three
Version:
JavaScript 3D library
374 lines (245 loc) • 9.69 kB
JavaScript
import {
LinearFilter,
LinearMipmapLinearFilter,
MeshBasicMaterial,
NoBlending,
RGBAFormat,
ShaderMaterial,
UniformsUtils,
WebGLRenderTarget
} from "../../../build/three.module.js";
import { Pass } from "../postprocessing/Pass.js";
import { CopyShader } from "../shaders/CopyShader.js";
import { LuminosityShader } from "../shaders/LuminosityShader.js";
import { ToneMapShader } from "../shaders/ToneMapShader.js";
/**
* Generate a texture that represents the luminosity of the current scene, adapted over time
* to simulate the optic nerve responding to the amount of light it is receiving.
* Based on a GDC2007 presentation by Wolfgang Engel titled "Post-Processing Pipeline"
*
* Full-screen tone-mapping shader based on http://www.graphics.cornell.edu/~jaf/publications/sig02_paper.pdf
*/
var AdaptiveToneMappingPass = function ( adaptive, resolution ) {
Pass.call( this );
this.resolution = ( resolution !== undefined ) ? resolution : 256;
this.needsInit = true;
this.adaptive = adaptive !== undefined ? !! adaptive : true;
this.luminanceRT = null;
this.previousLuminanceRT = null;
this.currentLuminanceRT = null;
if ( CopyShader === undefined )
console.error( "AdaptiveToneMappingPass relies on CopyShader" );
var copyShader = CopyShader;
this.copyUniforms = UniformsUtils.clone( copyShader.uniforms );
this.materialCopy = new ShaderMaterial( {
uniforms: this.copyUniforms,
vertexShader: copyShader.vertexShader,
fragmentShader: copyShader.fragmentShader,
blending: NoBlending,
depthTest: false
} );
if ( LuminosityShader === undefined )
console.error( "AdaptiveToneMappingPass relies on LuminosityShader" );
this.materialLuminance = new ShaderMaterial( {
uniforms: UniformsUtils.clone( LuminosityShader.uniforms ),
vertexShader: LuminosityShader.vertexShader,
fragmentShader: LuminosityShader.fragmentShader,
blending: NoBlending
} );
this.adaptLuminanceShader = {
defines: {
"MIP_LEVEL_1X1": ( Math.log( this.resolution ) / Math.log( 2.0 ) ).toFixed( 1 )
},
uniforms: {
"lastLum": { value: null },
"currentLum": { value: null },
"minLuminance": { value: 0.01 },
"delta": { value: 0.016 },
"tau": { value: 1.0 }
},
vertexShader: [
"varying vec2 vUv;",
"void main() {",
" vUv = uv;",
" gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );",
"}"
].join( '\n' ),
fragmentShader: [
"varying vec2 vUv;",
"uniform sampler2D lastLum;",
"uniform sampler2D currentLum;",
"uniform float minLuminance;",
"uniform float delta;",
"uniform float tau;",
"void main() {",
" vec4 lastLum = texture2D( lastLum, vUv, MIP_LEVEL_1X1 );",
" vec4 currentLum = texture2D( currentLum, vUv, MIP_LEVEL_1X1 );",
" float fLastLum = max( minLuminance, lastLum.r );",
" float fCurrentLum = max( minLuminance, currentLum.r );",
//The adaption seems to work better in extreme lighting differences
//if the input luminance is squared.
" fCurrentLum *= fCurrentLum;",
// Adapt the luminance using Pattanaik's technique
" float fAdaptedLum = fLastLum + (fCurrentLum - fLastLum) * (1.0 - exp(-delta * tau));",
// "fAdaptedLum = sqrt(fAdaptedLum);",
" gl_FragColor.r = fAdaptedLum;",
"}"
].join( '\n' )
};
this.materialAdaptiveLum = new ShaderMaterial( {
uniforms: UniformsUtils.clone( this.adaptLuminanceShader.uniforms ),
vertexShader: this.adaptLuminanceShader.vertexShader,
fragmentShader: this.adaptLuminanceShader.fragmentShader,
defines: Object.assign( {}, this.adaptLuminanceShader.defines ),
blending: NoBlending
} );
if ( ToneMapShader === undefined )
console.error( "AdaptiveToneMappingPass relies on ToneMapShader" );
this.materialToneMap = new ShaderMaterial( {
uniforms: UniformsUtils.clone( ToneMapShader.uniforms ),
vertexShader: ToneMapShader.vertexShader,
fragmentShader: ToneMapShader.fragmentShader,
blending: NoBlending
} );
this.fsQuad = new Pass.FullScreenQuad( null );
};
AdaptiveToneMappingPass.prototype = Object.assign( Object.create( Pass.prototype ), {
constructor: AdaptiveToneMappingPass,
render: function ( renderer, writeBuffer, readBuffer, deltaTime/*, maskActive*/ ) {
if ( this.needsInit ) {
this.reset( renderer );
this.luminanceRT.texture.type = readBuffer.texture.type;
this.previousLuminanceRT.texture.type = readBuffer.texture.type;
this.currentLuminanceRT.texture.type = readBuffer.texture.type;
this.needsInit = false;
}
if ( this.adaptive ) {
//Render the luminance of the current scene into a render target with mipmapping enabled
this.fsQuad.material = this.materialLuminance;
this.materialLuminance.uniforms.tDiffuse.value = readBuffer.texture;
renderer.setRenderTarget( this.currentLuminanceRT );
this.fsQuad.render( renderer );
//Use the new luminance values, the previous luminance and the frame delta to
//adapt the luminance over time.
