UNPKG

three

Version:

JavaScript 3D library

778 lines (555 loc) 20.7 kB
import { Vector3 } from './Vector3.js'; /** * Represents an axis-aligned bounding box (AABB) in 3D space. */ class Box3 { /** * Constructs a new bounding box. * * @param {Vector3} [min=(Infinity,Infinity,Infinity)] - A vector representing the lower boundary of the box. * @param {Vector3} [max=(-Infinity,-Infinity,-Infinity)] - A vector representing the upper boundary of the box. */ constructor( min = new Vector3( + Infinity, + Infinity, + Infinity ), max = new Vector3( - Infinity, - Infinity, - Infinity ) ) { /** * This flag can be used for type testing. * * @type {boolean} * @readonly * @default true */ this.isBox3 = true; /** * The lower boundary of the box. * * @type {Vector3} */ this.min = min; /** * The upper boundary of the box. * * @type {Vector3} */ this.max = max; } /** * Sets the lower and upper boundaries of this box. * Please note that this method only copies the values from the given objects. * * @param {Vector3} min - The lower boundary of the box. * @param {Vector3} max - The upper boundary of the box. * @return {Box3} A reference to this bounding box. */ set( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; } /** * Sets the upper and lower bounds of this box so it encloses the position data * in the given array. * * @param {Array<number>} array - An array holding 3D position data. * @return {Box3} A reference to this bounding box. */ setFromArray( array ) { this.makeEmpty(); for ( let i = 0, il = array.length; i < il; i += 3 ) { this.expandByPoint( _vector.fromArray( array, i ) ); } return this; } /** * Sets the upper and lower bounds of this box so it encloses the position data * in the given buffer attribute. * * @param {BufferAttribute} attribute - A buffer attribute holding 3D position data. * @return {Box3} A reference to this bounding box. */ setFromBufferAttribute( attribute ) { this.makeEmpty(); for ( let i = 0, il = attribute.count; i < il; i ++ ) { this.expandByPoint( _vector.fromBufferAttribute( attribute, i ) ); } return this; } /** * Sets the upper and lower bounds of this box so it encloses the position data * in the given array. * * @param {Array<Vector3>} points - An array holding 3D position data as instances of {@link Vector3}. * @return {Box3} A reference to this bounding box. */ setFromPoints( points ) { this.makeEmpty(); for ( let i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; } /** * Centers this box on the given center vector and sets this box's width, height and * depth to the given size values. * * @param {Vector3} center - The center of the box. * @param {Vector3} size - The x, y and z dimensions of the box. * @return {Box3} A reference to this bounding box. */ setFromCenterAndSize( center, size ) { const halfSize = _vector.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; } /** * Computes the world-axis-aligned bounding box for the given 3D object * (including its children), accounting for the object's, and children's, * world transforms. The function may result in a larger box than strictly necessary. * * @param {Object3D} object - The 3D object to compute the bounding box for. * @param {boolean} [precise=false] - If set to `true`, the method computes the smallest * world-axis-aligned bounding box at the expense of more computation. * @return {Box3} A reference to this bounding box. */ setFromObject( object, precise = false ) { this.makeEmpty(); return this.expandByObject( object, precise ); } /** * Returns a new box with copied values from this instance. * * @return {Box3} A clone of this instance. */ clone() { return new this.constructor().copy( this ); } /** * Copies the values of the given box to this instance. * * @param {Box3} box - The box to copy. * @return {Box3} A reference to this bounding box. */ copy( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; } /** * Makes this box empty which means in encloses a zero space in 3D. * * @return {Box3} A reference to this bounding box. */ makeEmpty() { this.min.x = this.min.y = this.min.z = + Infinity; this.max.x = this.max.y = this.max.z = - Infinity; return this; } /** * Returns true if this box includes zero points within its bounds. * Note that a box with equal lower and upper bounds still includes one * point, the one both bounds share. * * @return {boolean} Whether this box is empty or not. */ isEmpty() { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z ); } /** * Returns the center point of this box. * * @param {Vector3} target - The target vector that is used to store the method's result. * @return {Vector3} The center point. */ getCenter( target ) { return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); } /** * Returns the dimensions of this box. * * @param {Vector3} target - The target vector that is used to store the method's result. * @return {Vector3} The size. */ getSize( target ) { return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min ); } /** * Expands the boundaries of this box to include the given point. * * @param {Vector3} point - The point that should be included by the bounding box. * @return {Box3} A reference to this bounding box. */ expandByPoint( point ) { this.min.min( point ); this.max.max( point ); return this; } /** * Expands this box equilaterally by the given vector. The width of this * box will be expanded by the x component of the vector in both * directions. The height of this box will be expanded by the y component of * the vector in both directions. The depth of this box will be * expanded by the z component of the vector in both directions. * * @param {Vector3} vector - The vector that should expand the bounding box. * @return {Box3} A reference to this bounding box. */ expandByVector( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; } /** * Expands each dimension of the box by the given scalar. If negative, the * dimensions of