UNPKG

three

Version:

JavaScript 3D library

1,986 lines (1,294 loc) 81.1 kB
/** * @author Rich Tibbett / https://github.com/richtr * @author mrdoob / http://mrdoob.com/ * @author Tony Parisi / http://www.tonyparisi.com/ * @author Takahiro / https://github.com/takahirox * @author Don McCurdy / https://www.donmccurdy.com */ THREE.GLTFLoader = ( function () { function GLTFLoader( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; this.dracoLoader = null; } GLTFLoader.prototype = { constructor: GLTFLoader, crossOrigin: 'anonymous', load: function ( url, onLoad, onProgress, onError ) { var scope = this; var resourcePath; if ( this.resourcePath !== undefined ) { resourcePath = this.resourcePath; } else if ( this.path !== undefined ) { resourcePath = this.path; } else { resourcePath = THREE.LoaderUtils.extractUrlBase( url ); } // Tells the LoadingManager to track an extra item, which resolves after // the model is fully loaded. This means the count of items loaded will // be incorrect, but ensures manager.onLoad() does not fire early. scope.manager.itemStart( url ); var _onError = function ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); scope.manager.itemEnd( url ); }; var loader = new THREE.FileLoader( scope.manager ); loader.setPath( this.path ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( data ) { try { scope.parse( data, resourcePath, function ( gltf ) { onLoad( gltf ); scope.manager.itemEnd( url ); }, _onError ); } catch ( e ) { _onError( e ); } }, onProgress, _onError ); }, setCrossOrigin: function ( value ) { this.crossOrigin = value; return this; }, setPath: function ( value ) { this.path = value; return this; }, setResourcePath: function ( value ) { this.resourcePath = value; return this; }, setDRACOLoader: function ( dracoLoader ) { this.dracoLoader = dracoLoader; return this; }, parse: function ( data, path, onLoad, onError ) { var content; var extensions = {}; if ( typeof data === 'string' ) { content = data; } else { var magic = THREE.LoaderUtils.decodeText( new Uint8Array( data, 0, 4 ) ); if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) { try { extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data ); } catch ( error ) { if ( onError ) onError( error ); return; } content = extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content; } else { content = THREE.LoaderUtils.decodeText( new Uint8Array( data ) ); } } var json = JSON.parse( content ); if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) { if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported. Use LegacyGLTFLoader instead.' ) ); return; } if ( json.extensionsUsed ) { for ( var i = 0; i < json.extensionsUsed.length; ++ i ) { var extensionName = json.extensionsUsed[ i ]; var extensionsRequired = json.extensionsRequired || []; switch ( extensionName ) { case EXTENSIONS.KHR_LIGHTS_PUNCTUAL: extensions[ extensionName ] = new GLTFLightsExtension( json ); break; case EXTENSIONS.KHR_MATERIALS_UNLIT: extensions[ extensionName ] = new GLTFMaterialsUnlitExtension( json ); break; case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: extensions[ extensionName ] = new GLTFMaterialsPbrSpecularGlossinessExtension( json ); break; case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION: extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader ); break; case EXTENSIONS.MSFT_TEXTURE_DDS: extensions[ EXTENSIONS.MSFT_TEXTURE_DDS ] = new GLTFTextureDDSExtension(); break; case EXTENSIONS.KHR_TEXTURE_TRANSFORM: extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] = new GLTFTextureTransformExtension( json ); break; default: if ( extensionsRequired.indexOf( extensionName ) >= 0 ) { console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' ); } } } } var parser = new GLTFParser( json, extensions, { path: path || this.resourcePath || '', crossOrigin: this.crossOrigin, manager: this.manager } ); parser.parse( onLoad, onError ); } }; /* GLTFREGISTRY */ function GLTFRegistry() { var objects = {}; return { get: function ( key ) { return objects[ key ]; }, add: function ( key, object ) { objects[ key ] = object; }, remove: function ( key ) { delete objects[ key ]; }, removeAll: function () { objects = {}; } }; } /*********************************/ /********** EXTENSIONS ***********/ /*********************************/ var EXTENSIONS = { KHR_BINARY_GLTF: 'KHR_binary_glTF', KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression', KHR_LIGHTS_PUNCTUAL: 'KHR_lights_punctual', KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness', KHR_MATERIALS_UNLIT: 'KHR_materials_unlit', KHR_TEXTURE_TRANSFORM: 'KHR_texture_transform', MSFT_TEXTURE_DDS: 'MSFT_texture_dds' }; /** * DDS Texture Extension * * Specification: * https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/MSFT_texture_dds * */ function GLTFTextureDDSExtension() { if ( ! THREE.DDSLoader ) { throw new Error( 'THREE.GLTFLoader: Attempting to load .dds texture without importing THREE.DDSLoader' ); } this.name = EXTENSIONS.MSFT_TEXTURE_DDS; this.ddsLoader = new THREE.DDSLoader(); } /** * Lights Extension * * Specification: PENDING */ function GLTFLightsExtension( json ) { this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL; var extension = ( json.extensions && json.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ] ) || {}; this.lightDefs = extension.lights || []; } GLTFLightsExtension.prototype.loadLight = function ( lightIndex ) { var lightDef = this.lightDefs[ lightIndex ]; var lightNode; var color = new THREE.Color( 0xffffff ); if ( lightDef.color !