this.fsQuad.material = this.materialAdaptiveLum;
this.materialAdaptiveLum.uniforms.delta.value = deltaTime;
this.materialAdaptiveLum.uniforms.lastLum.value = this.previousLuminanceRT.texture;
this.materialAdaptiveLum.uniforms.currentLum.value = this.currentLuminanceRT.texture;
renderer.setRenderTarget( this.luminanceRT );
this.fsQuad.render( renderer );
//Copy the new adapted luminance value so that it can be used by the next frame.
this.fsQuad.material = this.materialCopy;
this.copyUniforms.tDiffuse.value = this.luminanceRT.texture;
renderer.setRenderTarget( this.previousLuminanceRT );
this.fsQuad.render( renderer );
}
this.fsQuad.material = this.materialToneMap;
this.materialToneMap.uniforms.tDiffuse.value = readBuffer.texture;
if ( this.renderToScreen ) {
renderer.setRenderTarget( null );
this.fsQuad.render( renderer );
} else {
renderer.setRenderTarget( writeBuffer );
if ( this.clear ) renderer.clear();
this.fsQuad.render( renderer );
}
},
reset: function () {
// render targets
if ( this.luminanceRT ) {
this.luminanceRT.dispose();
}
if ( this.currentLuminanceRT ) {
this.currentLuminanceRT.dispose();
}
if ( this.previousLuminanceRT ) {
this.previousLuminanceRT.dispose();
}
var pars = { minFilter: LinearFilter, magFilter: LinearFilter, format: RGBAFormat }; // was RGB format. changed to RGBA format. see discussion in #8415 / #8450
this.luminanceRT = new WebGLRenderTarget( this.resolution, this.resolution, pars );
this.luminanceRT.texture.name = "AdaptiveToneMappingPass.l";
this.luminanceRT.texture.generateMipmaps = false;
this.previousLuminanceRT = new WebGLRenderTarget( this.resolution, this.resolution, pars );
this.previousLuminanceRT.texture.name = "AdaptiveToneMappingPass.pl";
this.previousLuminanceRT.texture.generateMipmaps = false;
// We only need mipmapping for the current luminosity because we want a down-sampled version to sample in our adaptive shader
pars.minFilter = LinearMipmapLinearFilter;
pars.generateMipmaps = true;
this.currentLuminanceRT = new WebGLRenderTarget( this.resolution, this.resolution, pars );
this.currentLuminanceRT.texture.name = "AdaptiveToneMappingPass.cl";
if ( this.adaptive ) {
this.materialToneMap.defines[ "ADAPTED_LUMINANCE" ] = "";
this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT.texture;
}
//Put something in the adaptive luminance texture so that the scene can render initially
this.fsQuad.material = new MeshBasicMaterial( { color: 0x777777 } );
this.materialLuminance.needsUpdate = true;
this.materialAdaptiveLum.needsUpdate = true;
this.materialToneMap.needsUpdate = true;
// renderer.render( this.scene, this.camera, this.luminanceRT );
// renderer.render( this.scene, this.camera, this.previousLuminanceRT );
// renderer.render( this.scene, this.camera, this.currentLuminanceRT );
},
setAdaptive: function ( adaptive ) {
if ( adaptive ) {
this.adaptive = true;
this.materialToneMap.defines[ "ADAPTED_LUMINANCE" ] = "";
this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT.texture;
} else {
this.adaptive = false;
delete this.materialToneMap.defines[ "ADAPTED_LUMINANCE" ];
this.materialToneMap.uniforms.luminanceMap.value = null;
}
this.materialToneMap.needsUpdate = true;
},
setAdaptionRate: function ( rate ) {
if ( rate ) {
this.materialAdaptiveLum.uniforms.tau.value = Math.abs( rate );
}
},
setMinLuminance: function ( minLum ) {
if ( minLum ) {
this.materialToneMap.uniforms.minLuminance.value = minLum;
this.materialAdaptiveLum.uniforms.minLuminance.value = minLum;
}
},
setMaxLuminance: function ( maxLum ) {
if ( maxLum ) {
this.materialToneMap.uniforms.maxLuminance.value = maxLum;
}
},
setAverageLuminance: function ( avgLum ) {
if ( avgLum ) {
this.materialToneMap.uniforms.averageLuminance.value = avgLum;
}
},
setMiddleGrey: function ( middleGrey ) {
if ( middleGrey ) {
this.materialToneMap.uniforms.middleGrey.value = middleGrey;
}
},
dispose: function () {
if ( this.luminanceRT ) {
this.luminanceRT.dispose();
}
if ( this.previousLuminanceRT ) {
this.previousLuminanceRT.dispose();
}
if ( this.currentLuminanceRT ) {
this.currentLuminanceRT.dispose();
}
if ( this.materialLuminance ) {
this.materialLuminance.dispose();
}
if ( this.materialAdaptiveLum ) {
this.materialAdaptiveLum.dispose();
}
if ( this.materialCopy ) {
this.materialCopy.dispose();
}
if ( this.materialToneMap ) {
this.materialToneMap.dispose();
}
}
} );
export { AdaptiveToneMappingPass };