three
Version:
JavaScript 3D library
1,986 lines (1,294 loc) • 81.1 kB
JavaScript
/**
* @author Rich Tibbett / https://github.com/richtr
* @author mrdoob / http://mrdoob.com/
* @author Tony Parisi / http://www.tonyparisi.com/
* @author Takahiro / https://github.com/takahirox
* @author Don McCurdy / https://www.donmccurdy.com
*/
THREE.GLTFLoader = ( function () {
function GLTFLoader( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
this.dracoLoader = null;
}
GLTFLoader.prototype = {
constructor: GLTFLoader,
crossOrigin: 'anonymous',
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var resourcePath;
if ( this.resourcePath !== undefined ) {
resourcePath = this.resourcePath;
} else if ( this.path !== undefined ) {
resourcePath = this.path;
} else {
resourcePath = THREE.LoaderUtils.extractUrlBase( url );
}
// Tells the LoadingManager to track an extra item, which resolves after
// the model is fully loaded. This means the count of items loaded will
// be incorrect, but ensures manager.onLoad() does not fire early.
scope.manager.itemStart( url );
var _onError = function ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
scope.manager.itemEnd( url );
};
var loader = new THREE.FileLoader( scope.manager );
loader.setPath( this.path );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( data ) {
try {
scope.parse( data, resourcePath, function ( gltf ) {
onLoad( gltf );
scope.manager.itemEnd( url );
}, _onError );
} catch ( e ) {
_onError( e );
}
}, onProgress, _onError );
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
return this;
},
setPath: function ( value ) {
this.path = value;
return this;
},
setResourcePath: function ( value ) {
this.resourcePath = value;
return this;
},
setDRACOLoader: function ( dracoLoader ) {
this.dracoLoader = dracoLoader;
return this;
},
parse: function ( data, path, onLoad, onError ) {
var content;
var extensions = {};
if ( typeof data === 'string' ) {
content = data;
} else {
var magic = THREE.LoaderUtils.decodeText( new Uint8Array( data, 0, 4 ) );
if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) {
try {
extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data );
} catch ( error ) {
if ( onError ) onError( error );
return;
}
content = extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content;
} else {
content = THREE.LoaderUtils.decodeText( new Uint8Array( data ) );
}
}
var json = JSON.parse( content );
if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) {
if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported. Use LegacyGLTFLoader instead.' ) );
return;
}
if ( json.extensionsUsed ) {
for ( var i = 0; i < json.extensionsUsed.length; ++ i ) {
var extensionName = json.extensionsUsed[ i ];
var extensionsRequired = json.extensionsRequired || [];
switch ( extensionName ) {
case EXTENSIONS.KHR_LIGHTS_PUNCTUAL:
extensions[ extensionName ] = new GLTFLightsExtension( json );
break;
case EXTENSIONS.KHR_MATERIALS_UNLIT:
extensions[ extensionName ] = new GLTFMaterialsUnlitExtension( json );
break;
case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS:
extensions[ extensionName ] = new GLTFMaterialsPbrSpecularGlossinessExtension( json );
break;
case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader );
break;
case EXTENSIONS.MSFT_TEXTURE_DDS:
extensions[ EXTENSIONS.MSFT_TEXTURE_DDS ] = new GLTFTextureDDSExtension();
break;
case EXTENSIONS.KHR_TEXTURE_TRANSFORM:
extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] = new GLTFTextureTransformExtension( json );
break;
default:
if ( extensionsRequired.indexOf( extensionName ) >= 0 ) {
console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' );
}
}
}
}
var parser = new GLTFParser( json, extensions, {
path: path || this.resourcePath || '',
crossOrigin: this.crossOrigin,
manager: this.manager
} );
parser.parse( onLoad, onError );
}
};
/* GLTFREGISTRY */
function GLTFRegistry() {
var objects = {};
return {
get: function ( key ) {
return objects[ key ];
},
add: function ( key, object ) {
objects[ key ] = object;
},
remove: function ( key ) {
delete objects[ key ];
},
removeAll: function () {
objects = {};
}
};
}
/*********************************/
/********** EXTENSIONS ***********/
/*********************************/
var EXTENSIONS = {
KHR_BINARY_GLTF: 'KHR_binary_glTF',
KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression',
KHR_LIGHTS_PUNCTUAL: 'KHR_lights_punctual',
KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness',
KHR_MATERIALS_UNLIT: 'KHR_materials_unlit',
KHR_TEXTURE_TRANSFORM: 'KHR_texture_transform',
MSFT_TEXTURE_DDS: 'MSFT_texture_dds'
};
/**
* DDS Texture Extension
*
* Specification:
* https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/MSFT_texture_dds
*
*/
function GLTFTextureDDSExtension() {
if ( ! THREE.DDSLoader ) {
throw new Error( 'THREE.GLTFLoader: Attempting to load .dds texture without importing THREE.DDSLoader' );
}
this.name = EXTENSIONS.MSFT_TEXTURE_DDS;
this.ddsLoader = new THREE.DDSLoader();
}
/**
* Lights Extension
*
* Specification: PENDING
*/
function GLTFLightsExtension( json ) {
this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL;
var extension = ( json.extensions && json.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ] ) || {};
this.lightDefs = extension.lights || [];
}
GLTFLightsExtension.prototype.loadLight = function ( lightIndex ) {
var lightDef = this.lightDefs[ lightIndex ];
var lightNode;
var color = new THREE.Color( 0xffffff );
if ( lightDef.color !== undefined ) color.fromArray( lightDef.color );
var range = lightDef.range !== undefined ? lightDef.range : 0;
switch ( lightDef.type ) {
case 'directional':
lightNode = new THREE.DirectionalLight( color );
lightNode.target.position.set( 0, 0, - 1 );
lightNode.add( lightNode.target );
break;
case 'point':
lightNode = new THREE.PointLight( color );
lightNode.distance = range;
break;
case 'spot':
lightNode = new THREE.SpotLight( color );
lightNode.distance = range;
// Handle spotlight properties.