== undefined ) color.fromArray( lightDef.color ); var range = lightDef.range !== undefined ? lightDef.range : 0; switch ( lightDef.type ) { case 'directional': lightNode = new THREE.DirectionalLight( color ); lightNode.target.position.set( 0, 0, - 1 ); lightNode.add( lightNode.target ); break; case 'point': lightNode = new THREE.PointLight( color ); lightNode.distance = range; break; case 'spot': lightNode = new THREE.SpotLight( color ); lightNode.distance = range; // Handle spotlight properties. lightDef.spot = lightDef.spot || {}; lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0; lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0; lightNode.angle = lightDef.spot.outerConeAngle; lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle; lightNode.target.position.set( 0, 0, - 1 ); lightNode.add( lightNode.target ); break; default: throw new Error( 'THREE.GLTFLoader: Unexpected light type, "' + lightDef.type + '".' ); } // Some lights (e.g. spot) default to a position other than the origin. Reset the position // here, because node-level parsing will only override position if explicitly specified. lightNode.position.set( 0, 0, 0 ); lightNode.decay = 2; if ( lightDef.intensity !== undefined ) lightNode.intensity = lightDef.intensity; lightNode.name = lightDef.name || ( 'light_' + lightIndex ); return Promise.resolve( lightNode ); }; /** * Unlit Materials Extension (pending) * * PR: https://github.com/KhronosGroup/glTF/pull/1163 */ function GLTFMaterialsUnlitExtension() { this.name = EXTENSIONS.KHR_MATERIALS_UNLIT; } GLTFMaterialsUnlitExtension.prototype.getMaterialType = function () { return THREE.MeshBasicMaterial; }; GLTFMaterialsUnlitExtension.prototype.extendParams = function ( materialParams, materialDef, parser ) { var pending = []; materialParams.color = new THREE.Color( 1.0, 1.0, 1.0 ); materialParams.opacity = 1.0; var metallicRoughness = materialDef.pbrMetallicRoughness; if ( metallicRoughness ) { if ( Array.isArray( metallicRoughness.baseColorFactor ) ) { var array = metallicRoughness.baseColorFactor; materialParams.color.fromArray( array ); materialParams.opacity = array[ 3 ]; } if ( metallicRoughness.baseColorTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture ) ); } } return Promise.all( pending ); }; /* BINARY EXTENSION */ var BINARY_EXTENSION_BUFFER_NAME = 'binary_glTF'; var BINARY_EXTENSION_HEADER_MAGIC = 'glTF'; var BINARY_EXTENSION_HEADER_LENGTH = 12; var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 }; function GLTFBinaryExtension( data ) { this.name = EXTENSIONS.KHR_BINARY_GLTF; this.content = null; this.body = null; var headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH ); this.header = { magic: THREE.LoaderUtils.decodeText( new Uint8Array( data.slice( 0, 4 ) ) ), version: headerView.getUint32( 4, true ), length: headerView.getUint32( 8, true ) }; if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) { throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' ); } else if ( this.header.version < 2.0 ) { throw new Error( 'THREE.GLTFLoader: Legacy binary file detected. Use LegacyGLTFLoader instead.' ); } var chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH ); var chunkIndex = 0; while ( chunkIndex < chunkView.byteLength ) { var chunkLength = chunkView.getUint32( chunkIndex, true ); chunkIndex += 4; var chunkType = chunkView.getUint32( chunkIndex, true ); chunkIndex += 4; if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) { var contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength ); this.content = THREE.LoaderUtils.decodeText( contentArray ); } else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) { var byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex; this.body = data.slice( byteOffset, byteOffset + chunkLength ); } // Clients must ignore chunks with unknown types. chunkIndex += chunkLength; } if ( this.content === null ) { throw new Error( 'THREE.GLTFLoader: JSON content not found.' ); } } /** * DRACO Mesh Compression Extension * * Specification: https://github.com/KhronosGroup/glTF/pull/874 */ function GLTFDracoMeshCompressionExtension( json, dracoLoader ) { if ( ! dracoLoader ) { throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' ); } this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION; this.json = json; this.dracoLoader = dracoLoader; } GLTFDracoMeshCompressionExtension.prototype.decodePrimitive = function ( primitive, parser ) { var json = this.json; var dracoLoader = this.dracoLoader; var bufferViewIndex = primitive.extensions[ this.name ].bufferView; var gltfAttributeMap = primitive.extensions[ this.name ].attributes; var threeAttributeMap = {}; var attributeNormalizedMap = {}; var attributeTypeMap = {}; for ( var attributeName in gltfAttributeMap ) { var threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase(); threeAttributeMap[ threeAttributeName ] = gltfAttributeMap[ attributeName ]; } for ( attributeName in primitive.attributes ) { var threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase(); if ( gltfAttributeMap[ attributeName ] !