UNPKG

three

Version:

JavaScript 3D library

155 lines (115 loc) 3.81 kB
import { Curve, Vector3, Vector4 } from 'three'; import * as NURBSUtils from '../curves/NURBSUtils.js'; /** * This class represents a NURBS curve. * * Implementation is based on `(x, y [, z=0 [, w=1]])` control points with `w=weight`. * * @augments Curve */ class NURBSCurve extends Curve { /** * Constructs a new NURBS curve. * * @param {number} degree - The NURBS degree. * @param {Array<number>} knots - The knots as a flat array of numbers. * @param {Array<Vector2|Vector3|Vector4>} controlPoints - An array holding control points. * @param {number} [startKnot] - Index of the start knot into the `knots` array. * @param {number} [endKnot] - Index of the end knot into the `knots` array. */ constructor( degree, knots, controlPoints, startKnot, endKnot ) { super(); const knotsLength = knots ? knots.length - 1 : 0; const pointsLength = controlPoints ? controlPoints.length : 0; /** * The NURBS degree. * * @type {number} */ this.degree = degree; /** * The knots as a flat array of numbers. * * @type {Array<number>} */ this.knots = knots; /** * An array of control points. * * @type {Array<Vector4>} */ this.controlPoints = []; /** * Index of the start knot into the `knots` array. * * @type {number} */ this.startKnot = startKnot || 0; /** * Index of the end knot into the `knots` array. * * @type {number} */ this.endKnot = endKnot || knotsLength; for ( let i = 0; i < pointsLength; ++ i ) { // ensure Vector4 for control points const point = controlPoints[ i ]; this.controlPoints[ i ] = new Vector4( point.x, point.y, point.z, point.w ); } } /** * This method returns a vector in 3D space for the given interpolation factor. * * @param {number} t - A interpolation factor representing a position on the curve. Must be in the range `[0,1]`. * @param {Vector3} [optionalTarget] - The optional target vector the result is written to. * @return {Vector3} The position on the curve. */ getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; const u = this.knots[ this.startKnot ] + t * ( this.knots[ this.endKnot ] - this.knots[ this.startKnot ] ); // linear mapping t->u // following results in (wx, wy, wz, w) homogeneous point const hpoint = NURBSUtils.calcBSplinePoint( this.degree, this.knots, this.controlPoints, u ); if ( hpoint.w !== 1.0 ) { // project to 3D space: (wx, wy, wz, w) -> (x, y, z, 1) hpoint.divideScalar( hpoint.w ); } return point.set( hpoint.x, hpoint.y, hpoint.z ); } /** * Returns a unit vector tangent for the given interpolation factor. * * @param {number} t - The interpolation factor. * @param {Vector3} [optionalTarget] - The optional target vector the result is written to. * @return {Vector3} The tangent vector. */ getTangent( t, optionalTarget = new Vector3() ) { const tangent = optionalTarget; const u = this.knots[ 0 ] + t * ( this.knots[ this.knots.length - 1 ] - this.knots[ 0 ] ); const ders = NURBSUtils.calcNURBSDerivatives( this.degree, this.knots, this.controlPoints, u, 1 ); tangent.copy( ders[ 1 ] ).normalize(); return tangent; } toJSON() { const data = super.toJSON(); data.degree = this.degree; data.knots = [ ...this.knots ]; data.controlPoints = this.controlPoints.map( p => p.toArray() ); data.startKnot = this.startKnot; data.endKnot = this.endKnot; return data; } fromJSON( json ) { super.fromJSON( json ); this.degree = json.degree; this.knots = [ ...json.knots ]; this.controlPoints = json.controlPoints.map( p => new Vector4( p[ 0 ], p[ 1 ], p[ 2 ], p[ 3 ] ) ); this.startKnot = json.startKnot; this.endKnot = json.endKnot; return this; } } export { NURBSCurve };