UNPKG

three

Version:

JavaScript 3D library

614 lines (457 loc) 13.9 kB
/** * Represents a 3x3 matrix. * * A Note on Row-Major and Column-Major Ordering: * * The constructor and {@link Matrix3#set} method take arguments in * [row-major]{@link https://en.wikipedia.org/wiki/Row-_and_column-major_order#Column-major_order} * order, while internally they are stored in the {@link Matrix3#elements} array in column-major order. * This means that calling: * ```js * const m = new THREE.Matrix(); * m.set( 11, 12, 13, * 21, 22, 23, * 31, 32, 33 ); * ``` * will result in the elements array containing: * ```js * m.elements = [ 11, 21, 31, * 12, 22, 32, * 13, 23, 33 ]; * ``` * and internally all calculations are performed using column-major ordering. * However, as the actual ordering makes no difference mathematically and * most people are used to thinking about matrices in row-major order, the * three.js documentation shows matrices in row-major order. Just bear in * mind that if you are reading the source code, you'll have to take the * transpose of any matrices outlined here to make sense of the calculations. */ class Matrix3 { /** * Constructs a new 3x3 matrix. The arguments are supposed to be * in row-major order. If no arguments are provided, the constructor * initializes the matrix as an identity matrix. * * @param {number} [n11] - 1-1 matrix element. * @param {number} [n12] - 1-2 matrix element. * @param {number} [n13] - 1-3 matrix element. * @param {number} [n21] - 2-1 matrix element. * @param {number} [n22] - 2-2 matrix element. * @param {number} [n23] - 2-3 matrix element. * @param {number} [n31] - 3-1 matrix element. * @param {number} [n32] - 3-2 matrix element. * @param {number} [n33] - 3-3 matrix element. */ constructor( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { /** * This flag can be used for type testing. * * @type {boolean} * @readonly * @default true */ Matrix3.prototype.isMatrix3 = true; /** * A column-major list of matrix values. * * @type {Array<number>} */ this.elements = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; if ( n11 !== undefined ) { this.set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ); } } /** * Sets the elements of the matrix.The arguments are supposed to be * in row-major order. * * @param {number} [n11] - 1-1 matrix element. * @param {number} [n12] - 1-2 matrix element. * @param {number} [n13] - 1-3 matrix element. * @param {number} [n21] - 2-1 matrix element. * @param {number} [n22] - 2-2 matrix element. * @param {number} [n23] - 2-3 matrix element. * @param {number} [n31] - 3-1 matrix element. * @param {number} [n32] - 3-2 matrix element. * @param {number} [n33] - 3-3 matrix element. * @return {Matrix3} A reference to this matrix. */ set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { const te = this.elements; te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31; te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32; te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33; return this; } /** * Sets this matrix to the 3x3 identity matrix. * * @return {Matrix3} A reference to this matrix. */ identity() { this.set( 1, 0, 0, 0, 1, 0, 0, 0, 1 ); return this; } /** * Copies the values of the given matrix to this instance. * * @param {Matrix3} m - The matrix to copy. * @return {Matrix3} A reference to this matrix. */ copy( m ) { const te = this.elements; const me = m.elements; te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; return this; } /** * Extracts the basis of this matrix into the three axis vectors provided. * * @param {Vector3} xAxis - The basis's x axis. * @param {Vector3} yAxis - The basis's y axis. * @param {Vector3} zAxis - The basis's z axis. * @return {Matrix3} A reference to this matrix. */ extractBasis( xAxis, yAxis, zAxis ) { xAxis.setFromMatrix3Column( this, 0 ); yAxis.setFromMatrix3Column( this, 1 ); zAxis.setFromMatrix3Column( this, 2 ); return this; } /** * Set this matrix to the upper 3x3 matrix of the given 4x4 matrix. * * @param {Matrix4} m - The 4x4 matrix. * @return {Matrix3} A reference to this matrix. */ setFromMatrix4( m ) { const me = m.elements; this.set( me[ 0 ], me[ 4 ], me[ 8 ], me[ 1 ], me[ 5 ], me[ 9 ], me[ 2 ], me[ 6 ], me[ 10 ] ); return