== undefined ) { var accessorDef = json.accessors[ primitive.attributes[ attributeName ] ]; var componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ]; attributeTypeMap[ threeAttributeName ] = componentType; attributeNormalizedMap[ threeAttributeName ] = accessorDef.normalized === true; } } return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) { return new Promise( function ( resolve ) { dracoLoader.decodeDracoFile( bufferView, function ( geometry ) { for ( var attributeName in geometry.attributes ) { var attribute = geometry.attributes[ attributeName ]; var normalized = attributeNormalizedMap[ attributeName ]; if ( normalized !== undefined ) attribute.normalized = normalized; } resolve( geometry ); }, threeAttributeMap, attributeTypeMap ); } ); } ); }; /** * Texture Transform Extension * * Specification: */ function GLTFTextureTransformExtension() { this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM; } GLTFTextureTransformExtension.prototype.extendTexture = function ( texture, transform ) { texture = texture.clone(); if ( transform.offset !== undefined ) { texture.offset.fromArray( transform.offset ); } if ( transform.rotation !== undefined ) { texture.rotation = transform.rotation; } if ( transform.scale !== undefined ) { texture.repeat.fromArray( transform.scale ); } if ( transform.texCoord !== undefined ) { console.warn( 'THREE.GLTFLoader: Custom UV sets in "' + this.name + '" extension not yet supported.' ); } texture.needsUpdate = true; return texture; }; /** * Specular-Glossiness Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness */ function GLTFMaterialsPbrSpecularGlossinessExtension() { return { name: EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS, specularGlossinessParams: [ 'color', 'map', 'lightMap', 'lightMapIntensity', 'aoMap', 'aoMapIntensity', 'emissive', 'emissiveIntensity', 'emissiveMap', 'bumpMap', 'bumpScale', 'normalMap', 'displacementMap', 'displacementScale', 'displacementBias', 'specularMap', 'specular', 'glossinessMap', 'glossiness', 'alphaMap', 'envMap', 'envMapIntensity', 'refractionRatio', ], getMaterialType: function () { return THREE.ShaderMaterial; }, extendParams: function ( materialParams, materialDef, parser ) { var pbrSpecularGlossiness = materialDef.extensions[ this.name ]; var shader = THREE.ShaderLib[ 'standard' ]; var uniforms = THREE.UniformsUtils.clone( shader.uniforms ); var specularMapParsFragmentChunk = [ '#ifdef USE_SPECULARMAP', ' uniform sampler2D specularMap;', '#endif' ].join( '\n' ); var glossinessMapParsFragmentChunk = [ '#ifdef USE_GLOSSINESSMAP', ' uniform sampler2D glossinessMap;', '#endif' ].join( '\n' ); var specularMapFragmentChunk = [ 'vec3 specularFactor = specular;', '#ifdef USE_SPECULARMAP', ' vec4 texelSpecular = texture2D( specularMap, vUv );', ' texelSpecular = sRGBToLinear( texelSpecular );', ' // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture', ' specularFactor *= texelSpecular.rgb;', '#endif' ].join( '\n' ); var glossinessMapFragmentChunk = [ 'float glossinessFactor = glossiness;', '#ifdef USE_GLOSSINESSMAP', ' vec4 texelGlossiness = texture2D( glossinessMap, vUv );', ' // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture', ' glossinessFactor *= texelGlossiness.a;', '#endif' ].join( '\n' ); var lightPhysicalFragmentChunk = [ 'PhysicalMaterial material;', 'material.diffuseColor = diffuseColor.rgb;', 'material.specularRoughness = clamp( 1.0 - glossinessFactor, 0.04, 1.0 );', 'material.specularColor = specularFactor.rgb;', ].join( '\n' ); var fragmentShader = shader.fragmentShader .replace( 'uniform float roughness;', 'uniform vec3 specular;' ) .replace( 'uniform float metalness;', 'uniform float glossiness;' ) .replace( '#include <roughnessmap_pars_fragment>', specularMapParsFragmentChunk ) .replace( '#include <metalnessmap_pars_fragment>', glossinessMapParsFragmentChunk ) .replace( '#include <roughnessmap_fragment>', specularMapFragmentChunk ) .replace( '#include <metalnessmap_fragment>', glossinessMapFragmentChunk ) .replace( '#include <lights_physical_fragment>', lightPhysicalFragmentChunk ); delete uniforms.roughness; delete uniforms.metalness; delete uniforms.roughnessMap; delete uniforms.metalnessMap; uniforms.specular = { value: new THREE.Color().setHex( 0x111111 ) }; uniforms.glossiness = { value: 0.5 }; uniforms.specularMap = { value: null }; uniforms.glossinessMap = { value: null }; materialParams.vertexShader = shader.vertexShader; materialParams.fragmentShader = fragmentShader; materialParams.uniforms = uniforms; materialParams.defines = { 'STANDARD': '' }; materialParams.color = new THREE.Color( 1.0, 1.0, 1.0 ); materialParams.opacity = 1.0; var pending = []; if ( Array.isArray( pbrSpecularGlossiness.diffuseFactor ) ) { var array = pbrSpecularGlossiness.diffuseFactor; materialParams.color.fromArray( array ); materialParams.opacity = array[ 3 ]; } if ( pbrSpecularGlossiness.diffuseTexture !== undefined ) { pending.push( parser.assignTexture( materialParams, 'map', pbrSpecularGlossiness.diffuseTexture ) ); } materialParams.emissive = new THREE.Color( 0.0, 0.0, 0.0 ); materialParams.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0; materialParams.specular = new THREE.Color( 1.0, 1.0, 1.0 ); if ( Array.isArray( pbrSpecularGlossiness.specularFactor ) ) { materialParams.specular.fromArray( pbrSpecularGlossiness.specularFactor ); } if ( pbrSpecularGlossiness.specularGlossinessTexture !