lightDef.spot = lightDef.spot || {};
lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0;
lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0;
lightNode.angle = lightDef.spot.outerConeAngle;
lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle;
lightNode.target.position.set( 0, 0, - 1 );
lightNode.add( lightNode.target );
break;
default:
throw new Error( 'THREE.GLTFLoader: Unexpected light type, "' + lightDef.type + '".' );
}
// Some lights (e.g. spot) default to a position other than the origin. Reset the position
// here, because node-level parsing will only override position if explicitly specified.
lightNode.position.set( 0, 0, 0 );
lightNode.decay = 2;
if ( lightDef.intensity !== undefined ) lightNode.intensity = lightDef.intensity;
lightNode.name = lightDef.name || ( 'light_' + lightIndex );
return Promise.resolve( lightNode );
};
/**
* Unlit Materials Extension (pending)
*
* PR: https://github.com/KhronosGroup/glTF/pull/1163
*/
function GLTFMaterialsUnlitExtension() {
this.name = EXTENSIONS.KHR_MATERIALS_UNLIT;
}
GLTFMaterialsUnlitExtension.prototype.getMaterialType = function () {
return THREE.MeshBasicMaterial;
};
GLTFMaterialsUnlitExtension.prototype.extendParams = function ( materialParams, materialDef, parser ) {
var pending = [];
materialParams.color = new THREE.Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
var metallicRoughness = materialDef.pbrMetallicRoughness;
if ( metallicRoughness ) {
if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
var array = metallicRoughness.baseColorFactor;
materialParams.color.fromArray( array );
materialParams.opacity = array[ 3 ];
}
if ( metallicRoughness.baseColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture ) );
}
}
return Promise.all( pending );
};
/* BINARY EXTENSION */
var BINARY_EXTENSION_BUFFER_NAME = 'binary_glTF';
var BINARY_EXTENSION_HEADER_MAGIC = 'glTF';
var BINARY_EXTENSION_HEADER_LENGTH = 12;
var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 };
function GLTFBinaryExtension( data ) {
this.name = EXTENSIONS.KHR_BINARY_GLTF;
this.content = null;
this.body = null;
var headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH );
this.header = {
magic: THREE.LoaderUtils.decodeText( new Uint8Array( data.slice( 0, 4 ) ) ),
version: headerView.getUint32( 4, true ),
length: headerView.getUint32( 8, true )
};
if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) {
throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' );
} else if ( this.header.version < 2.0 ) {
throw new Error( 'THREE.GLTFLoader: Legacy binary file detected. Use LegacyGLTFLoader instead.' );
}
var chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH );
var chunkIndex = 0;
while ( chunkIndex < chunkView.byteLength ) {
var chunkLength = chunkView.getUint32( chunkIndex, true );
chunkIndex += 4;
var chunkType = chunkView.getUint32( chunkIndex, true );
chunkIndex += 4;
if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) {
var contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength );
this.content = THREE.LoaderUtils.decodeText( contentArray );
} else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) {
var byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex;
this.body = data.slice( byteOffset, byteOffset + chunkLength );
}
// Clients must ignore chunks with unknown types.
