix element. * @param {number} [n33] - 3-3 matrix element. * @param {number} [n34] - 3-4 matrix element. * @param {number} [n41] - 4-1 matrix element. * @param {number} [n42] - 4-2 matrix element. * @param {number} [n43] - 4-3 matrix element. * @param {number} [n44] - 4-4 matrix element. * @return {Matrix4} A reference to this matrix. */ set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { const te = this.elements; te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14; te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24; te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34; te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44; return this; } /** * Sets this matrix to the 4x4 identity matrix. * * @return {Matrix4} A reference to this matrix. */ identity() { this.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; } /** * Returns a matrix with copied values from this instance. * * @return {Matrix4} A clone of this instance. */ clone() { return new Matrix4().fromArray( this.elements ); } /** * Copies the values of the given matrix to this instance. * * @param {Matrix4} m - The matrix to copy. * @return {Matrix4} A reference to this matrix. */ copy( m ) { const te = this.elements; const me = m.elements; te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ]; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ]; return this; } /** * Copies the translation component of the given matrix * into this matrix's translation component. * * @param {Matrix4} m - The matrix to copy the translation component. * @return {Matrix4} A reference to this matrix. */ copyPosition( m ) { const te = this.elements, me = m.elements; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; return this; } /** * Set the upper 3x3 elements of this matrix to the values of given 3x3 matrix. * * @param {Matrix3} m - The 3x3 matrix. * @return {Matrix4} A reference to this matrix. */ setFromMatrix3( m ) { const me = m.elements; this.set( me[ 0 ], me[ 3 ], me[ 6 ], 0, me[ 1 ], me[ 4 ], me[ 7 ], 0, me[ 2 ], me[ 5 ], me[ 8 ], 0, 0, 0, 0, 1 ); return this; } /** * Extracts the basis of this matrix into the three axis vectors provided. * * @param {Vector3} xAxis - The basis's x axis. * @param {Vector3} yAxis - The basis's y axis. * @param {Vector3} zAxis - The basis's z axis. * @return {Matrix4} A reference to this matrix. */ extractBasis( xAxis, yAxis, zAxis ) { xAxis.setFromMatrixColumn( this, 0 ); yAxis.setFromMatrixColumn( this, 1 ); zAxis.setFromMatrixColumn( this, 2 ); return this; } /** * Sets the given basis vectors to this matrix. * * @param {Vector3} xAxis - The basis's x axis. * @param {Vector3} yAxis - The basis's y axis. * @param {Vector3} zAxis - The basis's z axis. * @return {Matrix4} A reference to this matrix. */ makeBasis( xAxis, yAxis, zAxis ) { this.set( xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1 ); return this; } /** * Extracts the rotation component of the given matrix * into this matrix's rotation component. * * Note: This method does not support reflection matrices. * * @param {Matrix4} m - The matrix. * @return {Matrix4} A reference to this matrix. */ extractRotation( m ) { const te = this.elements; const me = m.elements; const scaleX = 1 / _v1.setFromMatrixColumn( m, 0 ).length(); const scaleY = 1 / _v1.setFromMatrixColumn( m, 1 ).length(); const scaleZ = 1 / _v1.setFromMatrixColumn( m, 2 ).length(); te[ 0 ] = me[ 0 ] * scaleX; te[ 1 ] = me[ 1 ] * scaleX; te[ 2 ] = me[ 2 ] * scaleX; te[ 3 ] = 0; te[ 4 ] = me[ 4 ] * scaleY; te[ 5 ] = me[ 5 ] * scaleY; te[ 6 ] = me[ 6 ] * scaleY; te[ 7 ] = 0; te[ 8 ] = me[ 8 ] * scaleZ; te[ 9 ] = me[ 9 ] * scaleZ; te[ 10 ] = me[ 10 ] * scaleZ; te[ 11 ] = 0; te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; } /** * Sets the rotation component (the upper left 3x3 matrix) of this matrix to * the rotation specified by the given Euler angles. The rest of * the matrix is set to the identity. Depending on the {@link Euler#order}, * there are six possible outcomes. See [this page]{@link https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix} * for a complete list. * * @param {Euler} euler - The Euler angles. * @return {Matrix4} A reference to this matrix. */ makeRotationFromEuler( euler ) { const te = this.elements; const x = euler.x, y = euler.y, z = euler.z; const a = Math.cos( x ), b = Math.sin( x ); const c = Math.cos( y ), d = Math.sin( y ); const e = Math.cos( z ), f = Math.sin( z ); if ( euler.order === 'XYZ' ) { const ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = - c * f; te[ 8 ] = d; te[ 1 ] = af + be * d; te[ 5 ] = ae - bf * d; te[ 9 ] = - b * c; te[ 2 ] = bf - ae * d; te[ 6 ] = be + af * d; te[ 10 ] = a * c; } else if ( euler.order === 'YXZ' ) { const ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce + df * b; te[ 4 ] = de * b - cf; te[ 8 ] = a * d; te[ 1 ] = a * f; te[ 5 ] = a * e; te[ 9 ] = - b; te[ 2 ] = cf * b - de; te[ 6 ] = df + ce * b; te[ 10 ] = a * c; } else if ( euler.order === 'ZXY' ) { const ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce - df * b; te[ 4 ] = - a * f; te[ 8 ] = de + cf * b; te[ 1 ] = cf + de * b; te[ 5 ] = a * e; te[ 9 ] = df - ce * b; te[ 2 ] = - a * d; te[ 6 ] = b; te[ 10 ] = a * c; } else if ( euler.order === 'ZYX' ) { const ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = be * d - af; te[ 8 ] = ae * d + bf; te[ 1 ] = c * f; te[ 5 ] = bf * d + ae; te[ 9 ] = af * d - be; te[ 2 ] = - d; te[ 6 ] = b * c; te[ 10 ] = a * c; } else if ( euler.order === 'YZX' ) { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = bd - ac * f; te[ 8 ] = bc * f + ad; te[ 1 ] = f; te[ 5 ] = a * e; te[ 9 ] = - b * e; te[ 2 ] = - d * e; te[ 6 ] = ad * f + bc; te[ 10 ] = ac - bd * f; } else if ( euler.order === 'XZY' ) { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = - f; te[ 8 ] = d * e; te[ 1 ] = ac * f + bd; te[ 5 ] = a * e; te[ 9 ] = ad * f - bc; te[ 2 ] = bc * f - ad; te[ 6 ] = b * e; te[ 10 ] = bd * f + ac; } // bottom row te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // last column te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; } /** * Sets the rotation component of this matrix to the rotation specified by * the given Quaternion as outlined [here]{@link https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion} * The rest of the matrix is set to the identity. * * @param {Quaternion} q - The Quaternion. * @return {Matrix4} A reference to this matrix. */ makeRotationFromQuaternion( q ) { return this.compose( _zero, q, _one ); } /** * Sets the rotation component of the transformation matrix, looking from `eye` towards * `target`, and oriented by the up-direction. * * @param {Vector3} eye - The eye vector. * @param {Vector3} target - The target vector. * @param {Vector3} up - The up vector. * @return {Matrix4} A reference to this matrix. */ lookAt( eye, target, up ) { const te = this.elements; _z.subVectors( eye, target ); if ( _z.lengthSq() === 0 ) { // eye and target are in the same position _z.z = 1; } _z.normalize(); _x.crossVectors( up, _z ); if ( _x.lengthSq() === 0 ) { // up and z are parallel if ( Math.abs( up.z ) === 1 ) { _z.x += 0.0001; } else { _z.z += 0.0001; } _z.normalize(); _x.crossVectors( up, _z ); } _x.normalize(); _y.crossVectors( _z, _x ); te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x; te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y; te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z; return this; } /** * Post-multiplies this matrix by the given 4x4 matrix. * * @param {Matrix4} m - The matrix to multiply with. * @return {Matrix4} A reference to this matrix. */ multiply( m ) { return this.multiplyMatrices( this, m ); } /** * Pre-multiplies this matrix by the given 4x4 matrix. * * @param {Matrix4} m - The matrix to multiply with. * @return {Matrix4} A reference to this matrix. */ premultiply( m ) { return this.multiplyMatrices( m, this ); } /** * Multiples the given 4x4 matrices and stores the result * in this matrix. * * @param {Matrix4} a - The first matrix. * @param {Matrix4} b - The second matrix. * @return {Matrix4} A reference to this matrix. */ multiplyMatrices( a, b ) { const ae = a.elements; const be = b.elements; const te = this.elements; const a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ]; const a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ]; const a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ]; const a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ]; const b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ]; const b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ]; const b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ]; const b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; } /** * Multiplies every component of the matrix by the given scalar. * * @param {number} s - The scalar. * @return {Matrix4} A reference to this matrix. */ multiplyScalar( s ) { const te = this.elements; te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s; te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s; te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s; te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s; return this; } /** * Computes and returns the determinant of this matrix. * * Based on the method outlined [here]{@link http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.html}. * * @return {number} The determinant. */ determinant() { const te = this.elements; const n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ]; const n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ]; const n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ]; const n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ]; //TODO: make this more efficient return ( n41 * ( + n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 ) + n42 * ( + n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31 ) + n43 * ( + n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31 ) + n44 * ( - n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31 ) ); } /** * Transposes this matrix in place. * * @return {Matrix4} A reference to this matrix. */ transpose() { const te = this.elements; let tmp; tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp; tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp; tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp; tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp; tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp; tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp; return this; } /** * Sets the position component for this matrix from the given vector, * without affecting the rest of the matrix. * * @param {number|Vector3} x - The x component of the vector or alternatively the vector object. * @param {number} y - The y component of the vector. * @param {number} z - The z component of the vector. * @return {Matrix4} A reference to this matrix. */ setPosition( x, y, z ) { const te = this.elements; if ( x.isVector3 ) { te[ 12 ] = x.x; te[ 13 ] = x.y; te[ 14 ] = x.z; } else { te[ 12 ] = x; te[ 13 ] = y; te[ 14 ] = z; } return this; } /** * Inverts this matrix, using the [analytic method]{@link https://en.wikipedia.org/wiki/Invertible_matrix#Analytic_solution}. * You can not invert with a determinant of zero. If you attempt this, the method produces * a zero matrix instead. * * @return {Matrix4} A reference to this matrix. */ invert() { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm const te = this.elements, n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n41 = te[ 3 ], n12 = te[ 4 ], n22 = te[ 5 ], n32 = te[ 6 ], n42 = te[ 7 ], n13 = te[ 8 ], n23 = te[ 9 ], n33 = te[ 10 ], n43 = te[ 11 ], n14 = te[ 12 ], n24 = te[ 13 ], n34 = te[ 14 ], n44 = te[ 15 ], t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ); const detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv; te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv; te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv; te[ 4 ] = t12 * detInv; te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv; te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv; te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv; te[ 8 ] = t13 * detInv; te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv; te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv; te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv; te[ 12 ] = t14 * detInv; te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv; te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv; te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv; return this; } /** * Multiplies the columns of this matrix by the given vector. * * @param {Vector3} v - The scale vector. * @return {Matrix4} A reference to this matrix. */ scale( v ) { const te = this.elements; const x = v.x, y = v.y, z = v.z; te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z; te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z; te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z; te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z; return this; } /** * Gets the maximum scale value of the three axes. * * @return {number} The maximum scale. */ getMaxScaleOnAxis() { const te = this.elements; const scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ]; const scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ]; const scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ]; return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) ); } /** * Sets this matrix as a translation transform from the given vector. * * @param {number|Vector3} x - The amount to translate in the X axis or alternatively a translation vector. * @param {number} y - The amount to translate in the Y axis. * @param {number} z - The amount to translate in the z axis. * @return {Matrix4} A reference to this matrix. */ makeTranslation( x, y, z ) { if ( x.isVector3 ) { this.set( 1, 0, 0, x.x, 0, 1, 0, x.y, 0, 0, 1, x.z, 0, 0, 0, 1 ); } else { this.set( 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 ); } return this; } /** * Sets this matrix as a rotational transformation around the X axis by * the given angle. * * @param {number} theta - The rotation in radians. * @return {Matrix4} A reference to this matrix. */ makeRotationX( theta ) { const c = Math.cos( theta ), s = Math.sin( theta ); this.set( 1, 0, 0, 0, 0, c, - s, 0, 0, s, c, 0, 0, 0, 0, 1 ); return this; } /** * Sets this matrix as a rotational transformation around the Y axis by * the given angle. * * @param {number} theta - The rotation in radians. * @return {Matrix4} A reference to this matrix. */ makeRotationY( theta ) { const