== undefined ) { var specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture; pending.push( parser.assignTexture( materialParams, 'glossinessMap', specGlossMapDef ) ); pending.push( parser.assignTexture( materialParams, 'specularMap', specGlossMapDef ) ); } return Promise.all( pending ); }, createMaterial: function ( params ) { // setup material properties based on MeshStandardMaterial for Specular-Glossiness var material = new THREE.ShaderMaterial( { defines: params.defines, vertexShader: params.vertexShader, fragmentShader: params.fragmentShader, uniforms: params.uniforms, fog: true, lights: true, opacity: params.opacity, transparent: params.transparent } ); material.isGLTFSpecularGlossinessMaterial = true; material.color = params.color; material.map = params.map === undefined ? null : params.map; material.lightMap = null; material.lightMapIntensity = 1.0; material.aoMap = params.aoMap === undefined ? null : params.aoMap; material.aoMapIntensity = 1.0; material.emissive = params.emissive; material.emissiveIntensity = 1.0; material.emissiveMap = params.emissiveMap === undefined ? null : params.emissiveMap; material.bumpMap = params.bumpMap === undefined ? null : params.bumpMap; material.bumpScale = 1; material.normalMap = params.normalMap === undefined ? null : params.normalMap; if ( params.normalScale ) material.normalScale = params.normalScale; material.displacementMap = null; material.displacementScale = 1; material.displacementBias = 0; material.specularMap = params.specularMap === undefined ? null : params.specularMap; material.specular = params.specular; material.glossinessMap = params.glossinessMap === undefined ? null : params.glossinessMap; material.glossiness = params.glossiness; material.alphaMap = null; material.envMap = params.envMap === undefined ? null : params.envMap; material.envMapIntensity = 1.0; material.refractionRatio = 0.98; material.extensions.derivatives = true; return material; }, /** * Clones a GLTFSpecularGlossinessMaterial instance. The ShaderMaterial.copy() method can * copy only properties it knows about or inherits, and misses many properties that would * normally be defined by MeshStandardMaterial. * * This method allows GLTFSpecularGlossinessMaterials to be cloned in the process of * loading a glTF model, but cloning later (e.g. by the user) would require these changes * AND also updating `.onBeforeRender` on the parent mesh. * * @param {THREE.ShaderMaterial} source * @return {THREE.ShaderMaterial} */ cloneMaterial: function ( source ) { var target = source.clone(); target.isGLTFSpecularGlossinessMaterial = true; var params = this.specularGlossinessParams; for ( var i = 0, il = params.length; i < il; i ++ ) { target[ params[ i ] ] = source[ params[ i ] ]; } return target; }, // Here's based on refreshUniformsCommon() and refreshUniformsStandard() in WebGLRenderer. refreshUniforms: function ( renderer, scene, camera, geometry, material, group ) { if ( material.isGLTFSpecularGlossinessMaterial !== true ) { return; } var uniforms = material.uniforms; var defines = material.defines; uniforms.opacity.value = material.opacity; uniforms.diffuse.value.copy( material.color ); uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity ); uniforms.map.value = material.map; uniforms.specularMap.value = material.specularMap; uniforms.alphaMap.value = material.alphaMap; uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. normal map // 4. bump map // 5. alpha map // 6. emissive map var uvScaleMap; if ( material.map ) { uvScaleMap = material.map; } else if ( material.specularMap ) { uvScaleMap = material.specularMap; } else if ( material.displacementMap ) { uvScaleMap = material.displacementMap; } else if ( material.normalMap ) { uvScaleMap = material.normalMap; } else if ( material.bumpMap ) { uvScaleMap = material.bumpMap; } else if ( material.glossinessMap ) { uvScaleMap = material.glossinessMap; } else if ( material.alphaMap ) { uvScaleMap = material.alphaMap; } else if ( material.emissiveMap ) { uvScaleMap = material.emissiveMap; } if ( uvScaleMap !== undefined ) { // backwards compatibility if ( uvScaleMap.isWebGLRenderTarget ) { uvScaleMap = uvScaleMap.texture; } if ( uvScaleMap.matrixAutoUpdate === true ) { uvScaleMap.updateMatrix(); } uniforms.uvTransform.value.copy( uvScaleMap.matrix ); } if ( material.envMap ) { uniforms.envMap.value = material.envMap; uniforms.envMapIntensity.value = material.envMapIntensity; // don't flip CubeTexture envMaps, flip everything else: // WebGLRenderTargetCube will be flipped for backwards compatibility // WebGLRenderTargetCube.texture will be flipped because it's a Texture and NOT a CubeTexture // this check must be handled differently, or removed entirely, if WebGLRenderTargetCube uses a CubeTexture in the future uniforms.flipEnvMap.value = material.envMap.isCubeTexture ? - 1 : 1; uniforms.reflectivity.value = material.reflectivity; uniforms.refractionRatio.value = material.refractionRatio; uniforms.maxMipLevel.value = renderer.properties.get( material.envMap ).__maxMipLevel; } uniforms.specular.value.copy( material.specular ); uniforms.glossiness.value = material.glossiness; uniforms.glossinessMap.value = material.glossinessMap; uniforms.emissiveMap.value = material.emissiveMap; uniforms.bumpMap.value = material.bumpMap; uniforms.normalMap.value = material.normalMap; uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; if ( uniforms.glossinessMap.value !== null && defines.USE_GLOSSINESSMAP === undefined ) { defines.USE_GLOSSINESSMAP = ''; // set USE_ROUGHNESSMAP to enable vUv defines.USE_ROUGHNESSMAP = ''; } if ( uniforms.glossinessMap.value === null && defines.USE_GLOSSINESSMAP !