three
Version:
JavaScript 3D library
366 lines (199 loc) • 7.83 kB
JavaScript
import { Material, ShaderMaterial, NoToneMapping } from 'three';
import { getNodesKeys, getCacheKey } from '../core/NodeUtils.js';
import StackNode from '../core/StackNode.js';
import LightsNode from '../lighting/LightsNode.js';
import EnvironmentNode from '../lighting/EnvironmentNode.js';
import ToneMappingNode from '../display/ToneMappingNode.js';
import AONode from '../lighting/AONode.js';
import {
float, vec3, vec4,
assign, mul, bypass, attribute, context, texture, lessThanEqual, discard,
positionLocal, diffuseColor, skinning, instance, modelViewProjection, lightingContext, colorSpace,
materialAlphaTest, materialColor, materialOpacity, materialEmissive, materialNormal, transformedNormalView,
reference, rangeFog, densityFog
} from '../shadernode/ShaderNodeElements.js';
class NodeMaterial extends ShaderMaterial {
constructor() {
super();
this.isNodeMaterial = true;
this.type = this.constructor.name;
this.lights = true;
this.normals = true;
this.lightsNode = null;
}
customProgramCacheKey() {
return getCacheKey( this );
}
build( builder ) {
this.construct( builder );
}
construct( builder ) {
// < STACKS >
const vertexStack = new StackNode();
const fragmentStack = new StackNode();
// < VERTEX STAGE >
vertexStack.outputNode = this.constructPosition( builder, vertexStack );
// < FRAGMENT STAGE >
if ( this.normals === true ) this.constructNormal( builder, fragmentStack );
this.constructDiffuseColor( builder, fragmentStack );
this.constructVariants( builder, fragmentStack );
const outgoingLightNode = this.constructLighting( builder, fragmentStack );
fragmentStack.outputNode = this.constructOutput( builder, fragmentStack, outgoingLightNode, diffuseColor.a );
// < FLOW >
builder.addFlow( 'vertex', vertexStack );
builder.addFlow( 'fragment', fragmentStack );
}
constructPosition( builder ) {
const object = builder.object;
let vertex = positionLocal;
if ( this.positionNode !== null ) {
vertex = bypass( vertex, assign( positionLocal, this.positionNode ) );
}
if ( ( object.instanceMatrix && object.instanceMatrix.isInstancedBufferAttribute === true ) && builder.isAvailable( 'instance' ) === true ) {
vertex = bypass( vertex, instance( object ) );
}
if ( object.isSkinnedMesh === true ) {
vertex = bypass( vertex, skinning( object ) );
}
builder.context.vertex = vertex;
return modelViewProjection();
}
constructDiffuseColor( builder, stack ) {
let colorNode = vec4( this.colorNode || materialColor );
const opacityNode = this.opacityNode ? float( this.opacityNode ) : materialOpacity;
// VERTEX COLORS
if ( this.vertexColors === true && builder.geometry.hasAttribute( 'color' ) ) {
colorNode = vec4( mul( colorNode.xyz, attribute( 'color' ) ), colorNode.a );
}
// COLOR
stack.assign( diffuseColor, colorNode );
// OPACITY
stack.assign( diffuseColor.a, diffuseColor.a.mul( opacityNode ) );
// ALPHA TEST
if ( this.alphaTestNode || this.alphaTest > 0 ) {
const alphaTestNode = this.alphaTestNode ? float( this.alphaTestNode ) : materialAlphaTest;
stack.add( discard( lessThanEqual( diffuseColor.a, alphaTestNode ) ) );
}
}
constructVariants( /*builder*/ ) {
// Interface function.
}
constructNormal( builder, stack ) {
// NORMAL VIEW
const normalNode = this.normalNode ? vec3( this.normalNode ) : materialNormal;
stack.assign( transformedNormalView, normalNode );
return normalNode;
}
constructLights( builder ) {
let lightsNode = this.lightsNode || builder.lightsNode;
const envNode = this.envNode || builder.scene.environmentNode;
const materialLightsNode = [];
if ( envNode ) {
materialLightsNode.push( new EnvironmentNode( envNode ) );
}
if ( builder.material.aoMap ) {
materialLightsNode.push( new AONode( texture( builder.material.aoMap ) ) );
}
if ( materialLightsNode.length > 0 ) {
lightsNode = new LightsNode( [ ...lightsNode.lightNodes, ...materialLightsNode ] );
}
return lightsNode;
}
constructLightingModel( /*builder*/ ) {
// Interface function.