chunkIndex += chunkLength;
}
if ( this.content === null ) {
throw new Error( 'THREE.GLTFLoader: JSON content not found.' );
}
}
/**
* DRACO Mesh Compression Extension
*
* Specification: https://github.com/KhronosGroup/glTF/pull/874
*/
function GLTFDracoMeshCompressionExtension( json, dracoLoader ) {
if ( ! dracoLoader ) {
throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' );
}
this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION;
this.json = json;
this.dracoLoader = dracoLoader;
}
GLTFDracoMeshCompressionExtension.prototype.decodePrimitive = function ( primitive, parser ) {
var json = this.json;
var dracoLoader = this.dracoLoader;
var bufferViewIndex = primitive.extensions[ this.name ].bufferView;
var gltfAttributeMap = primitive.extensions[ this.name ].attributes;
var threeAttributeMap = {};
var attributeNormalizedMap = {};
var attributeTypeMap = {};
for ( var attributeName in gltfAttributeMap ) {
var threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
threeAttributeMap[ threeAttributeName ] = gltfAttributeMap[ attributeName ];
}
for ( attributeName in primitive.attributes ) {
var threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
if ( gltfAttributeMap[ attributeName ] !== undefined ) {
var accessorDef = json.accessors[ primitive.attributes[ attributeName ] ];
var componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
attributeTypeMap[ threeAttributeName ] = componentType;
attributeNormalizedMap[ threeAttributeName ] = accessorDef.normalized === true;
}
}
return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) {
return new Promise( function ( resolve ) {
dracoLoader.decodeDracoFile( bufferView, function ( geometry ) {
for ( var attributeName in geometry.attributes ) {
var attribute = geometry.attributes[ attributeName ];
var normalized = attributeNormalizedMap[ attributeName ];
if ( normalized !== undefined ) attribute.normalized = normalized;
}
resolve( geometry );
}, threeAttributeMap, attributeTypeMap );
} );
} );
};
/**
* Texture Transform Extension
*
* Specification:
*/
function GLTFTextureTransformExtension() {
this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM;
}
GLTFTextureTransformExtension.prototype.extendTexture = function ( texture, transform ) {
texture = texture.clone();
if ( transform.offset !== undefined ) {
texture.offset.fromArray( transform.offset );
}
if ( transform.rotation !== undefined ) {
texture.rotation = transform.rotation;
}
if ( transform.scale !== undefined ) {
texture.repeat.fromArray( transform.scale );
}
if ( transform.texCoord !== undefined ) {
console.warn( 'THREE.GLTFLoader: Custom UV sets in "' + this.name + '" extension not yet supported.' );
}
texture.needsUpdate = true;
return texture;
};
/**
* Specular-Glossiness Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness
*/
function GLTFMaterialsPbrSpecularGlossinessExtension() {
return {
name: EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS,
specularGlossinessParams: [
'color',
'map',
'lightMap',
'lightMapIntensity',
'aoMap',
'aoMapIntensity',
'emissive',
'emissiveIntensity',
'emissiveMap',
'bumpMap',
'bumpScale',
'normalMap',
'displacementMap',
'displacementScale',
'displacementBias',
'specularMap',
'specular',
'glossinessMap',
'glossiness',
'alphaMap',
'envMap',
'envMapIntensity',
'refractionRatio',
],
getMaterialType: function () {
return THREE.ShaderMaterial;
},
extendParams: function ( materialParams, materialDef, parser ) {
var pbrSpecularGlossiness = materialDef.extensions[ this.name ];
var shader = THREE.ShaderLib[ 'standard' ];
var uniforms = THREE.UniformsUtils.clone( shader.uniforms );
var specularMapParsFragmentChunk = [
'#ifdef USE_SPECULARMAP',
' uniform sampler2D specularMap;',
'#endif'
].join( '\n' );
var glossinessMapParsFragmentChunk = [
'#ifdef USE_GLOSSINESSMAP',
' uniform sampler2D glossinessMap;',
'#endif'
].join( '\n' );
var specularMapFragmentChunk = [
'vec3 specularFactor = specular;',
'#ifdef USE_SPECULARMAP',
' vec4 texelSpecular = texture2D( specularMap, vUv );',
' texelSpecular = sRGBToLinear( texelSpecular );',
' // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture',
' specularFactor *= texelSpecular.rgb;',
'#endif'
].join( '\n' );
var glossinessMapFragmentChunk = [
'float glossinessFactor = glossiness;',
'#ifdef USE_GLOSSINESSMAP',
' vec4 texelGlossiness = texture2D( glossinessMap, vUv );',
' // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture',
' glossinessFactor *= texelGlossiness.a;',
'#endif'
].join( '\n' );
var lightPhysicalFragmentChunk = [
'PhysicalMaterial material;',
'material.diffuseColor = diffuseColor.rgb;',
'material.specularRoughness = clamp( 1.0 - glossinessFactor, 0.04, 1.0 );',
'material.specularColor = specularFactor.rgb;',
].join( '\n' );