== undefined ) { delete defines.USE_GLOSSINESSMAP; delete defines.USE_ROUGHNESSMAP; } } }; } /*********************************/ /********** INTERPOLATION ********/ /*********************************/ // Spline Interpolation // Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation function GLTFCubicSplineInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { THREE.Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); } GLTFCubicSplineInterpolant.prototype = Object.create( THREE.Interpolant.prototype ); GLTFCubicSplineInterpolant.prototype.constructor = GLTFCubicSplineInterpolant; GLTFCubicSplineInterpolant.prototype.copySampleValue_ = function ( index ) { // Copies a sample value to the result buffer. See description of glTF // CUBICSPLINE values layout in interpolate_() function below. var result = this.resultBuffer, values = this.sampleValues, valueSize = this.valueSize, offset = index * valueSize * 3 + valueSize; for ( var i = 0; i !== valueSize; i ++ ) { result[ i ] = values[ offset + i ]; } return result; }; GLTFCubicSplineInterpolant.prototype.beforeStart_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_; GLTFCubicSplineInterpolant.prototype.afterEnd_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_; GLTFCubicSplineInterpolant.prototype.interpolate_ = function ( i1, t0, t, t1 ) { var result = this.resultBuffer; var values = this.sampleValues; var stride = this.valueSize; var stride2 = stride * 2; var stride3 = stride * 3; var td = t1 - t0; var p = ( t - t0 ) / td; var pp = p * p; var ppp = pp * p; var offset1 = i1 * stride3; var offset0 = offset1 - stride3; var s2 = - 2 * ppp + 3 * pp; var s3 = ppp - pp; var s0 = 1 - s2; var s1 = s3 - pp + p; // Layout of keyframe output values for CUBICSPLINE animations: // [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ] for ( var i = 0; i !== stride; i ++ ) { var p0 = values[ offset0 + i + stride ]; // splineVertex_k var m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k) var p1 = values[ offset1 + i + stride ]; // splineVertex_k+1 var m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k) result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1; } return result; }; /*********************************/ /********** INTERNALS ************/ /*********************************/ /* CONSTANTS */ var WEBGL_CONSTANTS = { FLOAT: 5126, //FLOAT_MAT2: 35674, FLOAT_MAT3: 35675, FLOAT_MAT4: 35676, FLOAT_VEC2: 35664, FLOAT_VEC3: 35665, FLOAT_VEC4: 35666, LINEAR: 9729, REPEAT: 10497, SAMPLER_2D: 35678, POINTS: 0, LINES: 1, LINE_LOOP: 2, LINE_STRIP: 3, TRIANGLES: 4, TRIANGLE_STRIP: 5, TRIANGLE_FAN: 6, UNSIGNED_BYTE: 5121, UNSIGNED_SHORT: 5123 }; var WEBGL_TYPE = { 5126: Number, //35674: THREE.Matrix2, 35675: THREE.Matrix3, 35676: THREE.Matrix4, 35664: THREE.Vector2, 35665: THREE.Vector3, 35666: THREE.Vector4, 35678: THREE.Texture }; var WEBGL_COMPONENT_TYPES = { 5120: Int8Array, 5121: Uint8Array, 5122: Int16Array, 5123: Uint16Array, 5125: Uint32Array, 5126: Float32Array }; var WEBGL_FILTERS = { 9728: THREE.NearestFilter, 9729: THREE.LinearFilter, 9984: THREE.NearestMipMapNearestFilter, 9985: THREE.LinearMipMapNearestFilter, 9986: THREE.NearestMipMapLinearFilter, 9987: THREE.LinearMipMapLinearFilter }; var WEBGL_WRAPPINGS = { 33071: THREE.ClampToEdgeWrapping, 33648: THREE.MirroredRepeatWrapping, 10497: THREE.RepeatWrapping }; var WEBGL_SIDES = { 1028: THREE.BackSide, // Culling front 1029: THREE.FrontSide // Culling back //1032: THREE.NoSide // Culling front and back, what to do? }; var WEBGL_DEPTH_FUNCS = { 512: THREE.NeverDepth, 513: THREE.LessDepth, 514: THREE.EqualDepth, 515: THREE.LessEqualDepth, 516: THREE.GreaterEqualDepth, 517: THREE.NotEqualDepth, 518: THREE.GreaterEqualDepth, 519: THREE.AlwaysDepth }; var WEBGL_BLEND_EQUATIONS = { 32774: THREE.AddEquation, 32778: THREE.SubtractEquation, 32779: THREE.ReverseSubtractEquation }; var WEBGL_BLEND_FUNCS = { 0: THREE.ZeroFactor, 1: THREE.OneFactor, 768: THREE.SrcColorFactor, 769: THREE.OneMinusSrcColorFactor, 770: THREE.SrcAlphaFactor, 771: THREE.OneMinusSrcAlphaFactor, 772: THREE.DstAlphaFactor, 773: THREE.OneMinusDstAlphaFactor, 774: THREE.DstColorFactor, 775: THREE.OneMinusDstColorFactor, 776: THREE.SrcAlphaSaturateFactor // The followings are not supported by Three.js yet //32769: CONSTANT_COLOR, //32770: ONE_MINUS_CONSTANT_COLOR, //32771: CONSTANT_ALPHA, //32772: ONE_MINUS_CONSTANT_COLOR }; var WEBGL_TYPE_SIZES = { 'SCALAR': 1, 'VEC2': 2, 'VEC3': 3, 'VEC4': 4, 'MAT2': 4, 'MAT3': 9, 'MAT4': 16 }; var ATTRIBUTES = { POSITION: 'position', NORMAL: 'normal', TANGENT: 'tangent', TEXCOORD_0: 'uv', TEXCOORD_1: 'uv2', COLOR_0: 'color', WEIGHTS_0: 'skinWeight', JOINTS_0: 'skinIndex', }; var PATH_PROPERTIES = { scale: 'scale', translation: 'position', rotation: 'quaternion', weights: 'morphTargetInfluences' }; var INTERPOLATION = { CUBICSPLINE: undefined, // We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each // keyframe track will be initialized with a default interpolation type, then modified. LINEAR: THREE.InterpolateLinear, STEP: THREE.InterpolateDiscrete }; var STATES_ENABLES = { 2884: 'CULL_FACE', 2929: 'DEPTH_TEST', 3042: 'BLEND', 3089: 'SCISSOR_TEST', 32823: 'POLYGON_OFFSET_FILL', 32926: 'SAMPLE_ALPHA_TO_COVERAGE' }; var ALPHA_MODES = { OPAQUE: 'OPAQUE', MASK: 'MASK', BLEND: 'BLEND' }; var MIME_TYPE_FORMATS = { 'image/png': THREE.RGBAFormat, 'image/jpeg': THREE.RGBFormat }; /* UTILITY FUNCTIONS */ function resolveURL( url, path ) { // Invalid URL if ( typeof url !