UNPKG

three

Version:

JavaScript 3D library

2,127 lines (1,284 loc) 105 kB
import { AmbientLight, AnimationClip, Bone, BufferGeometry, ClampToEdgeWrapping, Color, ColorManagement, DirectionalLight, EquirectangularReflectionMapping, Euler, FileLoader, Float32BufferAttribute, Group, Line, LineBasicMaterial, Loader, LoaderUtils, MathUtils, Matrix3, Matrix4, Mesh, MeshLambertMaterial, MeshPhongMaterial, NumberKeyframeTrack, Object3D, PerspectiveCamera, PointLight, PropertyBinding, Quaternion, QuaternionKeyframeTrack, RepeatWrapping, SRGBColorSpace, ShapeUtils, Skeleton, SkinnedMesh, SpotLight, Texture, TextureLoader, Uint16BufferAttribute, Vector2, Vector3, Vector4, VectorKeyframeTrack } from 'three'; import * as fflate from '../libs/fflate.module.js'; import { NURBSCurve } from '../curves/NURBSCurve.js'; let fbxTree; let connections; let sceneGraph; /** * A loader for the FBX format. * * Requires FBX file to be >= 7.0 and in ASCII or >= 6400 in Binary format. * Versions lower than this may load but will probably have errors. * * Needs Support: * - Morph normals / blend shape normals * * FBX format references: * - [C++ SDK reference]{@link https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_index_html} * * Binary format specification: * - [FBX binary file format specification]{@link https://code.blender.org/2013/08/fbx-binary-file-format-specification/} * * ```js * const loader = new FBXLoader(); * const object = await loader.loadAsync( 'models/fbx/stanford-bunny.fbx' ); * scene.add( object ); * ``` * * @augments Loader */ class FBXLoader extends Loader { /** * Constructs a new FBX loader. * * @param {LoadingManager} [manager] - The loading manager. */ constructor( manager ) { super( manager ); } /** * Starts loading from the given URL and passes the loaded FBX asset * to the `onLoad()` callback. * * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI. * @param {function(Group)} onLoad - Executed when the loading process has been finished. * @param {onProgressCallback} onProgress - Executed while the loading is in progress. * @param {onErrorCallback} onError - Executed when errors occur. */ load( url, onLoad, onProgress, onError ) { const scope = this; const path = ( scope.path === '' ) ? LoaderUtils.extractUrlBase( url ) : scope.path; const loader = new FileLoader( this.manager ); loader.setPath( scope.path ); loader.setResponseType( 'arraybuffer' ); loader.setRequestHeader( scope.requestHeader ); loader.setWithCredentials( scope.withCredentials ); loader.load( url, function ( buffer ) { try { onLoad( scope.parse( buffer, path ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); } /** * Parses the given FBX data and returns the resulting group. * * @param {Array} FBXBuffer - The raw FBX data as an array buffer. * @param {string} path - The URL base path. * @return {Group} An object representing the parsed asset. */ parse( FBXBuffer, path ) { if ( isFbxFormatBinary( FBXBuffer ) ) { fbxTree = new BinaryParser().parse( FBXBuffer ); } else { const FBXText = convertArrayBufferToString( FBXBuffer ); if ( ! isFbxFormatASCII( FBXText ) ) { throw new Error( 'THREE.FBXLoader: Unknown format.' ); } if ( getFbxVersion( FBXText ) < 7000 ) { throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + getFbxVersion( FBXText ) ); } fbxTree = new TextParser().parse( FBXText ); } // console.log( fbxTree ); const textureLoader = new TextureLoader( this.manager ).setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin ); return new FBXTreeParser( textureLoader, this.manager ).parse( fbxTree ); } } // Parse the FBXTree object returned by the BinaryParser or TextParser and return a Group class FBXTreeParser { constructor( textureLoader, manager ) { this.textureLoader = textureLoader; this.manager = manager; } parse() { connections = this.parseConnections(); const images = this.parseImages(); const textures = this.parseTextures( images ); const materials = this.parseMaterials( textures ); const deformers = this.parseDeformers(); const geometryMap = new GeometryParser().parse( deformers ); this.parseScene( deformers, geometryMap, materials ); return sceneGraph; } // Parses FBXTree.Connections which holds parent-child connections between objects (e.g. material -> texture, model->geometry ) // and details the connection type parseConnections() { const connectionMap = new Map(); if ( 'Connections' in fbxTree ) { const rawConnections = fbxTree.Connections.connections; rawConnections.forEach( function ( rawConnection ) { const fromID = rawConnection[ 0 ]; const toID = rawConnection[ 1 ]; const relationship = rawConnection[ 2 ]; if ( ! connectionMap.has( fromID ) ) { connectionMap.set( fromID, { parents: [], children: [] } ); } const parentRelationship = { ID: toID, relationship: relationship }; connectionMap.get( fromID ).parents.push( parentRelationship ); if ( ! connectionMap.has( toID ) ) { connectionMap.set( toID, { parents: [], children: [] } ); } const childRelationship = { ID: fromID, relationship: relationship }; connectionMap.get( toID ).children.push( childRelationship ); } ); } return connectionMap; } // Parse FBXTree.Objects.Video for embedded image data // These images are connected to textures in FBXTree.Objects.Textures // via FBXTree.Connections. parseImages() { const images = {}; const blobs = {}; if ( 'Video' in fbxTree.Objects ) { const videoNodes = fbxTree.Objects.Video; for ( const nodeID in videoNodes ) { const videoNode = videoNodes[ nodeID ]; const id = parseInt( nodeID ); images[ id ] = videoNode.RelativeFilename || videoNode.Filename; // raw image data is in videoNode.Content if ( 'Content' in videoNode ) { const arrayBufferContent = ( videoNode.Content instanceof ArrayBuffer ) && ( videoNode.Content.byteLength > 0 ); const base64Content = ( typeof videoNode.Content === 'string' ) && ( videoNode.Content !