UNPKG

three

Version:

JavaScript 3D library

750 lines (613 loc) 21.8 kB
const _lut = [ '00', '01', '02', '03', '04', '05', '06', '07', '08', '09', '0a', '0b', '0c', '0d', '0e', '0f', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '1a', '1b', '1c', '1d', '1e', '1f', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '2a', '2b', '2c', '2d', '2e', '2f', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '3a', '3b', '3c', '3d', '3e', '3f', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '4a', '4b', '4c', '4d', '4e', '4f', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '5a', '5b', '5c', '5d', '5e', '5f', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '6a', '6b', '6c', '6d', '6e', '6f', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '7a', '7b', '7c', '7d', '7e', '7f', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '8a', '8b', '8c', '8d', '8e', '8f', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '9a', '9b', '9c', '9d', '9e', '9f', 'a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'aa', 'ab', 'ac', 'ad', 'ae', 'af', 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9', 'ba', 'bb', 'bc', 'bd', 'be', 'bf', 'c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9', 'ca', 'cb', 'cc', 'cd', 'ce', 'cf', 'd0', 'd1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8', 'd9', 'da', 'db', 'dc', 'dd', 'de', 'df', 'e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6', 'e7', 'e8', 'e9', 'ea', 'eb', 'ec', 'ed', 'ee', 'ef', 'f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'fa', 'fb', 'fc', 'fd', 'fe', 'ff' ]; let _seed = 1234567; const DEG2RAD = Math.PI / 180; const RAD2DEG = 180 / Math.PI; /** * Generate a [UUID]{@link https://en.wikipedia.org/wiki/Universally_unique_identifier} * (universally unique identifier). * * @return {string} The UUID. */ function generateUUID() { // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 const d0 = Math.random() * 0xffffffff | 0; const d1 = Math.random() * 0xffffffff | 0; const d2 = Math.random() * 0xffffffff | 0; const d3 = Math.random() * 0xffffffff | 0; const uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' + _lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' + _lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] + _lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ]; // .toLowerCase() here flattens concatenated strings to save heap memory space. return uuid.toLowerCase(); } /** * Clamps the given value between min and max. * * @param {number} value - The value to clamp. * @param {number} min - The min value. * @param {number} max - The max value. * @return {number} The clamped value. */ function clamp( value, min, max ) { return Math.max( min, Math.min( max, value ) ); } /** * Computes the Euclidean modulo of the given parameters that * is `( ( n % m ) + m ) % m`. * * @param {number} n - The first parameter. * @param {number} m - The second parameter. * @return {number} The Euclidean modulo. */ function euclideanModulo( n, m ) { // https://en.wikipedia.org/wiki/Modulo_operation return ( ( n % m ) + m ) % m; } /** * Performs a linear mapping from range `<a1, a2>` to range `<b1, b2>` * for the given value. * * @param {number} x - The value to be mapped. * @param {number} a1 - Minimum value for range A. * @param {number} a2 - Maximum value for range A. * @param {number} b1 - Minimum value for range B. * @param {number} b2 - Maximum value for range B. * @return {number} The mapped value. */ function mapLinear( x, a1, a2, b1, b2 ) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); } /** * Returns the percentage in the closed interval `[0, 1]` of the given value * between the start and end point. * * @param {number} x - The start point * @param {number} y - The end point. * @param {number} value - A value between start and end. * @return {number} The interpolation factor. */ function inverseLerp( x, y, value ) { // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/ if ( x !== y ) { return ( value - x ) / ( y - x ); } else { return 0; } } /** * Returns a value linearly interpolated from two known points based on the given interval - * `t = 0` will return `x` and `t = 1` will return `y`. * * @param {number} x - The start point * @param {number} y - The end point. * @param {number} t - The interpolation factor in the closed interval `[0, 1]`. * @return {number} The interpolated value. */ function lerp( x, y, t ) { return ( 1 - t ) * x + t * y; } /** * Smoothly interpolate a number from `x` to `y` in a spring-like manner using a delta * time to maintain frame rate independent movement. For details, see * [Frame rate independent damping using lerp]{@link http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/}. * * @param {number} x - The current point. * @param {number} y - The target point. * @param {number} lambda - A higher lambda value will make the movement more sudden, * and a lower value will make the movement more gradual. * @param {number} dt - Delta time in seconds. * @return {number} The interpolated value. */ function damp( x, y, lambda, dt ) { return lerp( x, y, 1 - Math.exp( - lambda * dt ) ); } /** * Returns a value that alternates between `0` and the given `length` parameter. * * @param {number} x - The value to pingpong. * @param {number} [length=1] - The positive value the function will pingpong to. * @return {number} The alternated value. */ function pingpong( x, length = 1 ) { // https://www.desmos.com/calculator/vcsjnyz7x4 return length - Math.abs( euclideanModulo( x, length * 2 ) - length ); } /** * Returns a value in the range `[0,1]` that represents the percentage that `x` has * moved between `min` and `max`, but smoothed or slowed down the closer `x` is to * the `min` and `max`. * * See [Smoothstep]{@link http://en.wikipedia.org/wiki/Smoothstep} for more details. * * @param {number} x - The value to evaluate based on its position between min and max. * @param {number} min - The min value. Any x value below min will be `0`. * @param {number} max - The max value. Any x value above max will be `1`. * @return {number} The alternated value. */ function smoothstep( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * ( 3 - 2 * x ); } /** * A [variation on smoothstep]{@link https://en.wikipedia.org/wiki/Smoothstep#Variations} * that has zero 1st and 2nd order derivatives at x=0 and x=1. * * @param {number} x - The value to evaluate based on its position between min and max. * @param {number} min - The min value. Any x value below min will be `0`. * @param {number} max - The max value. Any x value above max will be `1`. * @return {number} The alternated value. */ function smootherstep( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * x * ( x * ( x * 6 - 15 ) + 10 ); } /** * Returns a random integer from `<low, high>` interval. * * @param {number} low - The lower value boundary. * @param {number} high - The upper value boundary * @return {number} A random integer. */ function randInt( low, high ) { return low + Math.floor( Math.random() * ( high - low + 1 ) ); } /** * Returns a random float from `<low, high>` interval. * * @param {number} low - The lower value boundary. * @param {number} high - The upper value boundary * @return {number} A random float. */ function randFloat( low, high ) { return low + Math.random() * ( high - low ); } /** * Returns a random integer from `<-range/2, range/2>` interval. * * @param {number} range - Defines the value range. * @return {number} A random float. */ function randFloatSpread( range ) { return range * ( 0.5 - Math.random() ); } /** * Returns a deterministic pseudo-random float in the interval `[0, 1]`. * * @param {number} [s] - The integer seed. * @return {number} A random float. */ function seededRandom( s ) { if ( s !== undefined ) _seed = s; // Mulberry32 generator let t = _seed += 0x6D2B79F5; t = Math.imul( t ^ t >>> 15, t | 1 ); t ^= t + Math.imul( t ^ t >>> 7, t | 61 ); return ( ( t ^ t >>> 14 ) >>> 0 ) / 4294967296; } /** * Converts degrees to radians. * * @param {number} degrees - A value in degrees. * @return {number} The converted value in radians. */ function degToRad( degrees ) { return degrees * DEG2RAD; } /** * Converts radians to degrees. * * @param {number} radians - A value in radians. * @return {number} The converted value in degrees. */ function radToDeg( radians ) { return radians * RAD2DEG; } /** * Returns `true` if the given number is a power of two. * * @param {number} value - The value to check. * @return {boolean} Whether the given number is a power of two or not. */ function isPowerOfTwo( value ) { return ( value & ( value - 1 ) ) === 0 && value !== 0; } /** * Returns the smallest power of two that is greater than or equal to the given number. * * @param {number} value - The value to find a POT for. * @return {number} The smallest power of two that is greater than or equal to the given number. */ function ceilPowerOfTwo( value ) { return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) ); } /** * Returns the largest power of two that is less than or equal to the given number. * * @param {number} value - The value to find a POT for. * @return {number} The largest power of two that is less than or equal to the given number. */ function floorPowerOfTwo( value ) { return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) ); } /** * Sets the given quaternion from the [Intrinsic Proper Euler Angles]{@link https://en.wikipedia.org/wiki/Euler_angles} * defined by the given angles and order. * * Rotations are applied to the axes in the order specified by order: * rotation by angle `a` is applied first, then by angle `b`, then by angle `c`. * * @param {Quaternion} q - The quaternion to set. * @param {number} a - The rotation applied to the first axis, in radians. * @param {number} b - The rotation applied to the second axis, in radians. * @param {number} c - The rotation applied to the third axis, in radians. * @param {('XYX'|'XZX'|'YXY'|'YZY'|'ZXZ'|'ZYZ')} order - A string specifying the axes order. */ function setQuaternionFromProperEuler( q, a, b, c, order ) { const cos = Math.cos; const sin = Math.sin; const c2 = cos( b / 2 ); const s2 = sin( b / 2 ); const c13 = cos( ( a + c ) / 2 ); const s13 = sin( ( a + c ) / 2 ); const c1_3 = cos( ( a - c ) / 2 ); const s1_3 = sin( ( a - c ) / 2 ); const c3_1 = cos( ( c - a ) / 2 ); const s3_1 = sin( ( c - a ) / 2 ); switch ( order ) { case 'XYX': q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 ); break; case 'YZY': q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 ); break; case 'ZXZ': q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 ); break; case 'XZX': q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 ); break; case 'YXY': q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 ); break; case 'ZYZ': q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 ); break; default: console.warn( 'THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order ); } } /** * Denormalizes the given value according to the given typed array. * * @param {number} value - The value to denormalize. * @param {TypedArray} array - The typed array that defines the data type of the value. * @return {number} The denormalize (float) value in the range `[0,1]`. */ function denormalize( value, array ) { switch ( array.constructor ) { case Float32Array: return value; case Uint32Array: return value / 4294967295.0; case Uint16Array: return value / 65535.0; case Uint8Array: return value / 255.0; case Int32Array: return Math.max( value / 2147483647.0, - 1.0 ); case Int16Array: return Math.max( value / 32767.0, - 1.0 ); case Int8Array: return Math.max( value / 127.0, - 1.0 ); default: throw new Error( 'Invalid component type.' ); } } /** * Normalizes the given value according to the given typed array. * * @param {number} value - The float value in the range `[0,1]` to normalize. * @param {TypedArray} array - The typed array that defines the data type of the value. * @return {number} The normalize value. */ function normalize( value, array ) { switch ( array.constructor ) { case Float32Array: return value; case Uint32Array: return Math.round( value * 4294967295.0 ); case Uint16Array: return Math.round( value * 65535.0 ); case Uint8Array: return Math.round( value * 255.0 ); case Int32Array: return Math.round( value * 2147483647.0 ); case Int16Array: return Math.round( value * 32767.0 ); case Int8Array: return Math.round( value * 127.0 ); default: throw new Error( 'Invalid component type.' ); } } /** * @class * @classdesc A collection of math utility functions. * @hideconstructor */ const MathUtils = { DEG2RAD: DEG2RAD, RAD2DEG: RAD2DEG, /** * Generate a [UUID]{@link https://en.wikipedia.org/wiki/Universally_unique_identifier} * (universally unique identifier). * * @static * @method * @return {string} The UUID. */ generateUUID: generateUUID, /** * Clamps the given value between min and max. * * @static * @method * @param {number} value - The value to clamp. * @param {number} min - The min value. * @param {number} max - The max value. * @return {number} The clamped value. */ clamp: clamp, /** * Computes the Euclidean modulo of the given parameters that * is `( ( n % m ) + m ) % m`. * * @static * @method * @param {number} n - The first parameter. * @param {number} m - The second parameter. * @return {number} The Euclidean modulo. */ euclideanModulo: euclideanModulo, /** * Performs a linear mapping from range `<a1, a2>` to range `<b1, b2>` * for the given value. * * @static * @method * @param {number} x - The value to be mapped. * @param {number} a1 - Minimum value for range A. * @param {number} a2 - Maximum value for range A. * @param {number} b1 - Minimum value for range B. * @param {number} b2 - Maximum value for range B. * @return {number} The mapped value. */ mapLinear: mapLinear, /** * Returns the percentage in the closed interval `[0, 1]` of the given value * between the start and end point. * * @static * @method * @param {number} x - The start point * @param {number} y - The end point. * @param {number} value - A value between start and end. * @return {number} The interpolation factor. */ inverseLerp: inverseLerp, /** * Returns a value linearly interpolated from two known points based on the given interval - * `t = 0` will return `x` and `t = 1` will return `y`. * * @static * @method * @param {number} x - The start point * @param {number} y - The end point. * @param {number} t - The interpolation factor in the closed interval `[0, 1]`. * @return {number} The interpolated value. */ lerp: lerp, /** * Smoothly interpolate a number from `x` to `y` in a spring-like manner using a delta * time to maintain frame rate independent movement. For details, see * [Frame rate independent damping using lerp]{@link http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/}. * * @static * @method * @param {number} x - The current point. * @param {number} y - The target point. * @param {number} lambda - A higher lambda value will make the movement more sudden, * and a lower value will make the movement more gradual. * @param {number} dt - Delta time in seconds. * @return {number} The interpolated value. */ damp: damp, /** * Returns a value that alternates between `0` and the given `length` parameter. * * @static * @method * @param {number} x - The value to pingpong. * @param {number} [length=1] - The positive value the function will pingpong to. * @return {number} The alternated value. */ pingpong: pingpong, /** * Returns a value in the range `[0,1]` that represents the percentage that `x` has * moved between `min` and `max`, but smoothed or slowed down the closer `x` is to * the `min` and `max`. * * See [Smoothstep]{@link http://en.wikipedia.org/wiki/Smoothstep} for more details. * * @static * @method * @param {number} x - The value to evaluate based on its position between min and max. * @param {number} min - The min value. Any x value below min will be `0`. * @param {number} max - The max value. Any x value above max will be `1`. * @return {number} The alternated value. */ smoothstep: smoothstep, /** * A [variation on smoothstep]{@link https://en.wikipedia.org/wiki/Smoothstep#Variations} * that has zero 1st and 2nd order derivatives at x=0 and x=1. * * @static * @method * @param {number} x - The value to evaluate based on its position between min and max. * @param {number} min - The min value. Any x value below min will be `0`. * @param {number} max - The max value. Any x value above max will be `1`. * @return {number} The alternated value. */ smootherstep: smootherstep, /** * Returns a random integer from `<low, high>` interval. * * @static * @method * @param {number} low - The lower value boundary. * @param {number} high - The upper value boundary * @return {number} A random integer. */ randInt: randInt, /** * Returns a random float from `<low, high>` interval. * * @static * @method * @param {number} low - The lower value boundary. * @param {number} high - The upper value boundary * @return {number} A random float. */ randFloat: randFloat, /** * Returns a random integer from `<-range/2, range/2>` interval. * * @static * @method * @param {number} range - Defines the value range. * @return {number} A random float. */ randFloatSpread: randFloatSpread, /** * Returns a deterministic pseudo-random float in the interval `[0, 1]`. * * @static * @method * @param {number} [s] - The integer seed. * @return {number} A random float. */ seededRandom: seededRandom, /** * Converts degrees to radians. * * @static * @method * @param {number} degrees - A value in degrees. * @return {number} The converted value in radians. */ degToRad: degToRad, /** * Converts radians to degrees. * * @static * @method * @param {number} radians - A value in radians. * @return {number} The converted value in degrees. */ radToDeg: radToDeg, /** * Returns `true` if the given number is a power of two. * * @static * @method * @param {number} value - The value to check. * @return {boolean} Whether the given number is a power of two or not. */ isPowerOfTwo: isPowerOfTwo, /** * Returns the smallest power of two that is greater than or equal to the given number. * * @static * @method * @param {number} value - The value to find a POT for. * @return {number} The smallest power of two that is greater than or equal to the given number. */ ceilPowerOfTwo: ceilPowerOfTwo, /** * Returns the largest power of two that is less than or equal to the given number. * * @static * @method * @param {number} value - The value to find a POT for. * @return {number} The largest power of two that is less than or equal to the given number. */ floorPowerOfTwo: floorPowerOfTwo, /** * Sets the given quaternion from the [Intrinsic Proper Euler Angles]{@link https://en.wikipedia.org/wiki/Euler_angles} * defined by the given angles and order. * * Rotations are applied to the axes in the order specified by order: * rotation by angle `a` is applied first, then by angle `b`, then by angle `c`. * * @static * @method * @param {Quaternion} q - The quaternion to set. * @param {number} a - The rotation applied to the first axis, in radians. * @param {number} b - The rotation applied to the second axis, in radians. * @param {number} c - The rotation applied to the third axis, in radians. * @param {('XYX'|'XZX'|'YXY'|'YZY'|'ZXZ'|'ZYZ')} order - A string specifying the axes order. */ setQuaternionFromProperEuler: setQuaternionFromProperEuler, /** * Normalizes the given value according to the given typed array. * * @static * @method * @param {number} value - The float value in the range `[0,1]` to normalize. * @param {TypedArray} array - The typed array that defines the data type of the value. * @return {number} The normalize value. */ normalize: normalize, /** * Denormalizes the given value according to the given typed array. * * @static * @method * @param {number} value - The value to denormalize. * @param {TypedArray} array - The typed array that defines the data type of the value. * @return {number} The denormalize (float) value in the range `[0,1]`. */ denormalize: denormalize }; export { DEG2RAD, RAD2DEG, generateUUID, clamp, euclideanModulo, mapLinear, inverseLerp, lerp, damp, pingpong, smoothstep, smootherstep, randInt, randFloat, randFloatSpread, seededRandom, degToRad, radToDeg, isPowerOfTwo, ceilPowerOfTwo, floorPowerOfTwo, setQuaternionFromProperEuler, normalize, denormalize, MathUtils };