== 'string' || url === '' ) return ''; // Absolute URL http://,https://,// if ( /^(https?:)?\/\//i.test( url ) ) return url; // Data URI if ( /^data:.*,.*$/i.test( url ) ) return url; // Blob URL if ( /^blob:.*$/i.test( url ) ) return url; // Relative URL return path + url; } var defaultMaterial; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material */ function createDefaultMaterial() { defaultMaterial = defaultMaterial || new THREE.MeshStandardMaterial( { color: 0xFFFFFF, emissive: 0x000000, metalness: 1, roughness: 1, transparent: false, depthTest: true, side: THREE.FrontSide } ); return defaultMaterial; } function addUnknownExtensionsToUserData( knownExtensions, object, objectDef ) { // Add unknown glTF extensions to an object's userData. for ( var name in objectDef.extensions ) { if ( knownExtensions[ name ] === undefined ) { object.userData.gltfExtensions = object.userData.gltfExtensions || {}; object.userData.gltfExtensions[ name ] = objectDef.extensions[ name ]; } } } /** * @param {THREE.Object3D|THREE.Material|THREE.BufferGeometry} object * @param {GLTF.definition} gltfDef */ function assignExtrasToUserData( object, gltfDef ) { if ( gltfDef.extras !== undefined ) { if ( typeof gltfDef.extras === 'object' ) { object.userData = gltfDef.extras; } else { console.warn( 'THREE.GLTFLoader: Ignoring primitive type .extras, ' + gltfDef.extras ); } } } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets * * @param {THREE.BufferGeometry} geometry * @param {Array<GLTF.Target>} targets * @param {GLTFParser} parser * @return {Promise<THREE.BufferGeometry>} */ function addMorphTargets( geometry, targets, parser ) { var hasMorphPosition = false; var hasMorphNormal = false; for ( var i = 0, il = targets.length; i < il; i ++ ) { var target = targets[ i ]; if ( target.POSITION !== undefined ) hasMorphPosition = true; if ( target.NORMAL !== undefined ) hasMorphNormal = true; if ( hasMorphPosition && hasMorphNormal ) break; } if ( ! hasMorphPosition && ! hasMorphNormal ) return Promise.resolve( geometry ); var pendingPositionAccessors = []; var pendingNormalAccessors = []; for ( var i = 0, il = targets.length; i < il; i ++ ) { var target = targets[ i ]; if ( hasMorphPosition ) { var pendingAccessor = target.POSITION !== undefined ? parser.getDependency( 'accessor', target.POSITION ) : geometry.attributes.position; pendingPositionAccessors.push( pendingAccessor ); } if ( hasMorphNormal ) { var pendingAccessor = target.NORMAL !== undefined ? parser.getDependency( 'accessor', target.NORMAL ) : geometry.attributes.normal; pendingNormalAccessors.push( pendingAccessor ); } } return Promise.all( [ Promise.all( pendingPositionAccessors ), Promise.all( pendingNormalAccessors ) ] ).then( function ( accessors ) { var morphPositions = accessors[ 0 ]; var morphNormals = accessors[ 1 ]; // Clone morph target accessors before modifying them. for ( var i = 0, il = morphPositions.length; i < il; i ++ ) { if ( geometry.attributes.position === morphPositions[ i ] ) continue; morphPositions[ i ] = cloneBufferAttribute( morphPositions[ i ] ); } for ( var i = 0, il = morphNormals.length; i < il; i ++ ) { if ( geometry.attributes.normal === morphNormals[ i ] ) continue; morphNormals[ i ] = cloneBufferAttribute( morphNormals[ i ] ); } for ( var i = 0, il = targets.length; i < il; i ++ ) { var target = targets[ i ]; var attributeName = 'morphTarget' + i; if ( hasMorphPosition ) { // Three.js morph position is absolute value. The formula is // basePosition // + weight0 * ( morphPosition0 - basePosition ) // + weight1 * ( morphPosition1 - basePosition ) // ... // while the glTF one is relative // basePosition // + weight0 * glTFmorphPosition0 // + weight1 * glTFmorphPosition1 // ... // then we need to convert from relative to absolute here. if ( target.POSITION !== undefined ) { var positionAttribute = morphPositions[ i ]; positionAttribute.name = attributeName; var position = geometry.attributes.position; for ( var j = 0, jl = positionAttribute.count; j < jl; j ++ ) { positionAttribute.setXYZ( j, positionAttribute.getX( j ) + position.getX( j ), positionAttribute.getY( j ) + position.getY( j ), positionAttribute.getZ( j ) + position.getZ( j ) ); } } } if ( hasMorphNormal ) { // see target.POSITION's comment if ( target.NORMAL !== undefined ) { var normalAttribute = morphNormals[ i ]; normalAttribute.name = attributeName; var normal = geometry.attributes.normal; for ( var j = 0, jl = normalAttribute.count; j < jl; j ++ ) { normalAttribute.setXYZ( j, normalAttribute.getX( j ) + normal.getX( j ), normalAttribute.getY( j ) + normal.getY( j ), normalAttribute.getZ( j ) + normal.getZ( j ) ); } } } } if ( hasMorphPosition ) geometry.morphAttributes.position = morphPositions; if ( hasMorphNormal ) geometry.morphAttributes.normal = morphNormals; return geometry; } ); } /** * @param {THREE.Mesh} mesh * @param {GLTF.Mesh} meshDef */ function updateMorphTargets( mesh, meshDef ) { mesh.updateMorphTargets(); if ( meshDef.weights !