== '' ); if ( arrayBufferContent || base64Content ) { const image = this.parseImage( videoNodes[ nodeID ] ); blobs[ videoNode.RelativeFilename || videoNode.Filename ] = image; } } } } for ( const id in images ) { const filename = images[ id ]; if ( blobs[ filename ] !== undefined ) images[ id ] = blobs[ filename ]; else images[ id ] = images[ id ].split( '\\' ).pop(); } return images; } // Parse embedded image data in FBXTree.Video.Content parseImage( videoNode ) { const content = videoNode.Content; const fileName = videoNode.RelativeFilename || videoNode.Filename; const extension = fileName.slice( fileName.lastIndexOf( '.' ) + 1 ).toLowerCase(); let type; switch ( extension ) { case 'bmp': type = 'image/bmp'; break; case 'jpg': case 'jpeg': type = 'image/jpeg'; break; case 'png': type = 'image/png'; break; case 'tif': type = 'image/tiff'; break; case 'tga': if ( this.manager.getHandler( '.tga' ) === null ) { console.warn( 'FBXLoader: TGA loader not found, skipping ', fileName ); } type = 'image/tga'; break; default: console.warn( 'FBXLoader: Image type "' + extension + '" is not supported.' ); return; } if ( typeof content === 'string' ) { // ASCII format return 'data:' + type + ';base64,' + content; } else { // Binary Format const array = new Uint8Array( content ); return window.URL.createObjectURL( new Blob( [ array ], { type: type } ) ); } } // Parse nodes in FBXTree.Objects.Texture // These contain details such as UV scaling, cropping, rotation etc and are connected // to images in FBXTree.Objects.Video parseTextures( images ) { const textureMap = new Map(); if ( 'Texture' in fbxTree.Objects ) { const textureNodes = fbxTree.Objects.Texture; for ( const nodeID in textureNodes ) { const texture = this.parseTexture( textureNodes[ nodeID ], images ); textureMap.set( parseInt( nodeID ), texture ); } } return textureMap; } // Parse individual node in FBXTree.Objects.Texture parseTexture( textureNode, images ) { const texture = this.loadTexture( textureNode, images ); texture.ID = textureNode.id; texture.name = textureNode.attrName; const wrapModeU = textureNode.WrapModeU; const wrapModeV = textureNode.WrapModeV; const valueU = wrapModeU !== undefined ? wrapModeU.value : 0; const valueV = wrapModeV !== undefined ? wrapModeV.value : 0; // http://download.autodesk.com/us/fbx/SDKdocs/FBX_SDK_Help/files/fbxsdkref/class_k_fbx_texture.html#889640e63e2e681259ea81061b85143a // 0: repeat(default), 1: clamp texture.wrapS = valueU === 0 ? RepeatWrapping : ClampToEdgeWrapping; texture.wrapT = valueV === 0 ? RepeatWrapping : ClampToEdgeWrapping; if ( 'Scaling' in textureNode ) { const values = textureNode.Scaling.value; texture.repeat.x = values[ 0 ]; texture.repeat.y = values[ 1 ]; } if ( 'Translation' in textureNode ) { const values = textureNode.Translation.value; texture.offset.x = values[ 0 ]; texture.offset.y = values[ 1 ]; } return texture; } // load a texture specified as a blob or data URI, or via an external URL using TextureLoader loadTexture( textureNode, images ) { const nonNativeExtensions = new Set( [ 'tga', 'tif', 'tiff', 'exr', 'dds', 'hdr', 'ktx2' ] ); const extension = textureNode.FileName.split( '.' ).pop().toLowerCase(); const loader = nonNativeExtensions.has( extension ) ? this.manager.getHandler( `.${extension}` ) : this.textureLoader; if ( ! loader ) { console.warn( `FBXLoader: ${extension.toUpperCase()} loader not found, creating placeholder texture for`, textureNode.RelativeFilename ); return new Texture(); } const loaderPath = loader.path; if ( ! loaderPath ) { loader.setPath( this.textureLoader.path ); } const children = connections.get( textureNode.id ).children; let fileName; if ( children !== undefined && children.length > 0 && images[ children[ 0 ].ID ] !== undefined ) { fileName = images[ children[ 0 ].ID ]; if ( fileName.indexOf( 'blob:' ) === 0 || fileName.indexOf( 'data:' ) === 0 ) { loader.setPath( undefined ); } } const texture = loader.load( fileName ); // revert to initial path loader.setPath( loaderPath ); return texture; } // Parse nodes in FBXTree.Objects.Material parseMaterials( textureMap ) { const materialMap = new Map(); if ( 'Material' in fbxTree.Objects ) { const materialNodes = fbxTree.Objects.Material; for ( const nodeID in materialNodes ) { const material = this.parseMaterial( materialNodes[ nodeID ], textureMap ); if ( material !== null ) materialMap.set( parseInt( nodeID ), material ); } } return materialMap; } // Parse single node in FBXTree.Objects.Material // Materials are connected to texture maps in FBXTree.Objects.Textures // FBX format currently only supports Lambert and Phong shading models parseMaterial( materialNode, textureMap ) { const ID = materialNode.id; const name = materialNode.attrName; let type = materialNode.ShadingModel; // Case where FBX wraps shading model in property object. if ( typeof type === 'object' ) { type = type.value; } // Ignore unused materials which don't have any connections. if ( ! connections.has( ID ) ) return null; const parameters = this.parseParameters( materialNode, textureMap, ID ); let material; switch ( type.toLowerCase() ) { case 'phong': material = new MeshPhongMaterial(); break; case 'lambert': material = new MeshLambertMaterial(); break; default: console.warn( 'THREE.FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type ); material = new MeshPhongMaterial(); break; } material.setValues( parameters ); material.name = name; return material; } // Parse FBX material and return parameters suitable for a three.js material // Also parse the texture map and return any textures associated with the material parseParameters( materialNode, textureMap, ID ) { const parameters = {}; if ( materialNode.BumpFactor ) { parameters.bumpScale = materialNode.BumpFactor.value; } if ( materialNode.Diffuse ) { parameters.color = ColorManagement.toWorkingColorSpace( new Color().fromArray( materialNode.Diffuse.value ), SRGBColorSpace ); } else if ( materialNode.DiffuseColor && ( materialNode.DiffuseColor.type === 'Color' || materialNode.DiffuseColor.type === 'ColorRGB' ) ) { // The blender exporter exports diffuse here instead of in materialNode.Diffuse parameters.color = ColorManagement.toWorkingColorSpace( new Color().fromArray( materialNode.DiffuseColor.value ), SRGBColorSpace ); } if ( materialNode.DisplacementFactor ) { parameters.displacementScale = materialNode.DisplacementFactor.value; } if ( materialNode.Emissive ) { parameters.emissive = ColorManagement.toWorkingColorSpace( new Color().fromArray( materialNode.Emissive.value ), SRGBColorSpace ); } else if ( materialNode.EmissiveColor && ( materialNode.EmissiveColor.type === 'Color' || materialNode.EmissiveColor.type === 'ColorRGB' ) ) { // The blender exporter exports emissive color here instead of in materialNode.Emissive parameters.emissive = ColorManagement.toWorkingColorSpace( new Color().fromArray( materialNode.EmissiveColor.value ), SRGBColorSpace ); } if ( materialNode.EmissiveFactor ) { parameters.emissiveIntensity = parseFloat( materialNode.EmissiveFactor.value ); } // the transparency handling is implemented based on Blender/Unity's approach: https://github.com/sobotka/blender-addons/blob/7d80f2f97161fc8e353a657b179b9aa1f8e5280b/io_scene_fbx/import_fbx.py#L1444-L1459 parameters.opacity = 1 - ( materialNode.TransparencyFactor ? parseFloat( materialNode.TransparencyFactor.value ) : 0 ); if ( parameters.opacity === 1 || parameters.opacity === 0 ) { parameters.opacity = ( materialNode.Opacity ? parseFloat( materialNode.Opacity.value ) : null ); if ( parameters.opacity === null ) { parameters.opacity = 1 - ( materialNode.TransparentColor ? parseFloat( materialNode.TransparentColor.value[ 0 ] ) : 0 ); } } if ( parameters.opacity < 1.0 ) { parameters.transparent = true; } if ( materialNode.ReflectionFactor ) { parameters.reflectivity = materialNode.ReflectionFactor.value; } if ( materialNode.Shininess ) { parameters.shininess = materialNode.Shininess.value; } if ( materialNode.Specular ) { parameters.specular = ColorManagement.toWorkingColorSpace( new Color().fromArray( materialNode.Specular.value ), SRGBColorSpace ); } else if ( materialNode.SpecularColor && materialNode.SpecularColor.type === 'Color' ) { // The blender exporter exports specular color here instead of in materialNode.Specular parameters.specular = ColorManagement.toWorkingColorSpace( new Color().fromArray( materialNode.SpecularColor.value ), SRGBColorSpace ); } const scope = this; connections.get( ID ).children.forEach( function ( child ) { const type = child.relationship; switch ( type ) { case 'Bump': parameters.bumpMap = scope.getTexture( textureMap, child.ID ); break; case 'Maya|TEX_ao_map': parameters.aoMap = scope.getTexture( textureMap, child.ID ); break; case 'DiffuseColor': case 'Maya|TEX_color_map': parameters.map = scope.getTexture( textureMap, child.ID ); if ( parameters.map !== undefined ) { parameters.map.colorSpace = SRGBColorSpace; } break; case 'DisplacementColor': parameters.displacementMap = scope.getTexture( textureMap, child.ID ); break; case 'EmissiveColor': parameters.emissiveMap = scope.getTexture( textureMap, child.ID ); if ( parameters.emissiveMap !== undefined ) { parameters.emissiveMap.colorSpace = SRGBColorSpace; } break; case 'NormalMap': case 'Maya|TEX_normal_map': parameters.normalMap = scope.getTexture( textureMap, child.ID ); break; case 'ReflectionColor': parameters.envMap = scope.getTexture( textureMap, child.ID ); if ( parameters.envMap !== undefined ) { parameters.envMap.mapping = EquirectangularReflectionMapping; parameters.envMap.colorSpace = SRGBColorSpace; } break; case 'SpecularColor': parameters.specularMap = scope.getTexture( textureMap, child.ID ); if ( parameters.specularMap !== undefined ) { parameters.specularMap.colorSpace = SRGBColorSpace; } break; case 'TransparentColor': case 'TransparencyFactor': parameters.alphaMap = scope.getTexture( textureMap, child.ID ); parameters.transparent = true; break; case 'AmbientColor': case 'ShininessExponent': // AKA glossiness map case 'SpecularFactor': // AKA specularLevel case 'VectorDisplacementColor': // NOTE: Seems to be a copy of DisplacementColor default: console.warn( 'THREE.FBXLoader: %s map is not supported in three.js, skipping texture.', type ); break; } } ); return parameters; } // get a texture from the textureMap for use by a material. getTexture( textureMap, id ) { // if the texture is a layered texture, just use the first layer and issue a warning if ( 'LayeredTexture' in fbxTree.Objects && id in fbxTree.Objects.LayeredTexture ) { console.warn( 'THREE.FBXLoader: layered textures are not supported in three.js. Discarding all but first layer.' ); id = connections.get( id ).children[ 0 ].ID; } return textureMap.get( id ); } // Parse nodes in FBXTree.Objects.Deformer // Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here // Generates map of Skeleton-like objects for use later when generating and binding skeletons. parseDeformers() { const skeletons = {}; const morphTargets = {}; if ( 'Deformer' in