three
Version:
JavaScript 3D library
686 lines (551 loc) • 21.4 kB
JavaScript
/* eslint-disable */
// copy of mapbox/earcut version 3.0.1
// https://github.com/mapbox/earcut/tree/v3.0.1
export default function earcut(data, holeIndices, dim = 2) {
const hasHoles = holeIndices && holeIndices.length;
const outerLen = hasHoles ? holeIndices[0] * dim : data.length;
let outerNode = linkedList(data, 0, outerLen, dim, true);
const triangles = [];
if (!outerNode || outerNode.next === outerNode.prev) return triangles;
let minX, minY, invSize;
if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim);
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
if (data.length > 80 * dim) {
minX = Infinity;
minY = Infinity;
let maxX = -Infinity;
let maxY = -Infinity;
for (let i = dim; i < outerLen; i += dim) {
const x = data[i];
const y = data[i + 1];
if (x < minX) minX = x;
if (y < minY) minY = y;
if (x > maxX) maxX = x;
if (y > maxY) maxY = y;
}
// minX, minY and invSize are later used to transform coords into integers for z-order calculation
invSize = Math.max(maxX - minX, maxY - minY);
invSize = invSize !== 0 ? 32767 / invSize : 0;
}
earcutLinked(outerNode, triangles, dim, minX, minY, invSize, 0);
return triangles;
}
// create a circular doubly linked list from polygon points in the specified winding order
function linkedList(data, start, end, dim, clockwise) {
let last;
if (clockwise === (signedArea(data, start, end, dim) > 0)) {
for (let i = start; i < end; i += dim) last = insertNode(i / dim | 0, data[i], data[i + 1], last);
} else {
for (let i = end - dim; i >= start; i -= dim) last = insertNode(i / dim | 0, data[i], data[i + 1], last);
}
if (last && equals(last, last.next)) {
removeNode(last);
last = last.next;
}
return last;
}
// eliminate colinear or duplicate points
function filterPoints(start, end) {
if (!start) return start;
if (!end) end = start;
let p = start,
again;
do {
again = false;
if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) {
removeNode(p);
p = end = p.prev;
if (p === p.next) break;
again = true;
} else {
p = p.next;
}
} while (again || p !== end);
return end;
}
// main ear slicing loop which triangulates a polygon (given as a linked list)
function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) {
if (!ear) return;
// interlink polygon nodes in z-order
if (!pass && invSize) indexCurve(ear, minX, minY, invSize);
let stop = ear;
// iterate through ears, slicing them one by one
while (ear.prev !== ear.next) {
const prev = ear.prev;
const next = ear.next;
if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) {
triangles.push(prev.i, ear.i, next.i); // cut off the triangle
removeNode(ear);
// skipping the next vertex leads to less sliver triangles
ear = next.next;
stop = next.next;
continue;
}
ear = next;
// if we looped through the whole remaining polygon and can't find any more ears
if (ear === stop) {
// try filtering points and slicing again
if (!pass) {
earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1);
// if this didn't work, try curing all small self-intersections locally
} else if (pass === 1) {
ear = cureLocalIntersections(filterPoints(ear), triangles);
earcutLinked(ear, triangles, dim, minX, minY, invSize, 2);
// as a last resort, try splitting the remaining polygon into two
} else if (pass === 2) {
splitEarcut(ear, triangles, dim, minX, minY, invSize);
}
break;
}
}
}
// check whether a polygon node forms a valid ear with adjacent nodes
function isEar(ear) {
const a = ear.prev,
b = ear,
c = ear.next;
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
// now make sure we don't have other points inside the potential ear
const ax = a.x, bx = b.x, cx = c.x, ay = a.y, by = b.y, cy = c.y;
// triangle bbox
const x0 = Math.min(ax, bx, cx),
y0 = Math.min(ay, by, cy),
x1 = Math.max(ax, bx, cx),
y1 = Math.max(ay, by, cy);
let p = c.next;
while (p !== a) {
if (p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 &&
pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, p.x, p.y) &&
area(p.prev, p, p.next) >= 0) return false;
p = p.next;
}
return true;
}
function isEarHashed(ear, minX, minY, invSize) {
const a = ear.prev,
b = ear,
c = ear.next;
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
const ax = a.x, bx = b.x, cx = c.x, ay = a.y, by = b.y, cy = c.y;
// triangle bbox
const x0 = Math.min(ax, bx, cx),
y0 = Math.min(ay, by, cy),
x1 = Math.max(ax, bx, cx),
y1 = Math.max(ay, by, cy);
// z-order range for the current triangle bbox;
const minZ = zOrder(x0, y0, minX, minY, invSize),