var fragmentShader = shader.fragmentShader
.replace( 'uniform float roughness;', 'uniform vec3 specular;' )
.replace( 'uniform float metalness;', 'uniform float glossiness;' )
.replace( '#include <roughnessmap_pars_fragment>', specularMapParsFragmentChunk )
.replace( '#include <metalnessmap_pars_fragment>', glossinessMapParsFragmentChunk )
.replace( '#include <roughnessmap_fragment>', specularMapFragmentChunk )
.replace( '#include <metalnessmap_fragment>', glossinessMapFragmentChunk )
.replace( '#include <lights_physical_fragment>', lightPhysicalFragmentChunk );
delete uniforms.roughness;
delete uniforms.metalness;
delete uniforms.roughnessMap;
delete uniforms.metalnessMap;
uniforms.specular = { value: new THREE.Color().setHex( 0x111111 ) };
uniforms.glossiness = { value: 0.5 };
uniforms.specularMap = { value: null };
uniforms.glossinessMap = { value: null };
materialParams.vertexShader = shader.vertexShader;
materialParams.fragmentShader = fragmentShader;
materialParams.uniforms = uniforms;
materialParams.defines = { 'STANDARD': '' };
materialParams.color = new THREE.Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
var pending = [];
if ( Array.isArray( pbrSpecularGlossiness.diffuseFactor ) ) {
var array = pbrSpecularGlossiness.diffuseFactor;
materialParams.color.fromArray( array );
materialParams.opacity = array[ 3 ];
}
if ( pbrSpecularGlossiness.diffuseTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', pbrSpecularGlossiness.diffuseTexture ) );
}
materialParams.emissive = new THREE.Color( 0.0, 0.0, 0.0 );
materialParams.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0;
materialParams.specular = new THREE.Color( 1.0, 1.0, 1.0 );
if ( Array.isArray( pbrSpecularGlossiness.specularFactor ) ) {
materialParams.specular.fromArray( pbrSpecularGlossiness.specularFactor );
}
if ( pbrSpecularGlossiness.specularGlossinessTexture !== undefined ) {
var specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture;
pending.push( parser.assignTexture( materialParams, 'glossinessMap', specGlossMapDef ) );
pending.push( parser.assignTexture( materialParams, 'specularMap', specGlossMapDef ) );
}
return Promise.all( pending );
},
createMaterial: function ( params ) {
// setup material properties based on MeshStandardMaterial for Specular-Glossiness
var material = new THREE.ShaderMaterial( {
defines: params.defines,
vertexShader: params.vertexShader,
fragmentShader: params.fragmentShader,
uniforms: params.uniforms,
fog: true,
lights: true,
opacity: params.opacity,
transparent: params.transparent
} );
material.isGLTFSpecularGlossinessMaterial = true;
material.color = params.color;
material.map = params.map === undefined ? null : params.map;
material.lightMap = null;
material.lightMapIntensity = 1.0;
material.aoMap = params.aoMap === undefined ? null : params.aoMap;
material.aoMapIntensity = 1.0;
material.emissive = params.emissive;
material.emissiveIntensity = 1.0;
material.emissiveMap = params.emissiveMap === undefined ? null : params.emissiveMap;
material.bumpMap = params.bumpMap === undefined ? null : params.bumpMap;
material.bumpScale = 1;
material.normalMap = params.normalMap === undefined ? null : params.normalMap;
if ( params.normalScale ) material.normalScale = params.normalScale;
material.displacementMap = null;
material.displacementScale = 1;
material.displacementBias = 0;
material.specularMap = params.specularMap === undefined ? null : params.specularMap;
material.specular = params.specular;
material.glossinessMap = params.glossinessMap === undefined ? null : params.glossinessMap;
material.glossiness = params.glossiness;
material.alphaMap = null;
material.envMap = params.envMap === undefined ? null : params.envMap;
material.envMapIntensity = 1.0;
material.refractionRatio = 0.98;
material.extensions.derivatives = true;
return material;
},
/**
* Clones a GLTFSpecularGlossinessMaterial instance. The ShaderMaterial.copy() method can
* copy only properties it knows about or inherits, and misses many properties that would
* normally be defined by MeshStandardMaterial.
*
* This method allows GLTFSpecularGlossinessMaterials to be cloned in the process of
* loading a glTF model, but cloning later (e.g. by the user) would require these changes
* AND also updating `.onBeforeRender` on the parent mesh.
*
* @param {THREE.ShaderMaterial} source
* @return {THREE.ShaderMaterial}
*/
cloneMaterial: function ( source ) {
var target = source.clone();
target.isGLTFSpecularGlossinessMaterial = true;
var params = this.specularGlossinessParams;
for ( var i = 0, il = params.length; i < il; i ++ ) {
target[ params[ i ] ] = source[ params[ i ] ];
}
return target;
},
// Here's based on refreshUniformsCommon() and refreshUniformsStandard() in WebGLRenderer.