fbxTree.Objects ) { const DeformerNodes = fbxTree.Objects.Deformer; for ( const nodeID in DeformerNodes ) { const deformerNode = DeformerNodes[ nodeID ]; const relationships = connections.get( parseInt( nodeID ) ); if ( deformerNode.attrType === 'Skin' ) { const skeleton = this.parseSkeleton( relationships, DeformerNodes ); skeleton.ID = nodeID; if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: skeleton attached to more than one geometry is not supported.' ); skeleton.geometryID = relationships.parents[ 0 ].ID; skeletons[ nodeID ] = skeleton; } else if ( deformerNode.attrType === 'BlendShape' ) { const morphTarget = { id: nodeID, }; morphTarget.rawTargets = this.parseMorphTargets( relationships, DeformerNodes ); morphTarget.id = nodeID; if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: morph target attached to more than one geometry is not supported.' ); morphTargets[ nodeID ] = morphTarget; } } } return { skeletons: skeletons, morphTargets: morphTargets, }; } // Parse single nodes in FBXTree.Objects.Deformer // The top level skeleton node has type 'Skin' and sub nodes have type 'Cluster' // Each skin node represents a skeleton and each cluster node represents a bone parseSkeleton( relationships, deformerNodes ) { const rawBones = []; relationships.children.forEach( function ( child ) { const boneNode = deformerNodes[ child.ID ]; if ( boneNode.attrType !== 'Cluster' ) return; const rawBone = { ID: child.ID, indices: [], weights: [], transformLink: new Matrix4().fromArray( boneNode.TransformLink.a ), // transform: new Matrix4().fromArray( boneNode.Transform.a ), // linkMode: boneNode.Mode, }; if ( 'Indexes' in boneNode ) { rawBone.indices = boneNode.Indexes.a; rawBone.weights = boneNode.Weights.a; } rawBones.push( rawBone ); } ); return { rawBones: rawBones, bones: [] }; } // The top level morph deformer node has type "BlendShape" and sub nodes have type "BlendShapeChannel" parseMorphTargets( relationships, deformerNodes ) { const rawMorphTargets = []; for ( let i = 0; i < relationships.children.length; i ++ ) { const child = relationships.children[ i ]; const morphTargetNode = deformerNodes[ child.ID ]; const rawMorphTarget = { name: morphTargetNode.attrName, initialWeight: morphTargetNode.DeformPercent, id: morphTargetNode.id, fullWeights: morphTargetNode.FullWeights.a }; if ( morphTargetNode.attrType !== 'BlendShapeChannel' ) return; rawMorphTarget.geoID = connections.get( parseInt( child.ID ) ).children.filter( function ( child ) { return child.relationship === undefined; } )[ 0 ].ID; rawMorphTargets.push( rawMorphTarget ); } return rawMorphTargets; } // create the main Group() to be returned by the loader parseScene( deformers, geometryMap, materialMap ) { sceneGraph = new Group(); const modelMap = this.parseModels( deformers.skeletons, geometryMap, materialMap ); const modelNodes = fbxTree.Objects.Model; const scope = this; modelMap.forEach( function ( model ) { const modelNode = modelNodes[ model.ID ]; scope.setLookAtProperties( model, modelNode ); const parentConnections = connections.get( model.ID ).parents; parentConnections.forEach( function ( connection ) { const parent = modelMap.get( connection.ID ); if ( parent !== undefined ) parent.add( model ); } ); if ( model.parent === null ) { sceneGraph.add( model ); } } ); this.bindSkeleton( deformers.skeletons, geometryMap, modelMap ); this.addGlobalSceneSettings(); sceneGraph.traverse( function ( node ) { if ( node.userData.transformData ) { if ( node.parent ) { node.userData.transformData.parentMatrix = node.parent.matrix; node.userData.transformData.parentMatrixWorld = node.parent.matrixWorld; } const transform = generateTransform( node.userData.transformData ); node.applyMatrix4( transform ); node.updateWorldMatrix(); } } ); const animations = new AnimationParser().parse(); // if all the models where already combined in a single group, just return that if ( sceneGraph.children.length === 1 && sceneGraph.children[ 0 ].isGroup ) { sceneGraph.children[ 0 ].animations = animations; sceneGraph = sceneGraph.children[ 0 ]; } sceneGraph.animations = animations; } // parse nodes in FBXTree.Objects.Model parseModels( skeletons, geometryMap, materialMap ) { const modelMap = new Map(); const modelNodes = fbxTree.Objects.Model; for ( const nodeID in modelNodes ) { const id = parseInt( nodeID ); const node = modelNodes[ nodeID ]; const relationships = connections.get( id ); let model = this.buildSkeleton( relationships, skeletons, id, node.attrName ); if ( ! model ) { switch ( node.attrType ) { case 'Camera': model = this.createCamera( relationships ); break; case 'Light': model = this.createLight( relationships ); break; case 'Mesh': model = this.createMesh( relationships, geometryMap, materialMap ); break; case 'NurbsCurve': model = this.createCurve( relationships, geometryMap ); break; case 'LimbNode': case 'Root': model = new Bone(); break; case 'Null': default: model = new Group(); break; } model.name = node.attrName ? PropertyBinding.sanitizeNodeName( node.attrName ) : ''; model.userData.originalName = node.attrName; model.ID = id; } this.getTransformData( model, node ); modelMap.set( id, model ); } return modelMap; } buildSkeleton( relationships, skeletons, id, name ) { let bone = null; relationships.parents.forEach( function ( parent ) { for ( const ID in skeletons ) { const skeleton = skeletons[ ID ]; skeleton.rawBones.forEach( function ( rawBone, i ) { if ( rawBone.ID === parent.ID ) { const subBone = bone; bone = new Bone(); bone.matrixWorld.copy( rawBone.transformLink ); // set name and id here - otherwise in cases where "subBone" is created it will not have a name / id bone.name = name ? PropertyBinding.sanitizeNodeName( name ) : ''; bone.userData.originalName = name; bone.ID = id; skeleton.bones[ i ] = bone; // In cases where a bone is shared between multiple meshes // duplicate the bone here and add it as a child of the first bone if ( subBone !