UNPKG

three

Version:

JavaScript 3D library

215 lines (134 loc) 7.74 kB
export default /* glsl */` struct PhysicalMaterial { vec3 diffuseColor; float roughness; vec3 specularColor; float specularF90; #ifdef USE_CLEARCOAT float clearcoat; float clearcoatRoughness; vec3 clearcoatF0; float clearcoatF90; #endif #ifdef USE_SHEEN vec3 sheenColor; float sheenRoughness; #endif }; // temporary vec3 clearcoatSpecular = vec3( 0.0 ); vec3 sheenSpecular = vec3( 0.0 ); // This is a curve-fit approxmation to the "Charlie sheen" BRDF integrated over the hemisphere from // Estevez and Kulla 2017, "Production Friendly Microfacet Sheen BRDF". The analysis can be found // in the Sheen section of https://drive.google.com/file/d/1T0D1VSyR4AllqIJTQAraEIzjlb5h4FKH/view?usp=sharing float IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness) { float dotNV = saturate( dot( normal, viewDir ) ); float r2 = roughness * roughness; float a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95; float b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72; float DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) ); return saturate( DG * RECIPROCAL_PI ); } // Analytical approximation of the DFG LUT, one half of the // split-sum approximation used in indirect specular lighting. // via 'environmentBRDF' from "Physically Based Shading on Mobile" // https://www.unrealengine.com/blog/physically-based-shading-on-mobile vec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) { float dotNV = saturate( dot( normal, viewDir ) ); const vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 ); const vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 ); vec4 r = roughness * c0 + c1; float a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y; vec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw; return fab; } vec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) { vec2 fab = DFGApprox( normal, viewDir, roughness ); return specularColor * fab.x + specularF90 * fab.y; } // Fdez-Agüera's "Multiple-Scattering Microfacet Model for Real-Time Image Based Lighting" // Approximates multiscattering in order to preserve energy. // http://www.jcgt.org/published/0008/01/03/ void computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) { vec2 fab = DFGApprox( normal, viewDir, roughness ); vec3 FssEss = specularColor * fab.x + specularF90 * fab.y; float Ess = fab.x + fab.y; float Ems = 1.0 - Ess; vec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619; // 1/21 vec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg ); singleScatter += FssEss; multiScatter += Fms * Ems; } #if NUM_RECT_AREA_LIGHTS > 0 void RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) { vec3 normal = geometry.normal; vec3 viewDir = geometry.viewDir; vec3 position = geometry.position; vec3 lightPos = rectAreaLight.position; vec3 halfWidth = rectAreaLight.halfWidth; vec3 halfHeight = rectAreaLight.halfHeight; vec3 lightColor = rectAreaLight.color; float roughness = material.roughness; vec3 rectCoords[ 4 ]; rectCoords[ 0 ] = lightPos + halfWidth - halfHeight; // counterclockwise; light shines in local neg z direction rectCoords[ 1 ] = lightPos - halfWidth - halfHeight; rectCoords[ 2 ] = lightPos - halfWidth + halfHeight; rectCoords[ 3 ] = lightPos + halfWidth + halfHeight; vec2 uv = LTC_Uv( normal, viewDir, roughness ); vec4 t1 = texture2D( ltc_1, uv ); vec4 t2 = texture2D( ltc_2, uv ); mat3 mInv = mat3( vec3( t1.x, 0, t1.y ), vec3( 0, 1, 0 ), vec3( t1.z, 0, t1.w ) ); // LTC Fresnel Approximation by Stephen Hill // http://blog.selfshadow.com/publications/s2016-advances/s2016_ltc_fresnel.pdf vec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y ); reflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords ); reflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords ); } #endif void RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) { float dotNL = saturate( dot( geometry.normal, directLight.direction ) ); vec3 irradiance = dotNL * directLight.color; #ifdef USE_CLEARCOAT float dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) ); vec3 ccIrradiance = dotNLcc * directLight.color; clearcoatSpecular += ccIrradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness ); #endif #ifdef USE_SHEEN sheenSpecular += irradiance * BRDF_Sheen( directLight.direction, geometry.viewDir, geometry.normal, material.sheenColor, material.sheenRoughness ); #endif reflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness ); reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor ); } void RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) { reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor ); } void RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) { #ifdef USE_CLEARCOAT clearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness ); #endif #ifdef USE_SHEEN sheenSpecular += irradiance * material.sheenColor * IBLSheenBRDF( geometry.normal, geometry.viewDir, material.sheenRoughness ); #endif // Both indirect specular and indirect diffuse light accumulate here vec3 singleScattering = vec3( 0.0 ); vec3 multiScattering = vec3( 0.0 ); vec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI; computeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering ); vec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) ); reflectedLight.indirectSpecular += radiance * singleScattering; reflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance; reflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance; } #define RE_Direct RE_Direct_Physical #define RE_Direct_RectArea RE_Direct_RectArea_Physical #define RE_IndirectDiffuse RE_IndirectDiffuse_Physical #define RE_IndirectSpecular RE_IndirectSpecular_Physical // ref: https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf float computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) { return saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion ); } `;