c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, 0, s, 0, 0, 1, 0, 0, - s, 0, c, 0, 0, 0, 0, 1 ); return this; } /** * Sets this matrix as a rotational transformation around the Z axis by * the given angle. * * @param {number} theta - The rotation in radians. * @return {Matrix4} A reference to this matrix. */ makeRotationZ( theta ) { const c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, - s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; } /** * Sets this matrix as a rotational transformation around the given axis by * the given angle. * * This is a somewhat controversial but mathematically sound alternative to * rotating via Quaternions. See the discussion [here]{@link https://www.gamedev.net/articles/programming/math-and-physics/do-we-really-need-quaternions-r1199}. * * @param {Vector3} axis - The normalized rotation axis. * @param {number} angle - The rotation in radians. * @return {Matrix4} A reference to this matrix. */ makeRotationAxis( axis, angle ) { // Based on http://www.gamedev.net/reference/articles/article1199.asp const c = Math.cos( angle ); const s = Math.sin( angle ); const t = 1 - c; const x = axis.x, y = axis.y, z = axis.z; const tx = t * x, ty = t * y; this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1 ); return this; } /** * Sets this matrix as a scale transformation. * * @param {number} x - The amount to scale in the X axis. * @param {number} y - The amount to scale in the Y axis. * @param {number} z - The amount to scale in the Z axis. * @return {Matrix4} A reference to this matrix. */ makeScale( x, y, z ) { this.set( x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 ); return this; } /** * Sets this matrix as a shear transformation. * * @param {number} xy - The amount to shear X by Y. * @param {number} xz - The amount to shear X by Z. * @param {number} yx - The amount to shear Y by X. * @param {number} yz - The amount to shear Y by Z. * @param {number} zx - The amount to shear Z by X. * @param {number} zy - The amount to shear Z by Y. * @return {Matrix4} A reference to this matrix. */ makeShear( xy, xz, yx, yz, zx, zy ) { this.set( 1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1 ); return this; } /** * Sets this matrix to the transformation composed of the given position, * rotation (Quaternion) and scale. * * @param {Vector3} position - The position vector. * @param {Quaternion} quaternion - The rotation as a Quaternion. * @param {Vector3} scale - The scale vector. * @return {Matrix4} A reference to this matrix. */ compose( position, quaternion, scale ) { const te = this.elements; const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w; const x2 = x + x, y2 = y + y, z2 = z + z; const xx = x * x2, xy = x * y2, xz = x * z2; const yy = y * y2, yz = y * z2, zz = z * z2; const wx = w * x2, wy = w * y2, wz = w * z2; const sx = scale.x, sy = scale.y, sz = scale.z; te[ 0 ] = ( 1 - ( yy + zz ) ) * sx; te[ 1 ] = ( xy + wz ) * sx; te[ 2 ] = ( xz - wy ) * sx; te[ 3 ] = 0; te[ 4 ] = ( xy - wz ) * sy; te[ 5 ] = ( 1 - ( xx + zz ) ) * sy; te[ 6 ] = ( yz + wx ) * sy; te[ 7 ] = 0; te[ 8 ] = ( xz + wy ) * sz; te[ 9 ] = ( yz - wx ) * sz; te[ 10 ] = ( 1 - ( xx + yy ) ) * sz; te[ 11 ] = 0; te[ 12 ] = position.x; te[ 13 ] = position.y; te[ 14 ] = position.z; te[ 15 ] = 1; return this; } /** * Decomposes this matrix into its position, rotation and scale components * and provides the result in the given objects. * * Note: Not all matrices are decomposable in this way. For example, if an * object has a non-uniformly scaled parent, then the object's world matrix * may not be decomposable, and this method may not be appropriate. * * @param {Vector3} position - The position vector. * @param {Quaternion} quaternion - The rotation as a Quaternion. * @param {Vector3} scale - The scale vector. * @return {Matrix4} A reference to this matrix. */ decompose( position, quaternion, scale ) { const te = this.elements; let sx = _v1.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length(); const sy = _v1.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length(); const sz = _v1.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length(); // if determine is negative, we need to invert one scale const det = this.determinant(); if ( det < 0 ) sx = - sx; position.x = te[ 12 ]; position.y = te[ 13 ]; position.z = te[ 14 ]; // scale the rotation part _m1.copy( this ); const invSX = 1 / sx; const invSY = 1 / sy; const invSZ = 1 / sz; _m1.elements[ 0 ] *= invSX; _m1.elements[ 1 ] *= invSX; _m1.elements[ 2 ] *= invSX; _m1.elements[ 4 ] *= invSY; _m1.elements[ 5 ] *= invSY; _m1.elements[ 6 ] *= invSY; _m1.elements[ 8 ] *= invSZ; _m1.elements[ 9 ] *= invSZ; _m1.elements[ 10 ] *= invSZ; quaternion.setFromRotationMatrix( _m1 ); scale.x = sx; scale.y = sy; scale.z = sz; return this; } /** * Creates a perspective projection matrix. This is used