== null ) { bone.add( subBone ); } } } ); } } ); return bone; } // create a PerspectiveCamera or OrthographicCamera createCamera( relationships ) { let model; let cameraAttribute; relationships.children.forEach( function ( child ) { const attr = fbxTree.Objects.NodeAttribute[ child.ID ]; if ( attr !== undefined ) { cameraAttribute = attr; } } ); if ( cameraAttribute === undefined ) { model = new Object3D(); } else { let type = 0; if ( cameraAttribute.CameraProjectionType !== undefined && cameraAttribute.CameraProjectionType.value === 1 ) { type = 1; } let nearClippingPlane = 1; if ( cameraAttribute.NearPlane !== undefined ) { nearClippingPlane = cameraAttribute.NearPlane.value / 1000; } let farClippingPlane = 1000; if ( cameraAttribute.FarPlane !== undefined ) { farClippingPlane = cameraAttribute.FarPlane.value / 1000; } let width = window.innerWidth; let height = window.innerHeight; if ( cameraAttribute.AspectWidth !== undefined && cameraAttribute.AspectHeight !== undefined ) { width = cameraAttribute.AspectWidth.value; height = cameraAttribute.AspectHeight.value; } const aspect = width / height; let fov = 45; if ( cameraAttribute.FieldOfView !== undefined ) { fov = cameraAttribute.FieldOfView.value; } const focalLength = cameraAttribute.FocalLength ? cameraAttribute.FocalLength.value : null; switch ( type ) { case 0: // Perspective model = new PerspectiveCamera( fov, aspect, nearClippingPlane, farClippingPlane ); if ( focalLength !== null ) model.setFocalLength( focalLength ); break; case 1: // Orthographic console.warn( 'THREE.FBXLoader: Orthographic cameras not supported yet.' ); model = new Object3D(); break; default: console.warn( 'THREE.FBXLoader: Unknown camera type ' + type + '.' ); model = new Object3D(); break; } } return model; } // Create a DirectionalLight, PointLight or SpotLight createLight( relationships ) { let model; let lightAttribute; relationships.children.forEach( function ( child ) { const attr = fbxTree.Objects.NodeAttribute[ child.ID ]; if ( attr !== undefined ) { lightAttribute = attr; } } ); if ( lightAttribute === undefined ) { model = new Object3D(); } else { let type; // LightType can be undefined for Point lights if ( lightAttribute.LightType === undefined ) { type = 0; } else { type = lightAttribute.LightType.value; } let color = 0xffffff; if ( lightAttribute.Color !== undefined ) { color = ColorManagement.toWorkingColorSpace( new Color().fromArray( lightAttribute.Color.value ), SRGBColorSpace ); } let intensity = ( lightAttribute.Intensity === undefined ) ? 1 : lightAttribute.Intensity.value / 100; // light disabled if ( lightAttribute.CastLightOnObject !== undefined && lightAttribute.CastLightOnObject.value === 0 ) { intensity = 0; } let distance = 0; if ( lightAttribute.FarAttenuationEnd !== undefined ) { if ( lightAttribute.EnableFarAttenuation !== undefined && lightAttribute.EnableFarAttenuation.value === 0 ) { distance = 0; } else { distance = lightAttribute.FarAttenuationEnd.value; } } // TODO: could this be calculated linearly from FarAttenuationStart to FarAttenuationEnd? const decay = 1; switch ( type ) { case 0: // Point model = new PointLight( color, intensity, distance, decay ); break; case 1: // Directional model = new DirectionalLight( color, intensity ); break; case 2: // Spot let angle = Math.PI / 3; if ( lightAttribute.InnerAngle !== undefined ) { angle = MathUtils.degToRad( lightAttribute.InnerAngle.value ); } let penumbra = 0; if ( lightAttribute.OuterAngle !== undefined ) { // TODO: this is not correct - FBX calculates outer and inner angle in degrees // with OuterAngle > InnerAngle && OuterAngle <= Math.PI // while three.js uses a penumbra between (0, 1) to attenuate the inner angle penumbra = MathUtils.degToRad( lightAttribute.OuterAngle.value ); penumbra = Math.max( penumbra, 1 ); } model = new SpotLight( color, intensity, distance, angle, penumbra, decay ); break; default: console.warn( 'THREE.FBXLoader: Unknown light type ' + lightAttribute.LightType.value + ', defaulting to a PointLight.' ); model = new PointLight( color, intensity ); break; } if ( lightAttribute.CastShadows !== undefined && lightAttribute.CastShadows.value === 1 ) { model.castShadow = true; } } return model; } createMesh( relationships, geometryMap, materialMap ) { let model; let geometry = null; let material = null; const materials = []; // get geometry and materials(s) from connections relationships.children.forEach( function ( child ) { if ( geometryMap.has( child.ID ) ) { geometry = geometryMap.get( child.ID ); } if ( materialMap.has( child.ID ) ) { materials.push( materialMap.get( child.ID ) ); } } ); if ( materials.length > 1 ) { material = materials; } else if ( materials.length > 0 ) { material = materials[ 0 ]; } else { material = new MeshPhongMaterial( { name: Loader.DEFAULT_MATERIAL_NAME, color: 0xcccccc } ); materials.push( material ); } if ( 'color' in geometry.attributes ) { materials.forEach( function ( material ) { material.vertexColors = true; } ); } // Sanitization: If geometry has groups, then it must match the provided material array. // If not, we need to clean up the `group.materialIndex` properties inside the groups and point at a (new) default material. // This isn't well defined; Unity creates default material, while Blender implicitly uses the