three
Version:
JavaScript 3D library
276 lines (212 loc) • 6.44 kB
JavaScript
import {
ClampToEdgeWrapping,
DoubleSide,
LinearFilter,
Mesh,
MeshBasicMaterial,
PlaneGeometry,
Texture,
SRGBColorSpace
} from 'three';
/**
* This class has been made to hold a slice of a volume data.
*
* @see {@link Volume}
*/
class VolumeSlice {
/**
* Constructs a new volume slice.
*
* @param {Volume} volume - The associated volume.
* @param {number} [index=0] - The index of the slice.
* @param {('x'|'y'|'z')} [axis='z'] - For now only 'x', 'y' or 'z' but later it will change to a normal vector.
*/
constructor( volume, index = 0, axis = 'z' ) {
const slice = this;
/**
* The associated volume.
*
* @type {Volume}
*/
this.volume = volume;
Object.defineProperty( this, 'index', {
get: function () {
return index;
},
/**
* The index of the slice, if changed, will automatically call updateGeometry at the next repaint.
*
* @name VolumeSlice#index
* @type {number}
* @default 0
* @param {number} value
* @return {number}
*/
set: function ( value ) {
index = value;
slice.geometryNeedsUpdate = true;
return index;
}
} );
/**
* The normal axis.
*
* @type {('x'|'y'|'z')}
*/
this.axis = axis;
/**
* The final canvas used for the texture.
*
* @type {HTMLCanvasElement}
*/
this.canvas = document.createElement( 'canvas' );
/**
* The rendering context of the canvas.
*
* @type {CanvasRenderingContext2D}
*/
this.ctx;
/**
* The intermediary canvas used to paint the data.
*
* @type {HTMLCanvasElement}
*/
this.canvasBuffer = document.createElement( 'canvas' );
/**
* The rendering context of the canvas buffer,
*
* @type {CanvasRenderingContext2D}
*/
this.ctxBuffer;
this.updateGeometry();
const canvasMap = new Texture( this.canvas );
canvasMap.minFilter = LinearFilter;
canvasMap.generateMipmaps = false;
canvasMap.wrapS = canvasMap.wrapT = ClampToEdgeWrapping;
canvasMap.colorSpace = SRGBColorSpace;
const material = new MeshBasicMaterial( { map: canvasMap, side: DoubleSide, transparent: true } );
/**
* The mesh ready to get used in the scene.
*
* @type {Mesh}
*/
this.mesh = new Mesh( this.geometry, material );
this.mesh.matrixAutoUpdate = false;
/**
* If set to `true`, `updateGeometry()` will be triggered at the next repaint.
*
* @type {boolean}
* @default true
*/
this.geometryNeedsUpdate = true;
this.repaint();
/**
* Width of slice in the original coordinate system, corresponds to the width of the buffer canvas.
*
* @type {number}
* @default 0
*/
this.iLength = 0;
/**
* Height of slice in the original coordinate system, corresponds to the height of the buffer canvas.
*
* @type {number}
* @default 0
*/
this.jLength = 0;
/**
* Function that allow the slice to access right data.
*
* @type {?Function}
* @see {@link Volume#extractPerpendicularPlane}
*/
this.sliceAccess = null;
}
/**
* Refresh the texture and the geometry if geometryNeedsUpdate is set to `true`.
*/
repaint() {
if ( this.geometryNeedsUpdate ) {
this.updateGeometry();
}
const iLength = this.iLength,
jLength = this.jLength,
sliceAccess = this.sliceAccess,
volume = this.volume,
canvas = this.canvasBuffer,
ctx = this.ctxBuffer;
// get the imageData and pixel array from the canvas
const imgData = ctx.getImageData( 0, 0, iLength, jLength );
const data = imgData.data;
const volumeData = volume.data;
const upperThreshold = volume.upperThreshold;
const lowerThreshold = volume.lowerThreshold;
const windowLow = volume.windowLow;
const windowHigh = volume.windowHigh;
// manipulate some pixel elements
let pixelCount = 0;
if ( volume.dataType === 'label' ) {
console.error( 'THREE.VolumeSlice.repaint: label are not supported yet' );
// This part is currently useless but will be used when colortables will be handled
// for ( let j = 0; j < jLength; j ++ ) {
// for ( let i = 0; i < iLength; i ++ ) {
// let label = volumeData[ sliceAccess( i, j ) ];
// label = label >= this.colorMap.length ? ( label % this.colorMap.length ) + 1 : label;
// const color = this.colorMap[ label ];
// data[ 4 * pixelCount ] = ( color >> 24 ) & 0xff;
// data[ 4 * pixelCount + 1 ] = ( color >> 16 ) & 0xff;
// data[ 4 * pixelCount + 2 ] = ( color >> 8 ) & 0xff;
// data[ 4 * pixelCount + 3 ] = color & 0xff;
// pixelCount ++;
// }
// }
} else {
for ( let j = 0; j < jLength; j ++ ) {
for ( let i = 0; i < iLength; i ++ ) {
let value = volumeData[ sliceAccess( i, j ) ];
let alpha = 0xff;
//apply threshold
alpha = upperThreshold >= value ? ( lowerThreshold <= value ? alpha : 0 ) : 0;
//apply window level
value = Math.floor( 255 * ( value - windowLow ) / ( windowHigh - windowLow ) );
value = value > 255 ? 255 : ( value < 0 ? 0 : value | 0 );
data[ 4 * pixelCount ] = value;
data[ 4 * pixelCount + 1 ] = value;
data[ 4 * pixelCount + 2 ] = value;
data[ 4 * pixelCount + 3 ] = alpha;
pixelCount ++;
}
}
}
ctx.putImageData( imgData, 0, 0 );
this.ctx.drawImage( canvas, 0, 0, iLength, jLength, 0, 0, this.canvas.width, this.canvas.height );
this.mesh.material.map.needsUpdate = true;
}
/**
* Refresh the geometry according to axis and index.
* @see {@link Volume#extractPerpendicularPlane}
*/
updateGeometry() {
const extracted = this.volume.extractPerpendicularPlane( this.axis, this.index );
this.sliceAccess = extracted.sliceAccess;
this.jLength = extracted.jLength;
this.iLength = extracted.iLength;
this.matrix = extracted.matrix;
this.canvas.width = extracted.planeWidth;
this.canvas.height = extracted.planeHeight;
this.canvasBuffer.width = this.iLength;
this.canvasBuffer.height = this.jLength;
this.ctx = this.canvas.getContext( '2d' );
this.ctxBuffer = this.canvasBuffer.getContext( '2d' );
if ( this.geometry ) this.geometry.dispose(); // dispose existing geometry
this.geometry = new PlaneGeometry( extracted.planeWidth, extracted.planeHeight );
if ( this.mesh ) {
this.mesh.geometry = this.geometry;
//reset mesh matrix
this.mesh.matrix.identity();
this.mesh.applyMatrix4( this.matrix );
}
this.geometryNeedsUpdate = false;
}
}
export { VolumeSlice };