refreshUniforms: function ( renderer, scene, camera, geometry, material, group ) {
if ( material.isGLTFSpecularGlossinessMaterial !== true ) {
return;
}
var uniforms = material.uniforms;
var defines = material.defines;
uniforms.opacity.value = material.opacity;
uniforms.diffuse.value.copy( material.color );
uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity );
uniforms.map.value = material.map;
uniforms.specularMap.value = material.specularMap;
uniforms.alphaMap.value = material.alphaMap;
uniforms.lightMap.value = material.lightMap;
uniforms.lightMapIntensity.value = material.lightMapIntensity;
uniforms.aoMap.value = material.aoMap;
uniforms.aoMapIntensity.value = material.aoMapIntensity;
// uv repeat and offset setting priorities
// 1. color map
// 2. specular map
// 3. normal map
// 4. bump map
// 5. alpha map
// 6. emissive map
var uvScaleMap;
if ( material.map ) {
uvScaleMap = material.map;
} else if ( material.specularMap ) {
uvScaleMap = material.specularMap;
} else if ( material.displacementMap ) {
uvScaleMap = material.displacementMap;
} else if ( material.normalMap ) {
uvScaleMap = material.normalMap;
} else if ( material.bumpMap ) {
uvScaleMap = material.bumpMap;
} else if ( material.glossinessMap ) {
uvScaleMap = material.glossinessMap;
} else if ( material.alphaMap ) {
uvScaleMap = material.alphaMap;
} else if ( material.emissiveMap ) {
uvScaleMap = material.emissiveMap;
}
if ( uvScaleMap !== undefined ) {
// backwards compatibility
if ( uvScaleMap.isWebGLRenderTarget ) {
uvScaleMap = uvScaleMap.texture;
}
if ( uvScaleMap.matrixAutoUpdate === true ) {
uvScaleMap.updateMatrix();
}
uniforms.uvTransform.value.copy( uvScaleMap.matrix );
}
if ( material.envMap ) {
uniforms.envMap.value = material.envMap;
uniforms.envMapIntensity.value = material.envMapIntensity;
// don't flip CubeTexture envMaps, flip everything else:
// WebGLRenderTargetCube will be flipped for backwards compatibility
// WebGLRenderTargetCube.texture will be flipped because it's a Texture and NOT a CubeTexture
// this check must be handled differently, or removed entirely, if WebGLRenderTargetCube uses a CubeTexture in the future
uniforms.flipEnvMap.value = material.envMap.isCubeTexture ? - 1 : 1;
uniforms.reflectivity.value = material.reflectivity;
uniforms.refractionRatio.value = material.refractionRatio;
uniforms.maxMipLevel.value = renderer.properties.get( material.envMap ).__maxMipLevel;
}
uniforms.specular.value.copy( material.specular );
uniforms.glossiness.value = material.glossiness;
uniforms.glossinessMap.value = material.glossinessMap;
uniforms.emissiveMap.value = material.emissiveMap;
uniforms.bumpMap.value = material.bumpMap;
uniforms.normalMap.value = material.normalMap;
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
if ( uniforms.glossinessMap.value !== null && defines.USE_GLOSSINESSMAP === undefined ) {
defines.USE_GLOSSINESSMAP = '';
// set USE_ROUGHNESSMAP to enable vUv
defines.USE_ROUGHNESSMAP = '';
}
if ( uniforms.glossinessMap.value === null && defines.USE_GLOSSINESSMAP !== undefined ) {
delete defines.USE_GLOSSINESSMAP;
delete defines.USE_ROUGHNESSMAP;
}
}
};
}
/*********************************/
/********** INTERPOLATION ********/
/*********************************/
// Spline Interpolation
// Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation
function GLTFCubicSplineInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
THREE.Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
}
GLTFCubicSplineInterpolant.prototype = Object.create( THREE.Interpolant.prototype );
GLTFCubicSplineInterpolant.prototype.constructor = GLTFCubicSplineInterpolant;
GLTFCubicSplineInterpolant.prototype.copySampleValue_ = function ( index ) {
// Copies a sample value to the result buffer. See description of glTF
// CUBICSPLINE values layout in interpolate_() function below.
var result = this.resultBuffer,
values = this.sampleValues,
valueSize = this.valueSize,
offset = index * valueSize * 3 + valueSize;
for ( var i = 0; i !== valueSize; i ++ ) {
result[ i ] = values[ offset + i ];
}
return result;
};
GLTFCubicSplineInterpolant.prototype.beforeStart_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;
GLTFCubicSplineInterpolant.prototype.afterEnd_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;
GLTFCubicSplineInterpolant.prototype.interpolate_ = function ( i1, t0, t, t1 ) {
var result = this.resultBuffer;
var values = this.sampleValues;
var stride = this.valueSize;
var stride2 = stride * 2;
var stride3 = stride * 3;
var td = t1 - t0;
var p = ( t - t0 ) / td;
var pp = p * p;
var ppp = pp * p;
var offset1 = i1 * stride3;
var offset0 = offset1 - stride3;