}
constructLighting( builder ) {
const { material } = builder;
// OUTGOING LIGHT
const lights = ( this.lights === true ) || this.lightsNode !== null;
const lightsNode = lights ? this.constructLights( builder ) : null;
const lightingModelNode = lightsNode ? this.constructLightingModel( builder ) : null;
let outgoingLightNode = diffuseColor.xyz;
if ( lightsNode && lightsNode.hasLight !== false ) {
outgoingLightNode = lightingContext( lightsNode, lightingModelNode );
}
// EMISSIVE
if ( ( this.emissiveNode && this.emissiveNode.isNode === true ) || ( material.emissive && material.emissive.isColor === true ) ) {
outgoingLightNode = outgoingLightNode.add( vec3( this.emissiveNode || materialEmissive ) );
}
return outgoingLightNode;
}
constructOutput( builder, stack, outgoingLight, opacity ) {
const renderer = builder.renderer;
// TONE MAPPING
let toneMappingNode = renderer.toneMappingNode;
if ( ! toneMappingNode && renderer.toneMapping !== NoToneMapping ) {
toneMappingNode = new ToneMappingNode( renderer.toneMapping, reference( 'toneMappingExposure', 'float', renderer ), outgoingLight );
}
if ( toneMappingNode && toneMappingNode.isNode === true ) {
outgoingLight = context( toneMappingNode, { color: outgoingLight } );
}
// @TODO: Optimize outputNode to vec3.
let outputNode = vec4( outgoingLight, opacity );
// ENCODING
outputNode = colorSpace( outputNode, renderer.outputEncoding );
// FOG
let fogNode = builder.fogNode;
if ( ( fogNode && fogNode.isNode !== true ) && builder.scene.fog ) {
const fog = builder.scene.fog;
if ( fog.isFogExp2 ) {
fogNode = densityFog( reference( 'color', 'color', fog ), reference( 'density', 'float', fog ) );
} else if ( fog.isFog ) {
fogNode = rangeFog( reference( 'color', 'color', fog ), reference( 'near', 'float', fog ), reference( 'far', 'float', fog ) );
} else {
console.error( 'NodeMaterial: Unsupported fog configuration.', fog );
}
}
if ( fogNode ) outputNode = vec4( vec3( fogNode.mix( outputNode ) ), outputNode.w );
return outputNode;
}
setDefaultValues( values ) {
// This approach is to reuse the native refreshUniforms*
// and turn available the use of features like transmission and environment in core
for ( const property in values ) {
const value = values[ property ];
if ( this[ property ] === undefined ) {
this[ property ] = value;
if ( value && value.clone ) this[ property ] = value.clone();
}
}
Object.assign( this.defines, values.defines );
}
toJSON( meta ) {
const isRoot = ( meta === undefined || typeof meta === 'string' );
if ( isRoot ) {
meta = {
textures: {},
images: {},
nodes: {}
};
}
const data = Material.prototype.toJSON.call( this, meta );
const nodeKeys = getNodesKeys( this );
data.inputNodes = {};
for ( const name of nodeKeys ) {
data.inputNodes[ name ] = this[ name ].toJSON( meta ).uuid;
}
// TODO: Copied from Object3D.toJSON
function extractFromCache( cache ) {
const values = [];
for ( const key in cache ) {
const data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
if ( isRoot ) {
const textures = extractFromCache( meta.textures );
const images = extractFromCache( meta.images );
const nodes = extractFromCache( meta.nodes );
if ( textures.length > 0 ) data.textures = textures;
if ( images.length > 0 ) data.images = images;
if ( nodes.length > 0 ) data.nodes = nodes;
}
return data;
}
static fromMaterial( /*material*/ ) { }
}
export default NodeMaterial;