== undefined ) { for ( var i = 0, il = meshDef.weights.length; i < il; i ++ ) { mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ]; } } // .extras has user-defined data, so check that .extras.targetNames is an array. if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) { var targetNames = meshDef.extras.targetNames; if ( mesh.morphTargetInfluences.length === targetNames.length ) { mesh.morphTargetDictionary = {}; for ( var i = 0, il = targetNames.length; i < il; i ++ ) { mesh.morphTargetDictionary[ targetNames[ i ] ] = i; } } else { console.warn( 'THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.' ); } } } function isObjectEqual( a, b ) { if ( Object.keys( a ).length !== Object.keys( b ).length ) return false; for ( var key in a ) { if ( a[ key ] !== b[ key ] ) return false; } return true; } function createPrimitiveKey( primitiveDef ) { var dracoExtension = primitiveDef.extensions && primitiveDef.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ]; var geometryKey; if ( dracoExtension ) { geometryKey = 'draco:' + dracoExtension.bufferView + ':' + dracoExtension.indices + ':' + createAttributesKey( dracoExtension.attributes ); } else { geometryKey = primitiveDef.indices + ':' + createAttributesKey( primitiveDef.attributes ) + ':' + primitiveDef.mode; } return geometryKey; } function createAttributesKey( attributes ) { var attributesKey = ''; var keys = Object.keys( attributes ).sort(); for ( var i = 0, il = keys.length; i < il; i ++ ) { attributesKey += keys[ i ] + ':' + attributes[ keys[ i ] ] + ';'; } return attributesKey; } function cloneBufferAttribute( attribute ) { if ( attribute.isInterleavedBufferAttribute ) { var count = attribute.count; var itemSize = attribute.itemSize; var array = attribute.array.slice( 0, count * itemSize ); for ( var i = 0, j = 0; i < count; ++ i ) { array[ j ++ ] = attribute.getX( i ); if ( itemSize >= 2 ) array[ j ++ ] = attribute.getY( i ); if ( itemSize >= 3 ) array[ j ++ ] = attribute.getZ( i ); if ( itemSize >= 4 ) array[ j ++ ] = attribute.getW( i ); } return new THREE.BufferAttribute( array, itemSize, attribute.normalized ); } return attribute.clone(); } /* GLTF PARSER */ function GLTFParser( json, extensions, options ) { this.json = json || {}; this.extensions = extensions || {}; this.options = options || {}; // loader object cache this.cache = new GLTFRegistry(); // BufferGeometry caching this.primitiveCache = {}; this.textureLoader = new THREE.TextureLoader( this.options.manager ); this.textureLoader.setCrossOrigin( this.options.crossOrigin ); this.fileLoader = new THREE.FileLoader( this.options.manager ); this.fileLoader.setResponseType( 'arraybuffer' ); } GLTFParser.prototype.parse = function ( onLoad, onError ) { var parser = this; var json = this.json; var extensions = this.extensions; // Clear the loader cache this.cache.removeAll(); // Mark the special nodes/meshes in json for efficient parse this.markDefs(); Promise.all( [ this.getDependencies( 'scene' ), this.getDependencies( 'animation' ), this.getDependencies( 'camera' ), ] ).then( function ( dependencies ) { var result = { scene: dependencies[ 0 ][ json.scene || 0 ], scenes: dependencies[ 0 ], animations: dependencies[ 1 ], cameras: dependencies[ 2 ], asset: json.asset, parser: parser, userData: {} }; addUnknownExtensionsToUserData( extensions, result, json ); onLoad( result ); } ).catch( onError ); }; /** * Marks the special nodes/meshes in json for efficient parse. */ GLTFParser.prototype.markDefs = function () { var nodeDefs = this.json.nodes || []; var skinDefs = this.json.skins || []; var meshDefs = this.json.meshes || []; var meshReferences = {}; var meshUses = {}; // Nothing in the node definition indicates whether it is a Bone or an // Object3D. Use the skins' joint references to mark bones. for ( var skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) { var joints = skinDefs[ skinIndex ].joints; for ( var i = 0, il = joints.length; i < il; i ++ ) { nodeDefs[ joints[ i ] ].isBone = true; } } // Meshes can (and should) be reused by multiple nodes in a glTF asset. To // avoid having more than one THREE.Mesh with the same name, count // references and rename instances below. // // Example: CesiumMilkTruck sample model reuses "Wheel" meshes. for ( var nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) { var nodeDef = nodeDefs[ nodeIndex ]; if ( nodeDef.mesh !== undefined ) { if ( meshReferences[ nodeDef.mesh ] === undefined ) { meshReferences[ nodeDef.mesh ] = meshUses[ nodeDef.mesh ] = 0; } meshReferences[ nodeDef.mesh ] ++; // Nothing in the mesh definition indicates whether it is // a SkinnedMesh or Mesh. Use the node's mesh reference // to mark SkinnedMesh if node has skin. if ( nodeDef.skin !== undefined ) { meshDefs[ nodeDef.mesh ].isSkinnedMesh = true; } } } this.json.meshReferences = meshReferences; this.json.meshUses = meshUses; }; /** * Requests the specified dependency asynchronously, with caching. * @param {string} type * @param {number} index * @return {Promise<THREE.Object3D|THREE.Material|THREE.Texture|THREE.AnimationClip|ArrayBuffer|Object>} */ GLTFParser.prototype.getDependency = function ( type, index ) { var cacheKey = type + ':' + index; var dependency = this.cache.get( cacheKey ); if ( ! dependency ) { switch ( type ) { case 'scene': dependency = this.loadScene( index ); break; case 'node': dependency = this.loadNode( index ); break; case 'mesh': dependency = this.loadMesh( index ); break; case 'accessor': dependency = this.loadAccessor( index ); break; case 'bufferView': dependency = this.loadBufferView( index ); break; case 'buffer': dependency = this.loadBuffer( index ); break; case 'material': dependency = this.loadMaterial( index ); break; case 'texture': dependency = this.loadTexture( index ); break; case 'skin': dependency = this.loadSkin( index ); break; case 'animation': dependency = this.loadAnimation( index ); break; case 'camera': dependency = this.loadCamera( index ); break; case 'light': dependency = this.