three
Version:
JavaScript 3D library
280 lines (227 loc) • 10.3 kB
JavaScript
console.warn( "THREE.VolumeShader: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation." );
/**
* Shaders to render 3D volumes using raycasting.
* The applied techniques are based on similar implementations in the Visvis and Vispy projects.
* This is not the only approach, therefore it's marked 1.
*/
THREE.VolumeRenderShader1 = {
uniforms: {
"u_size": { value: new THREE.Vector3( 1, 1, 1 ) },
"u_renderstyle": { value: 0 },
"u_renderthreshold": { value: 0.5 },
"u_clim": { value: new THREE.Vector2( 1, 1 ) },
"u_data": { value: null },
"u_cmdata": { value: null }
},
vertexShader: [
" varying vec4 v_nearpos;",
" varying vec4 v_farpos;",
" varying vec3 v_position;",
" void main() {",
// Prepare transforms to map to "camera view". See also:
// https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
" mat4 viewtransformf = modelViewMatrix;",
" mat4 viewtransformi = inverse(modelViewMatrix);",
// Project local vertex coordinate to camera position. Then do a step
// backward (in cam coords) to the near clipping plane, and project back. Do
// the same for the far clipping plane. This gives us all the information we
// need to calculate the ray and truncate it to the viewing cone.
" vec4 position4 = vec4(position, 1.0);",
" vec4 pos_in_cam = viewtransformf * position4;",
// Intersection of ray and near clipping plane (z = -1 in clip coords)
" pos_in_cam.z = -pos_in_cam.w;",
" v_nearpos = viewtransformi * pos_in_cam;",
// Intersection of ray and far clipping plane (z = +1 in clip coords)
" pos_in_cam.z = pos_in_cam.w;",
" v_farpos = viewtransformi * pos_in_cam;",
// Set varyings and output pos
" v_position = position;",
" gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;",
" }",
].join( "\n" ),
fragmentShader: [
" precision highp float;",
" precision mediump sampler3D;",
" uniform vec3 u_size;",
" uniform int u_renderstyle;",
" uniform float u_renderthreshold;",
" uniform vec2 u_clim;",
" uniform sampler3D u_data;",
" uniform sampler2D u_cmdata;",
" varying vec3 v_position;",
" varying vec4 v_nearpos;",
" varying vec4 v_farpos;",
// The maximum distance through our rendering volume is sqrt(3).
" const int MAX_STEPS = 887; // 887 for 512^3, 1774 for 1024^3",
" const int REFINEMENT_STEPS = 4;",
" const float relative_step_size = 1.0;",
" const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);",
" const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);",
" const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);",
" const float shininess = 40.0;",
" void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);",
" void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);",
" float sample1(vec3 texcoords);",
" vec4 apply_colormap(float val);",
" vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);",
" void main() {",
// Normalize clipping plane info
" vec3 farpos = v_farpos.xyz / v_farpos.w;",
" vec3 nearpos = v_nearpos.xyz / v_nearpos.w;",
// Calculate unit vector pointing in the view direction through this fragment.
" vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);",
// Compute the (negative) distance to the front surface or near clipping plane.
// v_position is the back face of the cuboid, so the initial distance calculated in the dot
// product below is the distance from near clip plane to the back of the cuboid
" float distance = dot(nearpos - v_position, view_ray);",
" distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,",
" (u_size.x - 0.5 - v_position.x) / view_ray.x));",
" distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,",
" (u_size.y - 0.5 - v_position.y) / view_ray.y));",
" distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,",
" (u_size.z - 0.5 - v_position.z) / view_ray.z));",
// Now we have the starting position on the front surface
" vec3 front = v_position + view_ray * distance;",
// Decide how many steps to take
" int nsteps = int(-distance / relative_step_size + 0.5);",
" if ( nsteps < 1 )",
" discard;",
// Get starting location and step vector in texture coordinates
" vec3 step = ((v_position - front) / u_size) / float(nsteps);",
" vec3 start_loc = front / u_size;",
// For testing: show the number of steps. This helps to establish
// whether the rays are correctly oriented
//'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);',
//'return;',
" if (u_renderstyle == 0)",
" cast_mip(start_loc, step, nsteps, view_ray);",
" else if (u_renderstyle == 1)",
" cast_iso(start_loc, step, nsteps, view_ray);",
" if (gl_FragColor.a < 0.05)",
" discard;",
" }",
" float sample1(vec3 texcoords) {",
" /* Sample float value from a 3D texture. Assumes intensity data. */",
" return texture(u_data, texcoords.xyz).r;",
" }",
" vec4 apply_colormap(float val) {",
" val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);",
" return texture2D(u_cmdata, vec2(val, 0.5));",
" }",
" void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {",
" float max_val = -1e6;",
" int max_i = 100;",
" vec3 loc = start_loc;",
// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
// non-constant expression. So we use a hard-coded max, and an additional condition
// inside the loop.