previous material in the list. if ( geometry.groups.length > 0 ) { let needsDefaultMaterial = false; for ( let i = 0, il = geometry.groups.length; i < il; i ++ ) { const group = geometry.groups[ i ]; if ( group.materialIndex < 0 || group.materialIndex >= materials.length ) { group.materialIndex = materials.length; needsDefaultMaterial = true; } } if ( needsDefaultMaterial ) { const defaultMaterial = new MeshPhongMaterial(); materials.push( defaultMaterial ); } } if ( geometry.FBX_Deformer ) { model = new SkinnedMesh( geometry, material ); model.normalizeSkinWeights(); } else { model = new Mesh( geometry, material ); } return model; } createCurve( relationships, geometryMap ) { const geometry = relationships.children.reduce( function ( geo, child ) { if ( geometryMap.has( child.ID ) ) geo = geometryMap.get( child.ID ); return geo; }, null ); // FBX does not list materials for Nurbs lines, so we'll just put our own in here. const material = new LineBasicMaterial( { name: Loader.DEFAULT_MATERIAL_NAME, color: 0x3300ff, linewidth: 1 } ); return new Line( geometry, material ); } // parse the model node for transform data getTransformData( model, modelNode ) { const transformData = {}; if ( 'InheritType' in modelNode ) transformData.inheritType = parseInt( modelNode.InheritType.value ); if ( 'RotationOrder' in modelNode ) transformData.eulerOrder = getEulerOrder( modelNode.RotationOrder.value ); else transformData.eulerOrder = getEulerOrder( 0 ); if ( 'Lcl_Translation' in modelNode ) transformData.translation = modelNode.Lcl_Translation.value; if ( 'PreRotation' in modelNode ) transformData.preRotation = modelNode.PreRotation.value; if ( 'Lcl_Rotation' in modelNode ) transformData.rotation = modelNode.Lcl_Rotation.value; if ( 'PostRotation' in modelNode ) transformData.postRotation = modelNode.PostRotation.value; if ( 'Lcl_Scaling' in modelNode ) transformData.scale = modelNode.Lcl_Scaling.value; if ( 'ScalingOffset' in modelNode ) transformData.scalingOffset = modelNode.ScalingOffset.value; if ( 'ScalingPivot' in modelNode ) transformData.scalingPivot = modelNode.ScalingPivot.value; if ( 'RotationOffset' in modelNode ) transformData.rotationOffset = modelNode.RotationOffset.value; if ( 'RotationPivot' in modelNode ) transformData.rotationPivot = modelNode.RotationPivot.value; model.userData.transformData = transformData; } setLookAtProperties( model, modelNode ) { if ( 'LookAtProperty' in modelNode ) { const children = connections.get( model.ID ).children; children.forEach( function ( child ) { if ( child.relationship === 'LookAtProperty' ) { const lookAtTarget = fbxTree.Objects.Model[ child.ID ]; if ( 'Lcl_Translation' in lookAtTarget ) { const pos = lookAtTarget.Lcl_Translation.value; // DirectionalLight, SpotLight if ( model.target !== undefined ) { model.target.position.fromArray( pos ); sceneGraph.add( model.target ); } else { // Cameras and other Object3Ds model.lookAt( new Vector3().fromArray( pos ) ); } } } } ); } } bindSkeleton( skeletons, geometryMap, modelMap ) { const bindMatrices = this.parsePoseNodes(); for ( const ID in skeletons ) { const skeleton = skeletons[ ID ]; const parents = connections.get( parseInt( skeleton.ID ) ).parents; parents.forEach( function ( parent ) { if ( geometryMap.has( parent.ID ) ) { const geoID = parent.ID; const geoRelationships = connections.get( geoID ); geoRelationships.parents.forEach( function ( geoConnParent ) { if ( modelMap.has( geoConnParent.ID ) ) { const model = modelMap.get( geoConnParent.ID ); model.bind( new Skeleton( skeleton.bones ), bindMatrices[ geoConnParent.ID ] ); } } ); } } ); } } parsePoseNodes() { const bindMatrices = {}; if ( 'Pose' in fbxTree.Objects ) { const BindPoseNode = fbxTree.Objects.Pose; for ( const nodeID in BindPoseNode ) { if ( BindPoseNode[ nodeID ].attrType === 'BindPose' && BindPoseNode[ nodeID ].NbPoseNodes > 0 ) { const poseNodes = BindPoseNode[ nodeID ].PoseNode; if ( Array.isArray( poseNodes ) ) { poseNodes.forEach( function ( poseNode ) { bindMatrices[ poseNode.Node ] = new Matrix4().fromArray( poseNode.Matrix.a ); } ); } else { bindMatrices[ poseNodes.Node ] = new Matrix4().fromArray( poseNodes.Matrix.a ); } } } } return bindMatrices; } addGlobalSceneSettings() { if ( 'GlobalSettings' in fbxTree ) { if ( 'AmbientColor' in fbxTree.GlobalSettings ) { // Parse ambient color - if it's not set to black (default), create an ambient light const ambientColor = fbxTree.GlobalSettings.AmbientColor.value; const r = ambientColor[ 0 ]; const g = ambientColor[ 1 ]; const b = ambientColor[ 2 ]; if ( r !== 0 || g !== 0 || b !== 0 ) { const color = new Color().setRGB( r, g, b, SRGBColorSpace ); sceneGraph.add( new AmbientLight( color, 1 ) ); } } if ( 'UnitScaleFactor' in fbxTree.GlobalSettings ) { sceneGraph.userData.unitScaleFactor = fbxTree.GlobalSettings.UnitScaleFactor.value; } } } } // parse Geometry data from FBXTree and return map of BufferGeometries class GeometryParser { constructor() { this.negativeMaterialIndices = false; } // Parse nodes in FBXTree.Objects.Geometry parse( deformers ) { const geometryMap = new Map(); if ( 'Geometry' in fbxTree.Objects ) { const geoNodes = fbxTree.Objects.Geometry; for ( const nodeID in geoNodes ) { const relationships = connections.get( parseInt( nodeID ) ); const geo = this.parseGeometry( relationships, geoNodes[ nodeID ], deformers ); geometryMap.set( parseInt( nodeID ), geo ); } } // report warnings if ( this.negativeMaterialIndices === true ) { console.warn( 'THREE.FBXLoader: The FBX file contains invalid (negative) material indices. The asset might not render as expected.' ); } return geometryMap; } // Parse single node in FBXTree.Objects.Geometry parseGeometry( relationships, geoNode, deformers ) { switch ( geoNode.attrType ) { case 'Mesh': return this.parseMeshGeometry( relationships, geoNode, deformers ); break; case 'NurbsCurve': return this.parseNurbsGeometry( geoNode ); break; } } // Parse single node mesh geometry in FBXTree.Objects.Geometry parseMeshGeometry( relationships, geoNode, deformers ) { const skeletons = deformers.skeletons; const morphTargets = []; const modelNodes = relationships.parents.map( function ( parent ) { return fbxTree.Objects.Model[ parent.ID ]; } ); // don't create geometry if it is not associated with any models if ( modelNodes.length === 0 ) return; const skeleton = relationships.children.reduce( function ( skeleton, child ) { if ( skeletons[ child.ID ] !