internally by * {@link PerspectiveCamera#updateProjectionMatrix}. * @param {number} left - Left boundary of the viewing frustum at the near plane. * @param {number} right - Right boundary of the viewing frustum at the near plane. * @param {number} top - Top boundary of the viewing frustum at the near plane. * @param {number} bottom - Bottom boundary of the viewing frustum at the near plane. * @param {number} near - The distance from the camera to the near plane. * @param {number} far - The distance from the camera to the far plane. * @param {(WebGLCoordinateSystem|WebGPUCoordinateSystem)} [coordinateSystem=WebGLCoordinateSystem] - The coordinate system. * @return {Matrix4} A reference to this matrix. */ makePerspective( left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem ) { const te = this.elements; const x = 2 * near / ( right - left ); const y = 2 * near / ( top - bottom ); const a = ( right + left ) / ( right - left ); const b = ( top + bottom ) / ( top - bottom ); let c, d; if ( coordinateSystem === WebGLCoordinateSystem ) { c = - ( far + near ) / ( far - near ); d = ( - 2 * far * near ) / ( far - near ); } else if ( coordinateSystem === WebGPUCoordinateSystem ) { c = - far / ( far - near ); d = ( - far * near ) / ( far - near ); } else { throw new Error( 'THREE.Matrix4.makePerspective(): Invalid coordinate system: ' + coordinateSystem ); } te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0; te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0; return this; } /** * Creates a orthographic projection matrix. This is used internally by * {@link OrthographicCamera#updateProjectionMatrix}. * @param {number} left - Left boundary of the viewing frustum at the near plane. * @param {number} right - Right boundary of the viewing frustum at the near plane. * @param {number} top - Top boundary of the viewing frustum at the near plane. * @param {number} bottom - Bottom boundary of the viewing frustum at the near plane. * @param {number} near - The distance from the camera to the near plane. * @param {number} far - The distance from the camera to the far plane. * @param {(WebGLCoordinateSystem|WebGPUCoordinateSystem)} [coordinateSystem=WebGLCoordinateSystem] - The coordinate system. * @return {Matrix4} A reference to this matrix. */ makeOrthographic( left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem ) { const te = this.elements; const w = 1.0 / ( right - left ); const h = 1.0 / ( top - bottom ); const p = 1.0 / ( far - near ); const x = ( right + left ) * w; const y = ( top + bottom ) * h; let z, zInv; if ( coordinateSystem === WebGLCoordinateSystem ) { z = ( far + near ) * p; zInv = - 2 * p; } else if ( coordinateSystem === WebGPUCoordinateSystem ) { z = near * p; zInv = - 1 * p; } else { throw new Error( 'THREE.Matrix4.makeOrthographic(): Invalid coordinate system: ' + coordinateSystem ); } te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x; te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = zInv; te[ 14 ] = - z; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1; return this; } /** * Returns `true` if this matrix is equal with the given one. * * @param {Matrix4} matrix - The matrix to test for equality. * @return {boolean} Whether this matrix is equal with the given one. */ equals( matrix ) { const te = this.elements; const me = matrix.elements; for ( let i = 0; i < 16; i ++ ) { if ( te[ i ] !== me[ i ] ) return false; } return true; } /** * Sets the elements of the matrix from the given array. * * @param {Array<number>} array - The matrix elements in column-major order. * @param {number} [offset=0] - Index of the first element in the array. * @return {Matrix4} A reference to this matrix. */ fromArray( array, offset = 0 ) { for ( let i = 0; i < 16; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; } /** * Writes the elements of this matrix to the given array. If no array is provided, * the method returns a new instance. * * @param {Array<number>} [array=[]] - The target array holding the matrix elements in column-major order. * @param {number} [offset=0] - Index of the first element in the array. * @return {Array<number>} The matrix elements in column-major order. */ toArray( array = [], offset = 0 ) { const te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; array[ offset + 9 ] = te[ 9 ]; array[ offset + 10 ] = te[ 10 ]; array[ offset + 11 ] = te[ 11 ]; array[ offset + 12 ] = te[ 12 ]; array[ offset + 13 ] = te[ 13 ]; array[ offset + 14 ] = te[ 14 ]; array[ offset + 15 ] = te[ 15 ]; return array; } } const _v1 = /*@__PURE__*/ new Vector3(); const _m1 = /*@__PURE__*/ new Matrix4(); const _zero = /*@__PURE__*/ new Vector3( 0, 0, 0 ); const _one = /*@__PURE__*/ new Vector3( 1, 1, 1 ); const _x = /*@__PURE__*/ new Vector3(); const _y = /*@__PURE__*/ new Vector3(); const _z = /*@__PURE__*/ new Vector3(); export { Matrix4 };