var s2 = - 2 * ppp + 3 * pp;
var s3 = ppp - pp;
var s0 = 1 - s2;
var s1 = s3 - pp + p;
// Layout of keyframe output values for CUBICSPLINE animations:
// [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
for ( var i = 0; i !== stride; i ++ ) {
var p0 = values[ offset0 + i + stride ]; // splineVertex_k
var m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k)
var p1 = values[ offset1 + i + stride ]; // splineVertex_k+1
var m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k)
result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;
}
return result;
};
/*********************************/
/********** INTERNALS ************/
/*********************************/
/* CONSTANTS */
var WEBGL_CONSTANTS = {
FLOAT: 5126,
//FLOAT_MAT2: 35674,
FLOAT_MAT3: 35675,
FLOAT_MAT4: 35676,
FLOAT_VEC2: 35664,
FLOAT_VEC3: 35665,
FLOAT_VEC4: 35666,
LINEAR: 9729,
REPEAT: 10497,
SAMPLER_2D: 35678,
POINTS: 0,
LINES: 1,
LINE_LOOP: 2,
LINE_STRIP: 3,
TRIANGLES: 4,
TRIANGLE_STRIP: 5,
TRIANGLE_FAN: 6,
UNSIGNED_BYTE: 5121,
UNSIGNED_SHORT: 5123
};
var WEBGL_TYPE = {
5126: Number,
//35674: THREE.Matrix2,
35675: THREE.Matrix3,
35676: THREE.Matrix4,
35664: THREE.Vector2,
35665: THREE.Vector3,
35666: THREE.Vector4,
35678: THREE.Texture
};
var WEBGL_COMPONENT_TYPES = {
5120: Int8Array,
5121: Uint8Array,
5122: Int16Array,
5123: Uint16Array,
5125: Uint32Array,
5126: Float32Array
};
var WEBGL_FILTERS = {
9728: THREE.NearestFilter,
9729: THREE.LinearFilter,
9984: THREE.NearestMipMapNearestFilter,
9985: THREE.LinearMipMapNearestFilter,
9986: THREE.NearestMipMapLinearFilter,
9987: THREE.LinearMipMapLinearFilter
};
var WEBGL_WRAPPINGS = {
33071: THREE.ClampToEdgeWrapping,
33648: THREE.MirroredRepeatWrapping,
10497: THREE.RepeatWrapping
};
var WEBGL_SIDES = {
1028: THREE.BackSide, // Culling front
1029: THREE.FrontSide // Culling back
//1032: THREE.NoSide // Culling front and back, what to do?
};
var WEBGL_DEPTH_FUNCS = {
512: THREE.NeverDepth,
513: THREE.LessDepth,
514: THREE.EqualDepth,
515: THREE.LessEqualDepth,
516: THREE.GreaterEqualDepth,
517: THREE.NotEqualDepth,
518: THREE.GreaterEqualDepth,
519: THREE.AlwaysDepth
};
var WEBGL_BLEND_EQUATIONS = {
32774: THREE.AddEquation,
32778: THREE.SubtractEquation,
32779: THREE.ReverseSubtractEquation
};
var WEBGL_BLEND_FUNCS = {
0: THREE.ZeroFactor,
1: THREE.OneFactor,
768: THREE.SrcColorFactor,
769: THREE.OneMinusSrcColorFactor,
770: THREE.SrcAlphaFactor,
771: THREE.OneMinusSrcAlphaFactor,
772: THREE.DstAlphaFactor,
773: THREE.OneMinusDstAlphaFactor,
774: THREE.DstColorFactor,
775: THREE.OneMinusDstColorFactor,
776: THREE.SrcAlphaSaturateFactor
// The followings are not supported by Three.js yet
//32769: CONSTANT_COLOR,
//32770: ONE_MINUS_CONSTANT_COLOR,
//32771: CONSTANT_ALPHA,
//32772: ONE_MINUS_CONSTANT_COLOR
};
var WEBGL_TYPE_SIZES = {
'SCALAR': 1,
'VEC2': 2,
'VEC3': 3,
'VEC4': 4,
'MAT2': 4,
'MAT3': 9,
'MAT4': 16
};
var ATTRIBUTES = {
POSITION: 'position',
NORMAL: 'normal',
TANGENT: 'tangent',
TEXCOORD_0: 'uv',
TEXCOORD_1: 'uv2',
COLOR_0: 'color',
WEIGHTS_0: 'skinWeight',
JOINTS_0: 'skinIndex',
};
var PATH_PROPERTIES = {
scale: 'scale',
translation: 'position',
rotation: 'quaternion',
weights: 'morphTargetInfluences'
};
var INTERPOLATION = {
CUBICSPLINE: undefined, // We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each
// keyframe track will be initialized with a default interpolation type, then modified.
LINEAR: THREE.InterpolateLinear,
STEP: THREE.InterpolateDiscrete
};
var STATES_ENABLES = {
2884: 'CULL_FACE',
2929: 'DEPTH_TEST',
3042: 'BLEND',
3089: 'SCISSOR_TEST',
32823: 'POLYGON_OFFSET_FILL',
32926: 'SAMPLE_ALPHA_TO_COVERAGE'
};
var ALPHA_MODES = {
OPAQUE: 'OPAQUE',
MASK: 'MASK',
BLEND: 'BLEND'
};
var MIME_TYPE_FORMATS = {
'image/png': THREE.RGBAFormat,
'image/jpeg': THREE.RGBFormat
};
/* UTILITY FUNCTIONS */
function resolveURL( url, path ) {
// Invalid URL
if ( typeof url !== 'string' || url === '' ) return '';
// Absolute URL http://,https://,//
if ( /^(https?:)?\/\//i.test( url ) ) return url;
// Data URI
if ( /^data:.*,.*$/i.test( url ) ) return url;
// Blob URL
if ( /^blob:.*$/i.test( url ) ) return url;
// Relative URL
return path + url;
}
var defaultMaterial;
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material
*/
function createDefaultMaterial() {
defaultMaterial = defaultMaterial || new THREE.MeshStandardMaterial( {
color: 0xFFFFFF,
emissive: 0x000000,
metalness: 1,
roughness: 1,
transparent: false,
depthTest: true,
side: THREE.FrontSide
} );
return defaultMaterial;
}
function addUnknownExtensionsToUserData( knownExtensions, object, objectDef ) {
// Add unknown glTF extensions to an object's userData.