this; } /** * Post-multiplies this matrix by the given 3x3 matrix. * * @param {Matrix3} m - The matrix to multiply with. * @return {Matrix3} A reference to this matrix. */ multiply( m ) { return this.multiplyMatrices( this, m ); } /** * Pre-multiplies this matrix by the given 3x3 matrix. * * @param {Matrix3} m - The matrix to multiply with. * @return {Matrix3} A reference to this matrix. */ premultiply( m ) { return this.multiplyMatrices( m, this ); } /** * Multiples the given 3x3 matrices and stores the result * in this matrix. * * @param {Matrix3} a - The first matrix. * @param {Matrix3} b - The second matrix. * @return {Matrix3} A reference to this matrix. */ multiplyMatrices( a, b ) { const ae = a.elements; const be = b.elements; const te = this.elements; const a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ]; const a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ]; const a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ]; const b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ]; const b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ]; const b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31; te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32; te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31; te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32; te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31; te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32; te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33; return this; } /** * Multiplies every component of the matrix by the given scalar. * * @param {number} s - The scalar. * @return {Matrix3} A reference to this matrix. */ multiplyScalar( s ) { const te = this.elements; te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s; te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s; te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s; return this; } /** * Computes and returns the determinant of this matrix. * * @return {number} The determinant. */ determinant() { const te = this.elements; const a = te[ 0 ], b = te[ 1 ], c = te[ 2 ], d = te[ 3 ], e = te[ 4 ], f = te[ 5 ], g = te[ 6 ], h = te[ 7 ], i = te[ 8 ]; return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; } /** * Inverts this matrix, using the [analytic method]{@link https://en.wikipedia.org/wiki/Invertible_matrix#Analytic_solution}. * You can not invert with a determinant of zero. If you attempt this, the method produces * a zero matrix instead. * * @return {Matrix3} A reference to this matrix. */ invert() { const te = this.elements, n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n12 = te[ 3 ], n22 = te[ 4 ], n32 = te[ 5 ], n13 = te[ 6 ], n23 = te[ 7 ], n33 = te[ 8 ], t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13, det = n11 * t11 + n21 * t12 + n31 * t13; if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 ); const detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv; te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv; te[ 3 ] = t12 * detInv; te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv; te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv; te[ 6 ] = t13 * detInv; te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv; te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv; return this; } /** * Transposes this matrix in place. * * @return {Matrix3} A reference to this matrix. */ transpose() { let tmp; const m = this.elements; tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp; tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp; tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp; return this; } /** * Computes the normal matrix which is the inverse transpose of the upper * left 3x3 portion of the given 4x4 matrix. * * @param {Matrix4} matrix4 - The 4x4 matrix. * @return {Matrix3} A reference to this matrix. */ getNormalMatrix( matrix4 ) { return this.setFromMatrix4( matrix4 ).invert().transpose(); } /** * Transposes this matrix into the supplied array, and returns itself unchanged. * * @param {Array<number>} r - An array to store the transposed matrix elements. * @return {Matrix3} A reference to this matrix. */ transposeIntoArray( r ) { const m = this.elements; r[ 0 ] = m[ 0 ]; r[ 1 ] = m[ 3 ]; r[ 2 ] = m[ 6 ]; r[ 3 ] = m[ 1 ]; r[ 4 ] = m[ 4 ]; r[ 5 ] = m[ 7 ]; r[ 6 ] = m[ 2 ]; r[ 7 ] = m[ 5 ]; r[ 8 ] = m[ 8 ]; return this; } /** * Sets the UV transform matrix from offset, repeat, rotation, and center. * * @param {number} tx - Offset x. * @param {number} ty - Offset y. * @param {number} sx - Repeat x. * @param {number} sy - Repeat y. * @param {number} rotation - Rotation, in radians. Positive values rotate counterclockwise. * @param {number} cx - Center x of rotation. * @param {number} cy - Center y of rotation * @return {Matrix3} A reference to this matrix. */ setUvTransform( tx, ty, sx, sy, rotation, cx, cy ) { const c = Math.cos( rotation ); const s = Math.sin( rotation ); this.set( sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx, - sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty, 0, 0, 1 ); return this; } /** * Scales this matrix with the given scalar values. * * @param {number} sx - The amount to scale in the X axis. * @param {number} sy - The amount to scale in the Y axis. * @return {Matrix3} A reference to this matrix. */ scale( sx, sy ) { this.premultiply( _m3.makeScale( sx, sy ) ); return this; } /** * Rotates this matrix by the given angle. * * @param {number} theta - The rotation in radians. * @return {Matrix3} A reference to this matrix. */ rotate( theta ) { this.premultiply( _m3.makeRotation( - theta ) ); return this; } /** * Translates this matrix by the given scalar values. * * @param {number} tx - The amount to translate in the X axis. * @param {number} ty - The amount to translate in the Y axis. * @return {Matrix3} A reference to this matrix. */ translate( tx, ty ) { this.premultiply( _m3.makeTranslation( tx, ty ) ); return this; } // for 2D Transforms /** * Sets this matrix as a 2D translation transform. * * @param {number|Vector2} x - The amount to translate in the X axis or alternatively a translation vector. * @param {number} y - The amount to translate in the Y axis. * @return {Matrix3} A reference to this matrix. */ makeTranslation( x, y ) { if ( x.isVector2 ) { this.set( 1, 0, x.x, 0, 1, x.y, 0, 0, 1 ); } else { this.set( 1, 0, x, 0, 1, y, 0, 0, 1 ); } return this; } /** * Sets this matrix as a 2D rotational transformation. * * @param {number} theta - The rotation in radians. * @return {Matrix3} A reference to this matrix. */ makeRotation( theta ) { // counterclockwise const c = Math.cos( theta ); const s = Math.sin( theta ); this.set( c, - s, 0, s, c, 0, 0, 0, 1 ); return this; } /** * Sets this matrix as a 2D scale transform. * * @param {number} x - The amount to scale in the X axis. * @param {number} y - The amount to scale in the Y axis. * @return {Matrix3} A reference to this matrix. */ makeScale( x, y ) { this.set( x, 0, 0, 0, y, 0, 0, 0, 1 ); return this; } /** * Returns `true` if this matrix is equal with the given one. * * @param {Matrix3} matrix - The matrix to test for equality. * @return {boolean} Whether this matrix is equal with the given one. */ equals( matrix ) { const te = this.elements; const me = matrix.elements; for ( let i = 0; i < 9; i ++ ) { if ( te[ i ] !== me[ i ] ) return false; } return true; } /** * Sets the elements of the matrix from the given array. * * @param {Array<number>} array - The matrix elements in column-major order. * @param {number} [offset=0] - Index of the first element in the array. * @return {Matrix3} A reference to this matrix. */ fromArray( array, offset = 0 ) { for ( let i = 0; i < 9; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; } /** * Writes the elements of this matrix to the given array. If no array is provided, * the method returns a new instance. * * @param {Array<number>} [array=[]] - The target array holding the matrix elements in column-major order. * @param {number} [offset=0] - Index of the first element in the array. * @return {Array<number>} The matrix elements in column-major order. */ toArray( array = [], offset = 0 ) { const te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; return array; } /** * Returns a matrix with copied values from this instance. * * @return {Matrix3} A clone of this instance. */ clone() { return new this.constructor().fromArray( this.elements ); } } const _m3 = /*@__PURE__*/ new Matrix3(); export { Matrix3 };