the box will be contracted. * * @param {number} scalar - The scalar value that should expand the bounding box. * @return {Box3} A reference to this bounding box. */ expandByScalar( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; } /** * Expands the boundaries of this box to include the given 3D object and * its children, accounting for the object's, and children's, world * transforms. The function may result in a larger box than strictly * necessary (unless the precise parameter is set to true). * * @param {Object3D} object - The 3D object that should expand the bounding box. * @param {boolean} precise - If set to `true`, the method expands the bounding box * as little as necessary at the expense of more computation. * @return {Box3} A reference to this bounding box. */ expandByObject( object, precise = false ) { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and children's, world transforms object.updateWorldMatrix( false, false ); const geometry = object.geometry; if ( geometry !== undefined ) { const positionAttribute = geometry.getAttribute( 'position' ); // precise AABB computation based on vertex data requires at least a position attribute. // instancing isn't supported so far and uses the normal (conservative) code path. if ( precise === true && positionAttribute !== undefined && object.isInstancedMesh !== true ) { for ( let i = 0, l = positionAttribute.count; i < l; i ++ ) { if ( object.isMesh === true ) { object.getVertexPosition( i, _vector ); } else { _vector.fromBufferAttribute( positionAttribute, i ); } _vector.applyMatrix4( object.matrixWorld ); this.expandByPoint( _vector ); } } else { if ( object.boundingBox !== undefined ) { // object-level bounding box if ( object.boundingBox === null ) { object.computeBoundingBox(); } _box.copy( object.boundingBox ); } else { // geometry-level bounding box if ( geometry.boundingBox === null ) { geometry.computeBoundingBox(); } _box.copy( geometry.boundingBox ); } _box.applyMatrix4( object.matrixWorld ); this.union( _box ); } } const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { this.expandByObject( children[ i ], precise ); } return this; } /** * Returns `true` if the given point lies within or on the boundaries of this box. * * @param {Vector3} point - The point to test. * @return {boolean} Whether the bounding box contains the given point or not. */ containsPoint( point ) { return point.x >= this.min.x && point.x <= this.max.x && point.y >= this.min.y && point.y <= this.max.y && point.z >= this.min.z && point.z <= this.max.z; } /** * Returns `true` if this bounding box includes the entirety of the given bounding box. * If this box and the given one are identical, this function also returns `true`. * * @param {Box3} box - The bounding box to test. * @return {boolean} Whether the bounding box contains the given bounding box or not. */ containsBox( box ) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z; } /** * Returns a point as a proportion of this box's width, height and depth. * * @param {Vector3} point - A point in 3D space. * @param {Vector3} target - The target vector that is used to store the method's result. * @return {Vector3} A point as a proportion of this box's width, height and depth. */ getParameter( point, target ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. return target.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ), ( point.z - this.min.z ) / ( this.max.z - this.min.z ) ); } /** * Returns `true` if the given bounding box intersects with this bounding box. * * @param {Box3} box - The bounding box to test. * @return {boolean} Whether the given bounding box intersects with this bounding box. */ intersectsBox( box ) { // using 6 splitting planes to rule out intersections. return box.max.x >= this.min.x && box.min.x <= this.max.x && box.max.y >= this.min.y && box.min.y <= this.max.y && box.max.z >= this.min.z && box.min.z <= this.max.z; } /** * Returns `true` if the given bounding sphere intersects with this bounding box. * * @param {Sphere} sphere - The bounding sphere to test. * @return {boolean} Whether the given bounding sphere intersects with this bounding box. */ intersectsSphere( sphere ) { // Find the point on the AABB closest to the sphere center. this.clampPoint( sphere.center, _vector ); // If that point is inside the sphere, the AABB and sphere intersect. return _vector.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius ); } /** * Returns `true` if the given plane intersects with this bounding box. * * @param {Plane} plane - The plane to test. * @return {boolean} Whether the given plane intersects with this bounding box. */ intersectsPlane( plane ) { // We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection. let min, max; if ( plane.normal.x > 0 ) { min = plane.normal.x * this.min.x; max = plane.normal.x * this.max.x; } else { min = plane.normal.x * this.max.x; max = plane.normal.x * this.min.x; } if ( plane.normal.y > 0 ) { min += plane.normal.y * this.min.y; max += plane.normal.y * this.max.y; } else { min += plane.normal.y * this.max.y; max += plane.normal.y * this.min.y; } if ( plane.normal.z > 0 ) { min += plane.normal.z * this.min.z; max += plane.normal.z * this.max.z; } else { min += plane.normal.z * this.max.z; max += plane.normal.z * this.min.z; } return ( min <= - plane.constant && max >= - plane.constant ); } /** * Returns `true` if the given triangle intersects with this bounding box. * * @param {Triangle} triangle - The triangle to test. * @return {boolean} Whether the given triangle intersects with this bounding box. */ intersectsTriangle( triangle ) { if ( this.isEmpty() ) { return false; } // compute box center and extents this.getCenter( _center ); _extents.subVectors( this.max, _center ); // translate triangle to aabb origin _v0.subVectors( triangle.a, _center ); _v1.subVectors( triangle.b, _center ); _v2.subVectors( triangle.c, _center ); // compute edge vectors for triangle _f0.subVectors( _v1, _v0 ); _f1.subVectors( _v2, _v1 ); _f2.subVectors( _v0, _v2 ); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) let axes = [ 0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y, _f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x, - _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0 ]; if ( ! satForAxes( axes, _v0, _v1, _v2, _extents ) ) { return false; } // test 3 face normals from the aabb axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; if ( ! satForAxes( axes, _v0, _v1, _v2, _extents ) ) { return false; } // finally testing the face normal of the triangle // use already existing triangle edge vectors here _triangleNormal.crossVectors( _f0, _f1 ); axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ]; return satForAxes( axes, _v0, _v1, _v2, _extents ); } /** * Clamps the given point within the bounds of this box. * * @param {Vector3} point - The point to clamp. * @param {Vector3} target - The target vector that is used to store the method's result. * @return {Vector3} The clamped point. */ clampPoint( point, target ) { return target.copy( point ).clamp( this.min, this.max ); } /** * Returns the euclidean distance from any edge of this box to the specified point. If * the given point lies inside of this box, the distance will be `0`. * * @param {Vector3} point - The point to compute the distance to. * @return {number} The euclidean distance. */ distanceToPoint( point ) { return this.clampPoint( point, _vector ).distanceTo( point ); } /** * Returns a bounding sphere that encloses this bounding box. * * @param {Sphere} target - The target sphere that is used to store the method's result. * @return {Sphere} The bounding sphere that encloses this bounding box. */ getBoundingSphere( target ) { if ( this.isEmpty() ) { target.makeEmpty(); } else { this.getCenter( target.center ); target.radius = this.getSize( _vector ).length() * 0.5; } return target; } /** * Computes the intersection of this bounding box and the given one, setting the upper * bound of this box to the lesser of the two boxes' upper bounds and the * lower bound of this box to the greater of the two boxes' lower bounds. If * there's no overlap, makes this box empty. * * @param {Box3} box - The bounding box to intersect with. * @return {Box3} A reference to this bounding box. */ intersect( box ) { this.min.max( box.min ); this.max.min( box.max ); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. if ( this.isEmpty() ) this.makeEmpty(); return this; } /** * Computes the union of this box and another and the given one, setting the upper * bound of this box to the greater of the two boxes' upper bounds and the * lower bound of this box to the lesser of the two boxes' lower bounds. * * @param {Box3} box - The bounding box that will be unioned with this instance. * @return {Box3} A reference to this bounding box. */ union( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; } /** * Transforms this bounding box by the given 4x4 transformation matrix. * * @param {Matrix4} matrix - The transformation matrix. * @return {Box3} A reference to this bounding box. */ applyMatrix4( matrix ) { // transform of empty box is an empty box. if ( this.isEmpty() ) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below _points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000 _points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001 _points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010 _points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011 _points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100 _points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101 _points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110 _points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111 this.setFromPoints( _points ); return this; } /** * Adds the given offset to both the upper and lower bounds of this bounding box, * effectively moving it in 3D space. * * @param {Vector3} offset - The offset that should be used to translate the bounding box. * @return {Box3} A reference to this bounding box. */ translate( offset ) { this.min.add( offset ); this.max.add( offset ); return this; } /** * Returns `true` if this bounding box is equal with the given one. * * @param {Box3} box - The box to test for equality. * @return {boolean} Whether this bounding box is equal with the given one. */ equals( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } } const _points = [ /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3() ]; const _vector = /*@__PURE__*/ new Vector3(); const _box = /*@__PURE__*/ new Box3(); // triangle centered vertices const _v0 = /*@__PURE__*/ new Vector3(); const _v1 = /*@__PURE__*/ new Vector3(); const _v2 = /*@__PURE__*/ new Vector3(); // triangle edge vectors const _f0 = /*@__PURE__*/ new Vector3(); const _f1 = /*@__PURE__*/ new Vector3(); const _f2 = /*@__PURE__*/ new Vector3(); const _center = /*@__PURE__*/ new Vector3(); const _extents = /*@__PURE__*/ new Vector3(); const _triangleNormal = /*@__PURE__*/ new Vector3(); const _testAxis = /*@__PURE__*/ new Vector3(); function satForAxes( axes, v0, v1, v2, extents ) { for ( let i = 0, j = axes.length - 3; i <= j; i += 3 ) { _testAxis.fromArray( axes, i ); // project the aabb onto the separating axis const r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z ); // project all 3 vertices of the triangle onto the separating axis const p0 = v0.dot( _testAxis ); const p1 = v1.dot( _testAxis ); const p2 = v2.dot( _testAxis ); // actual test, basically see if either of the most extreme of the triangle points intersects r if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) { // points of the projected triangle are outside the projected half-length of the aabb // the axis is separating and we can exit return false; } } return true; } export { Box3 };