maxZ = zOrder(x1, y1, minX, minY, invSize);
let p = ear.prevZ,
n = ear.nextZ;
// look for points inside the triangle in both directions
while (p && p.z >= minZ && n && n.z <= maxZ) {
if (p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c &&
pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
p = p.prevZ;
if (n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c &&
pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
n = n.nextZ;
}
// look for remaining points in decreasing z-order
while (p && p.z >= minZ) {
if (p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c &&
pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
p = p.prevZ;
}
// look for remaining points in increasing z-order
while (n && n.z <= maxZ) {
if (n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c &&
pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
n = n.nextZ;
}
return true;
}
// go through all polygon nodes and cure small local self-intersections
function cureLocalIntersections(start, triangles) {
let p = start;
do {
const a = p.prev,
b = p.next.next;
if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) {
triangles.push(a.i, p.i, b.i);
// remove two nodes involved
removeNode(p);
removeNode(p.next);
p = start = b;
}
p = p.next;
} while (p !== start);
return filterPoints(p);
}
// try splitting polygon into two and triangulate them independently
function splitEarcut(start, triangles, dim, minX, minY, invSize) {
// look for a valid diagonal that divides the polygon into two
let a = start;
do {
let b = a.next.next;
while (b !== a.prev) {
if (a.i !== b.i && isValidDiagonal(a, b)) {
// split the polygon in two by the diagonal
let c = splitPolygon(a, b);
// filter colinear points around the cuts
a = filterPoints(a, a.next);
c = filterPoints(c, c.next);
// run earcut on each half
earcutLinked(a, triangles, dim, minX, minY, invSize, 0);
earcutLinked(c, triangles, dim, minX, minY, invSize, 0);
return;
}
b = b.next;
}
a = a.next;
} while (a !== start);
}
// link every hole into the outer loop, producing a single-ring polygon without holes
function eliminateHoles(data, holeIndices, outerNode, dim) {
const queue = [];
for (let i = 0, len = holeIndices.length; i < len; i++) {
const start = holeIndices[i] * dim;
const end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
const list = linkedList(data, start, end, dim, false);
if (list === list.next) list.steiner = true;
queue.push(getLeftmost(list));
}
queue.sort(compareXYSlope);
// process holes from left to right
for (let i = 0; i < queue.length; i++) {
outerNode = eliminateHole(queue[i], outerNode);
}
return outerNode;
}
function compareXYSlope(a, b) {
let result = a.x - b.x;
// when the left-most point of 2 holes meet at a vertex, sort the holes counterclockwise so that when we find
// the bridge to the outer shell is always the point that they meet at.
if (result === 0) {
result = a.y - b.y;
if (result === 0) {
const aSlope = (a.next.y - a.y) / (a.next.x - a.x);
const bSlope = (b.next.y - b.y) / (b.next.x - b.x);
result = aSlope - bSlope;
}
}
return result;
}
// find a bridge between vertices that connects hole with an outer ring and and link it
function eliminateHole(hole, outerNode) {
const bridge = findHoleBridge(hole, outerNode);
if (!bridge) {
return outerNode;
}
const bridgeReverse = splitPolygon(bridge, hole);
// filter collinear points around the cuts
filterPoints(bridgeReverse, bridgeReverse.next);
return filterPoints(bridge, bridge.next);
}
// David Eberly's algorithm for finding a bridge between hole and outer polygon
function findHoleBridge(hole, outerNode) {
let p = outerNode;
const hx = hole.x;
const hy = hole.y;
let qx = -Infinity;
let m;
// find a segment intersected by a ray from the hole's leftmost point to the left;
// segment's endpoint with lesser x will be potential connection point
// unless they intersect at a vertex, then choose the vertex
if (equals(hole, p)) return p;
do {
if (equals(hole, p.next)) return p.next;
else if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) {
const x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y);
if (x <= hx && x > qx) {
qx = x;
m = p.x < p.next.x ? p : p.next;
if (x === hx) return m; // hole touches outer segment; pick leftmost endpoint
}
}
p = p.next;
} while (p !== outerNode);
if (!m) return null;
// look for points inside the triangle of hole point, segment intersection and endpoint;
// if there are no points found, we have a valid connection;
// otherwise choose the point of the minimum angle with the ray as connection point