for ( var name in objectDef.extensions ) {
if ( knownExtensions[ name ] === undefined ) {
object.userData.gltfExtensions = object.userData.gltfExtensions || {};
object.userData.gltfExtensions[ name ] = objectDef.extensions[ name ];
}
}
}
/**
* @param {THREE.Object3D|THREE.Material|THREE.BufferGeometry} object
* @param {GLTF.definition} gltfDef
*/
function assignExtrasToUserData( object, gltfDef ) {
if ( gltfDef.extras !== undefined ) {
if ( typeof gltfDef.extras === 'object' ) {
object.userData = gltfDef.extras;
} else {
console.warn( 'THREE.GLTFLoader: Ignoring primitive type .extras, ' + gltfDef.extras );
}
}
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets
*
* @param {THREE.BufferGeometry} geometry
* @param {Array<GLTF.Target>} targets
* @param {GLTFParser} parser
* @return {Promise<THREE.BufferGeometry>}
*/
function addMorphTargets( geometry, targets, parser ) {
var hasMorphPosition = false;
var hasMorphNormal = false;
for ( var i = 0, il = targets.length; i < il; i ++ ) {
var target = targets[ i ];
if ( target.POSITION !== undefined ) hasMorphPosition = true;
if ( target.NORMAL !== undefined ) hasMorphNormal = true;
if ( hasMorphPosition && hasMorphNormal ) break;
}
if ( ! hasMorphPosition && ! hasMorphNormal ) return Promise.resolve( geometry );
var pendingPositionAccessors = [];
var pendingNormalAccessors = [];
for ( var i = 0, il = targets.length; i < il; i ++ ) {
var target = targets[ i ];
if ( hasMorphPosition ) {
var pendingAccessor = target.POSITION !== undefined
? parser.getDependency( 'accessor', target.POSITION )
: geometry.attributes.position;
pendingPositionAccessors.push( pendingAccessor );
}
if ( hasMorphNormal ) {
var pendingAccessor = target.NORMAL !== undefined
? parser.getDependency( 'accessor', target.NORMAL )
: geometry.attributes.normal;
pendingNormalAccessors.push( pendingAccessor );
}
}
return Promise.all( [
Promise.all( pendingPositionAccessors ),
Promise.all( pendingNormalAccessors )
] ).then( function ( accessors ) {
var morphPositions = accessors[ 0 ];
var morphNormals = accessors[ 1 ];
// Clone morph target accessors before modifying them.
for ( var i = 0, il = morphPositions.length; i < il; i ++ ) {
if ( geometry.attributes.position === morphPositions[ i ] ) continue;
morphPositions[ i ] = cloneBufferAttribute( morphPositions[ i ] );
}
for ( var i = 0, il = morphNormals.length; i < il; i ++ ) {
if ( geometry.attributes.normal === morphNormals[ i ] ) continue;
morphNormals[ i ] = cloneBufferAttribute( morphNormals[ i ] );
}
for ( var i = 0, il = targets.length; i < il; i ++ ) {
var target = targets[ i ];
var attributeName = 'morphTarget' + i;
if ( hasMorphPosition ) {
// Three.js morph position is absolute value. The formula is
// basePosition
// + weight0 * ( morphPosition0 - basePosition )
// + weight1 * ( morphPosition1 - basePosition )
// ...
// while the glTF one is relative
// basePosition
// + weight0 * glTFmorphPosition0
// + weight1 * glTFmorphPosition1
// ...
// then we need to convert from relative to absolute here.