== undefined ) skeleton = skeletons[ child.ID ]; return skeleton; }, null ); relationships.children.forEach( function ( child ) { if ( deformers.morphTargets[ child.ID ] !== undefined ) { morphTargets.push( deformers.morphTargets[ child.ID ] ); } } ); // Assume one model and get the preRotation from that // if there is more than one model associated with the geometry this may cause problems const modelNode = modelNodes[ 0 ]; const transformData = {}; if ( 'RotationOrder' in modelNode ) transformData.eulerOrder = getEulerOrder( modelNode.RotationOrder.value ); if ( 'InheritType' in modelNode ) transformData.inheritType = parseInt( modelNode.InheritType.value ); if ( 'GeometricTranslation' in modelNode ) transformData.translation = modelNode.GeometricTranslation.value; if ( 'GeometricRotation' in modelNode ) transformData.rotation = modelNode.GeometricRotation.value; if ( 'GeometricScaling' in modelNode ) transformData.scale = modelNode.GeometricScaling.value; const transform = generateTransform( transformData ); return this.genGeometry( geoNode, skeleton, morphTargets, transform ); } // Generate a BufferGeometry from a node in FBXTree.Objects.Geometry genGeometry( geoNode, skeleton, morphTargets, preTransform ) { const geo = new BufferGeometry(); if ( geoNode.attrName ) geo.name = geoNode.attrName; const geoInfo = this.parseGeoNode( geoNode, skeleton ); const buffers = this.genBuffers( geoInfo ); const positionAttribute = new Float32BufferAttribute( buffers.vertex, 3 ); positionAttribute.applyMatrix4( preTransform ); geo.setAttribute( 'position', positionAttribute ); if ( buffers.colors.length > 0 ) { geo.setAttribute( 'color', new Float32BufferAttribute( buffers.colors, 3 ) ); } if ( skeleton ) { geo.setAttribute( 'skinIndex', new Uint16BufferAttribute( buffers.weightsIndices, 4 ) ); geo.setAttribute( 'skinWeight', new Float32BufferAttribute( buffers.vertexWeights, 4 ) ); // used later to bind the skeleton to the model geo.FBX_Deformer = skeleton; } if ( buffers.normal.length > 0 ) { const normalMatrix = new Matrix3().getNormalMatrix( preTransform ); const normalAttribute = new Float32BufferAttribute( buffers.normal, 3 ); normalAttribute.applyNormalMatrix( normalMatrix ); geo.setAttribute( 'normal', normalAttribute ); } buffers.uvs.forEach( function ( uvBuffer, i ) { const name = i === 0 ? 'uv' : `uv${ i }`; geo.setAttribute( name, new Float32BufferAttribute( buffers.uvs[ i ], 2 ) ); } ); if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) { // Convert the material indices of each vertex into rendering groups on the geometry. let prevMaterialIndex = buffers.materialIndex[ 0 ]; let startIndex = 0; buffers.materialIndex.forEach( function ( currentIndex, i ) { if ( currentIndex !== prevMaterialIndex ) { geo.addGroup( startIndex, i - startIndex, prevMaterialIndex ); prevMaterialIndex = currentIndex; startIndex = i; } } ); // the loop above doesn't add the last group, do that here. if ( geo.groups.length > 0 ) { const lastGroup = geo.groups[ geo.groups.length - 1 ]; const lastIndex = lastGroup.start + lastGroup.count; if ( lastIndex !== buffers.materialIndex.length ) { geo.addGroup( lastIndex, buffers.materialIndex.length - lastIndex, prevMaterialIndex ); } } // case where there are multiple materials but the whole geometry is only // using one of them if ( geo.groups.length === 0 ) { geo.addGroup( 0, buffers.materialIndex.length, buffers.materialIndex[ 0 ] ); } } this.addMorphTargets( geo, geoNode, morphTargets, preTransform ); return geo; } parseGeoNode( geoNode, skeleton ) { const geoInfo = {}; geoInfo.vertexPositions = ( geoNode.Vertices !== undefined ) ? geoNode.Vertices.a : []; geoInfo.vertexIndices = ( geoNode.PolygonVertexIndex !== undefined ) ? geoNode.PolygonVertexIndex.a : []; if ( geoNode.LayerElementColor ) { geoInfo.color = this.parseVertexColors( geoNode.LayerElementColor[ 0 ] ); } if ( geoNode.LayerElementMaterial ) { geoInfo.material = this.parseMaterialIndices( geoNode.LayerElementMaterial[ 0 ] ); } if ( geoNode.LayerElementNormal ) { geoInfo.normal = this.parseNormals( geoNode.LayerElementNormal[ 0 ] ); } if ( geoNode.LayerElementUV ) { geoInfo.uv = []; let i = 0; while ( geoNode.LayerElementUV[ i ] ) { if ( geoNode.LayerElementUV[ i ].UV ) { geoInfo.uv.push( this.parseUVs( geoNode.LayerElementUV[ i ] ) ); } i ++; } } geoInfo.weightTable = {}; if ( skeleton !