const stop = m;
const mx = m.x;
const my = m.y;
let tanMin = Infinity;
p = m;
do {
if (hx >= p.x && p.x >= mx && hx !== p.x &&
pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) {
const tan = Math.abs(hy - p.y) / (hx - p.x); // tangential
if (locallyInside(p, hole) &&
(tan < tanMin || (tan === tanMin && (p.x > m.x || (p.x === m.x && sectorContainsSector(m, p)))))) {
m = p;
tanMin = tan;
}
}
p = p.next;
} while (p !== stop);
return m;
}
// whether sector in vertex m contains sector in vertex p in the same coordinates
function sectorContainsSector(m, p) {
return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0;
}
// interlink polygon nodes in z-order
function indexCurve(start, minX, minY, invSize) {
let p = start;
do {
if (p.z === 0) p.z = zOrder(p.x, p.y, minX, minY, invSize);
p.prevZ = p.prev;
p.nextZ = p.next;
p = p.next;
} while (p !== start);
p.prevZ.nextZ = null;
p.prevZ = null;
sortLinked(p);
}
// Simon Tatham's linked list merge sort algorithm
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
function sortLinked(list) {
let numMerges;
let inSize = 1;
do {
let p = list;
let e;
list = null;
let tail = null;
numMerges = 0;
while (p) {
numMerges++;
let q = p;
let pSize = 0;
for (let i = 0; i < inSize; i++) {
pSize++;
q = q.nextZ;
if (!q) break;
}
let qSize = inSize;
while (pSize > 0 || (qSize > 0 && q)) {
if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) {
e = p;
p = p.nextZ;
pSize--;
} else {
e = q;
q = q.nextZ;
qSize--;
}
if (tail) tail.nextZ = e;
else list = e;
e.prevZ = tail;
tail = e;
}
p = q;
}
tail.nextZ = null;
inSize *= 2;
} while (numMerges > 1);
return list;
}
// z-order of a point given coords and inverse of the longer side of data bbox
function zOrder(x, y, minX, minY, invSize) {
// coords are transformed into non-negative 15-bit integer range
x = (x - minX) * invSize | 0;
y = (y - minY) * invSize | 0;
x = (x | (x << 8)) & 0x00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F;
x = (x | (x << 2)) & 0x33333333;
x = (x | (x << 1)) & 0x55555555;
y = (y | (y << 8)) & 0x00FF00FF;
y = (y | (y << 4)) & 0x0F0F0F0F;
y = (y | (y << 2)) & 0x33333333;
y = (y | (y << 1)) & 0x55555555;
return x | (y << 1);
}
// find the leftmost node of a polygon ring
function getLeftmost(start) {
let p = start,
leftmost = start;
do {
if (p.x < leftmost.x || (p.x === leftmost.x && p.y < leftmost.y)) leftmost = p;
p = p.next;
} while (p !== start);
return leftmost;
}
// check if a point lies within a convex triangle
function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) {
return (cx - px) * (ay - py) >= (ax - px) * (cy - py) &&
(ax - px) * (by - py) >= (bx - px) * (ay - py) &&
(bx - px) * (cy - py) >= (cx - px) * (by - py);
}
// check if a point lies within a convex triangle but false if its equal to the first point of the triangle
function pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, px, py) {
return !(ax === px && ay === py) && pointInTriangle(ax, ay, bx, by, cx, cy, px, py);
}
// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
function isValidDiagonal(a, b) {
return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && // dones't intersect other edges
(locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible
(area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors
equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case
}
// signed area of a triangle
function area(p, q, r) {
return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
}
// check if two points are equal
function equals(p1, p2) {
return p1.x === p2.x && p1.y === p2.y;
}
// check if two segments intersect
function intersects(p1, q1, p2, q2) {
const o1 = sign(area(p1, q1, p2));
const o2 = sign(area(p1, q1, q2));
const o3 = sign(area(p2, q2, p1));
const o4 = sign(area(p2, q2, q1));
if (o1 !== o2 && o3 !== o4) return true; // general case
if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
return false;
}
// for collinear points p, q, r, check if point q lies on segment pr
function onSegment(p, q, r) {
return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y);
}
function sign(num) {
return num > 0 ? 1 : num < 0 ? -1 : 0;
}
// check if a polygon diagonal intersects any polygon segments
function intersectsPolygon(a, b) {
let p = a;
do {
if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i &&
intersects(p, p.next, a, b)) return true;
p = p.next;
} while (p !== a);
return false;
}
// check if a polygon diagonal is locally inside the polygon
function locallyInside(a, b) {
return area(a.prev, a, a.next) < 0 ?
