UNPKG

three

Version:

JavaScript 3D library

342 lines (242 loc) 7.92 kB
import { Vector3 } from './Vector3.js'; /** * Represents a third-order spherical harmonics (SH). Light probes use this class * to encode lighting information. * * - Primary reference: {@link https://graphics.stanford.edu/papers/envmap/envmap.pdf} * - Secondary reference: {@link https://www.ppsloan.org/publications/StupidSH36.pdf} */ class SphericalHarmonics3 { /** * Constructs a new spherical harmonics. */ constructor() { /** * This flag can be used for type testing. * * @type {boolean} * @readonly * @default true */ this.isSphericalHarmonics3 = true; /** * An array holding the (9) SH coefficients. * * @type {Array<Vector3>} */ this.coefficients = []; for ( let i = 0; i < 9; i ++ ) { this.coefficients.push( new Vector3() ); } } /** * Sets the given SH coefficients to this instance by copying * the values. * * @param {Array<Vector3>} coefficients - The SH coefficients. * @return {SphericalHarmonics3} A reference to this spherical harmonics. */ set( coefficients ) { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].copy( coefficients[ i ] ); } return this; } /** * Sets all SH coefficients to `0`. * * @return {SphericalHarmonics3} A reference to this spherical harmonics. */ zero() { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].set( 0, 0, 0 ); } return this; } /** * Returns the radiance in the direction of the given normal. * * @param {Vector3} normal - The normal vector (assumed to be unit length) * @param {Vector3} target - The target vector that is used to store the method's result. * @return {Vector3} The radiance. */ getAt( normal, target ) { // normal is assumed to be unit length const x = normal.x, y = normal.y, z = normal.z; const coeff = this.coefficients; // band 0 target.copy( coeff[ 0 ] ).multiplyScalar( 0.282095 ); // band 1 target.addScaledVector( coeff[ 1 ], 0.488603 * y ); target.addScaledVector( coeff[ 2 ], 0.488603 * z ); target.addScaledVector( coeff[ 3 ], 0.488603 * x ); // band 2 target.addScaledVector( coeff[ 4 ], 1.092548 * ( x * y ) ); target.addScaledVector( coeff[ 5 ], 1.092548 * ( y * z ) ); target.addScaledVector( coeff[ 6 ], 0.315392 * ( 3.0 * z * z - 1.0 ) ); target.addScaledVector( coeff[ 7 ], 1.092548 * ( x * z ) ); target.addScaledVector( coeff[ 8 ], 0.546274 * ( x * x - y * y ) ); return target; } /** * Returns the irradiance (radiance convolved with cosine lobe) in the * direction of the given normal. * * @param {Vector3} normal - The normal vector (assumed to be unit length) * @param {Vector3} target - The target vector that is used to store the method's result. * @return {Vector3} The irradiance. */ getIrradianceAt( normal, target ) { // normal is assumed to be unit length const x = normal.x, y = normal.y, z = normal.z; const coeff = this.coefficients; // band 0 target.copy( coeff[ 0 ] ).multiplyScalar( 0.886227 ); // π * 0.282095 // band 1 target.addScaledVector( coeff[ 1 ], 2.0 * 0.511664 * y ); // ( 2 * π / 3 ) * 0.488603 target.addScaledVector( coeff[ 2 ], 2.0 * 0.511664 * z ); target.addScaledVector( coeff[ 3 ], 2.0 * 0.511664 * x ); // band 2 target.addScaledVector( coeff[ 4 ], 2.0 * 0.429043 * x * y ); // ( π / 4 ) * 1.092548 target.addScaledVector( coeff[ 5 ], 2.0 * 0.429043 * y * z ); target.addScaledVector( coeff[ 6 ], 0.743125 * z * z - 0.247708 ); // ( π / 4 ) * 0.315392 * 3 target.addScaledVector( coeff[ 7 ], 2.0 * 0.429043 * x * z ); target.addScaledVector( coeff[ 8 ], 0.429043 * ( x * x - y * y ) ); // ( π / 4 ) * 0.546274 return target; } /** * Adds the given SH to this instance. * * @param {SphericalHarmonics3} sh - The SH to add. * @return {SphericalHarmonics3} A reference to this spherical harmonics. */ add( sh ) { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].add( sh.coefficients[ i ] ); } return this; } /** * A convenience method for performing {@link SphericalHarmonics3#add} and * {@link SphericalHarmonics3#scale} at once. * * @param {SphericalHarmonics3} sh - The SH to add. * @param {number} s - The scale factor. * @return {SphericalHarmonics3} A reference to this spherical harmonics. */ addScaledSH( sh, s ) { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].addScaledVector( sh.coefficients[ i ], s ); } return this; } /** * Scales this SH by the given scale factor. * * @param {number} s - The scale factor. * @return {SphericalHarmonics3} A reference to this spherical harmonics. */ scale( s ) { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].multiplyScalar( s ); } return this; } /** * Linear interpolates between the given SH and this instance by the given * alpha factor. * * @param {SphericalHarmonics3} sh - The SH to interpolate with. * @param {number} alpha - The alpha factor. * @return {SphericalHarmonics3} A reference to this spherical harmonics. */ lerp( sh, alpha ) { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].lerp( sh.coefficients[ i ], alpha ); } return this; } /** * Returns `true` if this spherical harmonics is equal with the given one. * * @param {SphericalHarmonics3} sh - The spherical harmonics to test for equality. * @return {boolean} Whether this spherical harmonics is equal with the given one. */ equals( sh ) { for ( let i = 0; i < 9; i ++ ) { if ( ! this.coefficients[ i ].equals( sh.coefficients[ i ] ) ) { return false; } } return true; } /** * Copies the values of the given spherical harmonics to this instance. * * @param {SphericalHarmonics3} sh - The spherical harmonics to copy. * @return {SphericalHarmonics3} A reference to this spherical harmonics. */ copy( sh ) { return this.set( sh.coefficients ); } /** * Returns a new spherical harmonics with copied values from this instance. * * @return {SphericalHarmonics3} A clone of this instance. */ clone() { return new this.constructor().copy( this ); } /** * Sets the SH coefficients of this instance from the given array. * * @param {Array<number>} array - An array holding the SH coefficients. * @param {number} [offset=0] - The array offset where to start copying. * @return {SphericalHarmonics3} A clone of this instance. */ fromArray( array, offset = 0 ) { const coefficients = this.coefficients; for ( let i = 0; i < 9; i ++ ) { coefficients[ i ].fromArray( array, offset + ( i * 3 ) ); } return this; } /** * Returns an array with the SH coefficients, or copies them into the provided * array. The coefficients are represented as numbers. * * @param {Array<number>} [array=[]] - The target array. * @param {number} [offset=0] - The array offset where to start copying. * @return {Array<number>} An array with flat SH coefficients. */ toArray( array = [], offset = 0 ) { const coefficients = this.coefficients; for ( let i = 0; i < 9; i ++ ) { coefficients[ i ].toArray( array, offset + ( i * 3 ) ); } return array; } /** * Computes the SH basis for the given normal vector. * * @param {Vector3} normal - The normal. * @param {Array<number>} shBasis - The target array holding the SH basis. */ static getBasisAt( normal, shBasis ) { // normal is assumed to be unit length const x = normal.x, y = normal.y, z = normal.z; // band 0 shBasis[ 0 ] = 0.282095; // band 1 shBasis[ 1 ] = 0.488603 * y; shBasis[ 2 ] = 0.488603 * z; shBasis[ 3 ] = 0.488603 * x; // band 2 shBasis[ 4 ] = 1.092548 * x * y; shBasis[ 5 ] = 1.092548 * y * z; shBasis[ 6 ] = 0.315392 * ( 3 * z * z - 1 ); shBasis[ 7 ] = 1.092548 * x * z; shBasis[ 8 ] = 0.546274 * ( x * x - y * y ); } } export { SphericalHarmonics3 };