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].loadLight( index ); break; default: throw new Error( 'Unknown type: ' + type ); } this.cache.add( cacheKey, dependency ); } return dependency; }; /** * Requests all dependencies of the specified type asynchronously, with caching. * @param {string} type * @return {Promise<Array<Object>>} */ GLTFParser.prototype.getDependencies = function ( type ) { var dependencies = this.cache.get( type ); if ( ! dependencies ) { var parser = this; var defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || []; dependencies = Promise.all( defs.map( function ( def, index ) { return parser.getDependency( type, index ); } ) ); this.cache.add( type, dependencies ); } return dependencies; }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferIndex * @return {Promise<ArrayBuffer>} */ GLTFParser.prototype.loadBuffer = function ( bufferIndex ) { var bufferDef = this.json.buffers[ bufferIndex ]; var loader = this.fileLoader; if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) { throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' ); } // If present, GLB container is required to be the first buffer. if ( bufferDef.uri === undefined && bufferIndex === 0 ) { return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body ); } var options = this.options; return new Promise( function ( resolve, reject ) { loader.load( resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () { reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) ); } ); } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferViewIndex * @return {Promise<ArrayBuffer>} */ GLTFParser.prototype.loadBufferView = function ( bufferViewIndex ) { var bufferViewDef = this.json.bufferViews[ bufferViewIndex ]; return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) { var byteLength = bufferViewDef.byteLength || 0; var byteOffset = bufferViewDef.byteOffset || 0; return buffer.slice( byteOffset, byteOffset + byteLength ); } ); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors * @param {number} accessorIndex * @return {Promise<THREE.BufferAttribute|THREE.InterleavedBufferAttribute>} */ GLTFParser.prototype.loadAccessor = function ( accessorIndex ) { var parser = this; var json = this.json; var accessorDef = this.json.accessors[ accessorIndex ]; if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) { // Ignore empty accessors, which may be used to declare runtime // information about attributes coming from another source (e.g. Draco // compression extension). return Promise.resolve( null ); } var pendingBufferViews = []; if ( accessorDef.bufferView !== undefined ) { pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) ); } else { pendingBufferViews.push( null ); } if ( accessorDef.sparse !== undefined ) { pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) ); pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) ); } return Promise.all( pendingBufferViews ).then( function ( bufferViews ) { var bufferView = bufferViews[ 0 ]; var itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ]; var TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ]; // For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12. var elementBytes = TypedArray.BYTES_PER_ELEMENT; var itemBytes = elementBytes * itemSize; var byteOffset = accessorDef.byteOffset || 0; var byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferView ].byteStride : undefined; var normalized = accessorDef.normalized === true; var array, bufferAttribute; // The buffer is not interleaved if the stride is the item size in bytes. if ( byteStride && byteStride !== itemBytes ) { var ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType; var ib = parser.cache.get( ibCacheKey ); if ( ! ib ) { // Use the full buffer if it's interleaved. array = new TypedArray( bufferView ); // Integer parameters to IB/IBA are in array elements, not bytes. ib = new THREE.InterleavedBuffer( array, byteStride / elementBytes ); parser.cache.add( ibCacheKey, ib ); } bufferAttribute = new THREE.InterleavedBufferAttribute( ib, itemSize, byteOffset / elementBytes, normalized ); } else { if ( bufferView === null ) { array = new TypedArray( accessorDef.count * itemSize ); } else { array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize ); } bufferAttribute = new THREE.BufferAttribute( array, itemSize, normalized ); } // https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors if ( accessorDef.sparse !== undefined ) { var itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR; var TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ]; var byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0; var byteOffsetValues = accessorDef.sparse.values.byteOffset || 0; var sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices ); var sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize ); if ( bufferView !== null ) { // Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes. bufferAttribute.setArray( bufferAttribute.array.slice() ); } for ( var i = 0, il = sparseIndices.length; i < il; i ++ ) { var index = sparseIndice