area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 :
area(a, b, a.prev) < 0 || area(a, a.next, b) < 0;
}
// check if the middle point of a polygon diagonal is inside the polygon
function middleInside(a, b) {
let p = a;
let inside = false;
const px = (a.x + b.x) / 2;
const py = (a.y + b.y) / 2;
do {
if (((p.y > py) !== (p.next.y > py)) && p.next.y !== p.y &&
(px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x))
inside = !inside;
p = p.next;
} while (p !== a);
return inside;
}
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
// if one belongs to the outer ring and another to a hole, it merges it into a single ring
function splitPolygon(a, b) {
const a2 = createNode(a.i, a.x, a.y),
b2 = createNode(b.i, b.x, b.y),
an = a.next,
bp = b.prev;
a.next = b;
b.prev = a;
a2.next = an;
an.prev = a2;
b2.next = a2;
a2.prev = b2;
bp.next = b2;
b2.prev = bp;
return b2;
}
// create a node and optionally link it with previous one (in a circular doubly linked list)
function insertNode(i, x, y, last) {
const p = createNode(i, x, y);
if (!last) {
p.prev = p;
p.next = p;
} else {
p.next = last.next;
p.prev = last;
last.next.prev = p;
last.next = p;
}
return p;
}
function removeNode(p) {
p.next.prev = p.prev;
p.prev.next = p.next;
if (p.prevZ) p.prevZ.nextZ = p.nextZ;
if (p.nextZ) p.nextZ.prevZ = p.prevZ;
}
function createNode(i, x, y) {
return {
i, // vertex index in coordinates array
x, y, // vertex coordinates
prev: null, // previous and next vertex nodes in a polygon ring
next: null,
z: 0, // z-order curve value
prevZ: null, // previous and next nodes in z-order
nextZ: null,
steiner: false // indicates whether this is a steiner point
};
}
// return a percentage difference between the polygon area and its triangulation area;
// used to verify correctness of triangulation
export function deviation(data, holeIndices, dim, triangles) {
const hasHoles = holeIndices && holeIndices.length;
const outerLen = hasHoles ? holeIndices[0] * dim : data.length;
let polygonArea = Math.abs(signedArea(data, 0, outerLen, dim));
if (hasHoles) {
for (let i = 0, len = holeIndices.length; i < len; i++) {
const start = holeIndices[i] * dim;
const end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
polygonArea -= Math.abs(signedArea(data, start, end, dim));
}
}
let trianglesArea = 0;
for (let i = 0; i < triangles.length; i += 3) {
const a = triangles[i] * dim;
const b = triangles[i + 1] * dim;
const c = triangles[i + 2] * dim;
trianglesArea += Math.abs(
(data[a] - data[c]) * (data[b + 1] - data[a + 1]) -
(data[a] - data[b]) * (data[c + 1] - data[a + 1]));
}
return polygonArea === 0 && trianglesArea === 0 ? 0 :
Math.abs((trianglesArea - polygonArea) / polygonArea);
}
function signedArea(data, start, end, dim) {
let sum = 0;
for (let i = start, j = end - dim; i < end; i += dim) {
sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]);
j = i;
}
return sum;
}
// turn a polygon in a multi-dimensional array form (e.g. as in GeoJSON) into a form Earcut accepts
export function flatten(data) {
const vertices = [];
const holes = [];
const dimensions = data[0][0].length;
let holeIndex = 0;
let prevLen = 0;
for (const ring of data) {
for (const p of ring) {
for (let d = 0; d < dimensions; d++) vertices.push(p[d]);
}
if (prevLen) {
holeIndex += prevLen;
holes.push(holeIndex);
}
prevLen = ring.length;
}
return {vertices, holes, dimensions};
}