" for (int iter=0; iter<MAX_STEPS; iter++) {",
" if (iter >= nsteps)",
" break;",
// Sample from the 3D texture
" float val = sample1(loc);",
// Apply MIP operation
" if (val > max_val) {",
" max_val = val;",
" max_i = iter;",
" }",
// Advance location deeper into the volume
" loc += step;",
" }",
// Refine location, gives crispier images
" vec3 iloc = start_loc + step * (float(max_i) - 0.5);",
" vec3 istep = step / float(REFINEMENT_STEPS);",
" for (int i=0; i<REFINEMENT_STEPS; i++) {",
" max_val = max(max_val, sample1(iloc));",
" iloc += istep;",
" }",
// Resolve final color
" gl_FragColor = apply_colormap(max_val);",
" }",
" void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {",
" gl_FragColor = vec4(0.0); // init transparent",
" vec4 color3 = vec4(0.0); // final color",
" vec3 dstep = 1.5 / u_size; // step to sample derivative",
" vec3 loc = start_loc;",
" float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);",
// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
// non-constant expression. So we use a hard-coded max, and an additional condition
// inside the loop.
" for (int iter=0; iter<MAX_STEPS; iter++) {",
" if (iter >= nsteps)",
" break;",
// Sample from the 3D texture
" float val = sample1(loc);",
" if (val > low_threshold) {",
// Take the last interval in smaller steps
" vec3 iloc = loc - 0.5 * step;",
" vec3 istep = step / float(REFINEMENT_STEPS);",
" for (int i=0; i<REFINEMENT_STEPS; i++) {",
" val = sample1(iloc);",
" if (val > u_renderthreshold) {",
" gl_FragColor = add_lighting(val, iloc, dstep, view_ray);",
" return;",
" }",
" iloc += istep;",
" }",
" }",
// Advance location deeper into the volume
" loc += step;",
" }",
" }",
" vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)",
" {",
// Calculate color by incorporating lighting
// View direction
" vec3 V = normalize(view_ray);",
// calculate normal vector from gradient
" vec3 N;",
" float val1, val2;",
" val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));",
" val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));",
" N[0] = val1 - val2;",
" val = max(max(val1, val2), val);",
" val1 = sample1(loc + vec3(0.0, -step[1], 0.0));",
" val2 = sample1(loc + vec3(0.0, +step[1], 0.0));",
" N[1] = val1 - val2;",
" val = max(max(val1, val2), val);",
" val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));",
" val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));",
" N[2] = val1 - val2;",
" val = max(max(val1, val2), val);",
" float gm = length(N); // gradient magnitude",
" N = normalize(N);",
// Flip normal so it points towards viewer
" float Nselect = float(dot(N, V) > 0.0);",
" N = (2.0 * Nselect - 1.0) * N; // == Nselect * N - (1.0-Nselect)*N;",
// Init colors
" vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);",
" vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);",
" vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);",
// note: could allow multiple lights
" for (int i=0; i<1; i++)",
" {",
// Get light direction (make sure to prevent zero devision)
" vec3 L = normalize(view_ray); //lightDirs[i];",
" float lightEnabled = float( length(L) > 0.0 );",
" L = normalize(L + (1.0 - lightEnabled));",
// Calculate lighting properties
" float lambertTerm = clamp(dot(N, L), 0.0, 1.0);",
" vec3 H = normalize(L+V); // Halfway vector",
" float specularTerm = pow(max(dot(H, N), 0.0), shininess);",
// Calculate mask
" float mask1 = lightEnabled;",
// Calculate colors
" ambient_color += mask1 * ambient_color; // * gl_LightSource[i].ambient;",
" diffuse_color += mask1 * lambertTerm;",
" specular_color += mask1 * specularTerm * specular_color;",
" }",
// Calculate final color by componing different components
" vec4 final_color;",
" vec4 color = apply_colormap(val);",
" final_color = color * (ambient_color + diffuse_color) + specular_color;",
" final_color.a = color.a;",
" return final_color;",
" }",
].join( "\n" )
};