== null ) { geoInfo.skeleton = skeleton; skeleton.rawBones.forEach( function ( rawBone, i ) { // loop over the bone's vertex indices and weights rawBone.indices.forEach( function ( index, j ) { if ( geoInfo.weightTable[ index ] === undefined ) geoInfo.weightTable[ index ] = []; geoInfo.weightTable[ index ].push( { id: i, weight: rawBone.weights[ j ], } ); } ); } ); } return geoInfo; } genBuffers( geoInfo ) { const buffers = { vertex: [], normal: [], colors: [], uvs: [], materialIndex: [], vertexWeights: [], weightsIndices: [], }; let polygonIndex = 0; let faceLength = 0; let displayedWeightsWarning = false; // these will hold data for a single face let facePositionIndexes = []; let faceNormals = []; let faceColors = []; let faceUVs = []; let faceWeights = []; let faceWeightIndices = []; const scope = this; geoInfo.vertexIndices.forEach( function ( vertexIndex, polygonVertexIndex ) { let materialIndex; let endOfFace = false; // Face index and vertex index arrays are combined in a single array // A cube with quad faces looks like this: // PolygonVertexIndex: *24 { // a: 0, 1, 3, -3, 2, 3, 5, -5, 4, 5, 7, -7, 6, 7, 1, -1, 1, 7, 5, -4, 6, 0, 2, -5 // } // Negative numbers mark the end of a face - first face here is 0, 1, 3, -3 // to find index of last vertex bit shift the index: ^ - 1 if ( vertexIndex < 0 ) { vertexIndex = vertexIndex ^ - 1; // equivalent to ( x * -1 ) - 1 endOfFace = true; } let weightIndices = []; let weights = []; facePositionIndexes.push( vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2 ); if ( geoInfo.color ) { const data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.color ); faceColors.push( data[ 0 ], data[ 1 ], data[ 2 ] ); } if ( geoInfo.skeleton ) { if ( geoInfo.weightTable[ vertexIndex ] !== undefined ) { geoInfo.weightTable[ vertexIndex ].forEach( function ( wt ) { weights.push( wt.weight ); weightIndices.push( wt.id ); } ); } if ( weights.length > 4 ) { if ( ! displayedWeightsWarning ) { console.warn( 'THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights.' ); displayedWeightsWarning = true; } const wIndex = [ 0, 0, 0, 0 ]; const Weight = [ 0, 0, 0, 0 ]; weights.forEach( function ( weight, weightIndex ) { let currentWeight = weight; let currentIndex = weightIndices[ weightIndex ]; Weight.forEach( function ( comparedWeight, comparedWeightIndex, comparedWeightArray ) { if ( currentWeight > comparedWeight ) { comparedWeightArray[ comparedWeightIndex ] = currentWeight; currentWeight = comparedWeight; const tmp = wIndex[ comparedWeightIndex ]; wIndex[ comparedWeightIndex ] = currentIndex; currentIndex = tmp; } } ); } ); weightIndices = wIndex; weights = Weight; } // if the weight array is shorter than 4 pad with 0s while ( weights.length < 4 ) { weights.push( 0 ); weightIndices.push( 0 ); } for ( let i = 0; i < 4; ++ i ) { faceWeights.push( weights[ i ] ); faceWeightIndices.push( weightIndices[ i ] ); } } if ( geoInfo.normal ) { const data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.normal ); faceNormals.push( data[ 0 ], data[ 1 ], data[ 2 ] ); } if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) { materialIndex = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.material )[ 0 ]; if ( materialIndex < 0 ) { scope.negativeMaterialIndices = true; materialIndex = 0; // fallback } } if ( geoInfo.uv ) { geoInfo.uv.forEach( function ( uv, i ) { const data = getData( polygonVertexIndex, polygonIndex, vertexIndex, uv ); if ( faceUVs[ i ] === undefined ) { faceUVs[ i ] = []; } faceUVs[ i ].push( data[ 0 ] ); faceUVs[ i ].push( data[ 1 ] ); } ); } faceLength ++; if ( endOfFace ) { scope.genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength ); polygonIndex ++; faceLength = 0; // reset arrays for the next face facePositionIndexes = []; faceNormals = []; faceColors = []; faceUVs = []; faceWeights = []; faceWeightIndices = []; } } ); return buffers; } // See https://www.khronos.org/opengl/wiki/Calculating_a_Surface_Normal getNormalNewell( vertices ) { const normal = new Vector3( 0.0, 0.0, 0.0 ); for ( let i = 0; i < vertices.length; i ++ ) { const current = vertices[ i ]; const next = vertices[ ( i + 1 ) % vertices.length ]; normal.x += ( current.y - next.y ) * ( current.z + next.z ); normal.y += ( current.z - next.z ) * ( current.x + next.x ); normal.z += ( current.x - next.x ) * ( current.y + next.y ); } normal.normalize(); return normal; } getNormalTangentAndBitangent( vertices ) { const normalVector = this.getNormalNewell( vertices ); // Avoid up being equal or almost equal to normalVector const up = Math.abs( normalVector.z ) > 0.5 ? new Vector3( 0.0, 1.0, 0.0 ) : new Vector3( 0.0, 0.0, 1.0 ); const tangent = up.cross( normalVector ).normalize(); const bitangent = normalVector.clone().cross( tangent ).normalize(); return { normal: normalVector, tangent: tangent, bitangent: bitangent }; } flattenVertex( vertex, normalTangent, normalBitangent ) { return new Vector2( vertex.dot( normalTangent ), vertex.dot( normalBitangent ) ); } // Generate data for a single face in a geometry. If the face is a quad then split it into 2 tris genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength ) { let triangles; if ( faceLength > 3 ) { // Triangulate n-gon using earcut const vertices = []; // in morphing scenario vertexPositions represent morphPositions // while baseVertexPositions represent the original geometry's positions const positions = geoInfo.baseVertexPositions || geoInfo.vertexPositions; for ( let i = 0; i < facePositionIndexes.length; i += 3 ) { vertices.push( new Vector3( positions[ facePositionIndexes[ i ] ], positions[ facePositionIndexes[ i + 1 ] ], positions[ facePositionIndexes[ i + 2 ] ] ) ); } const { tangent, bitangent } = this.getNormalTangentAndBitangent( vertices ); const triangulationInput = []; for ( const vertex of vertices ) { triangulationInput.push( this.flattenVertex( vertex, tangent, bitangent ) ); } // When vertices is an array of [0,0,0] elements (which is the case for vertices not participating in morph) // the triangulationInput will be an array of [0,0] elements