if ( target.POSITION !== undefined ) {
var positionAttribute = morphPositions[ i ];
positionAttribute.name = attributeName;
var position = geometry.attributes.position;
for ( var j = 0, jl = positionAttribute.count; j < jl; j ++ ) {
positionAttribute.setXYZ(
j,
positionAttribute.getX( j ) + position.getX( j ),
positionAttribute.getY( j ) + position.getY( j ),
positionAttribute.getZ( j ) + position.getZ( j )
);
}
}
}
if ( hasMorphNormal ) {
// see target.POSITION's comment
if ( target.NORMAL !== undefined ) {
var normalAttribute = morphNormals[ i ];
normalAttribute.name = attributeName;
var normal = geometry.attributes.normal;
for ( var j = 0, jl = normalAttribute.count; j < jl; j ++ ) {
normalAttribute.setXYZ(
j,
normalAttribute.getX( j ) + normal.getX( j ),
normalAttribute.getY( j ) + normal.getY( j ),
normalAttribute.getZ( j ) + normal.getZ( j )
);
}
}
}
}
if ( hasMorphPosition ) geometry.morphAttributes.position = morphPositions;
if ( hasMorphNormal ) geometry.morphAttributes.normal = morphNormals;
return geometry;
} );
}
/**
* @param {THREE.Mesh} mesh
* @param {GLTF.Mesh} meshDef
*/
function updateMorphTargets( mesh, meshDef ) {
mesh.updateMorphTargets();
if ( meshDef.weights !== undefined ) {
for ( var i = 0, il = meshDef.weights.length; i < il; i ++ ) {
mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ];
}
}
// .extras has user-defined data, so check that .extras.targetNames is an array.
if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) {
var targetNames = meshDef.extras.targetNames;
if ( mesh.morphTargetInfluences.length === targetNames.length ) {
mesh.morphTargetDictionary = {};
for ( var i = 0, il = targetNames.length; i < il; i ++ ) {
mesh.morphTargetDictionary[ targetNames[ i ] ] = i;
}
} else {
console.warn( 'THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.' );
}
}
}
function isObjectEqual( a, b ) {
if ( Object.keys( a ).length !== Object.keys( b ).length ) return false;
for ( var key in a ) {
if ( a[ key ] !== b[ key ] ) return false;
}
return true;
}
function createPrimitiveKey( primitiveDef ) {
var dracoExtension = primitiveDef.extensions && primitiveDef.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ];
var geometryKey;
if ( dracoExtension ) {
geometryKey = 'draco:' + dracoExtension.bufferView
+ ':' + dracoExtension.indices
+ ':' + createAttributesKey( dracoExtension.attributes );
} else {
geometryKey = primitiveDef.indices + ':' + createAttributesKey( primitiveDef.attributes ) + ':' + primitiveDef.mode;
}
return geometryKey;
}
function createAttributesKey( attributes ) {
var attributesKey = '';
var keys = Object.keys( attributes ).sort();
for ( var i = 0, il = keys.length; i < il; i ++ ) {
attributesKey += keys[ i ] + ':' + attributes[ keys[ i ] ] + ';';
}
return attributesKey;
}
function cloneBufferAttribute( attribute ) {
if ( attribute.isInterleavedBufferAttribute ) {
var count = attribute.count;
var itemSize = attribute.itemSize;
var array = attribute.array.slice( 0, count * itemSize );
for ( var i = 0, j = 0; i < count; ++ i ) {
array[ j ++ ] = attribute.getX( i );
if ( itemSize >= 2 ) array[ j ++ ] = attribute.getY( i );
if ( itemSize >= 3 ) array[ j ++ ] = attribute.getZ( i );
if ( itemSize >= 4 ) array[ j ++ ] = attribute.getW( i );
}
return new THREE.BufferAttribute( array, itemSize, attribute.normalized );
}
return attribute.clone();
}
/* GLTF PARSER */
function GLTFParser( json, extensions, options ) {
this.json = json || {};
this.extensions = extensions || {};
this.options = options || {};
// loader object cache
this.cache = new GLTFRegistry();
// BufferGeometry caching
this.primitiveCache = {};
this.textureLoader = new THREE.TextureLoader( this.options.manager );
this.textureLoader.setCrossOrigin( this.options.crossOrigin );
this.fileLoader = new THREE.FileLoader( this.options.manager );
this.fileLoader.setResponseType( 'arraybuffer' );
}
GLTFParser.prototype.parse = function ( onLoad, onError ) {
var parser = this;
var json = this.json;
var extensions = this.extensions;
// Clear the loader cache
this.cache.removeAll();
// Mark the special nodes/meshes in json for efficient parse
this.markDefs();
Promise.all( [
this.getDependencies( 'scene' ),
this.getDependencies( 'animation' ),
this.getDependencies( 'camera' ),
] ).then( function ( dependencies ) {
var result = {
scene: dependencies[ 0 ][ json.scene || 0 ],
scenes: dependencies[ 0 ],
animations: dependencies[ 1 ],
cameras: dependencies[ 2 ],
asset: json.asset,
parser: parser,
userData: {}
};
addUnknownExtensionsToUserData( extensions, result, json );
onLoad( result );
} ).catch( onError );
};
/**
* Marks the special nodes/meshes in json for efficient parse.
*/
GLTFParser.prototype.markDefs = function () {
var nodeDefs = this.json.nodes || [];
var skinDefs = this.json.skins || [];
var meshDefs = this.json.meshes || [];
var meshReferences = {};
var meshUses = {};
// Nothing in the node definition indicates whether it is a Bone or an
// Object3D. Use the skins' joint references to mark bones.
for ( var skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) {
var joints = skinDefs[ skinIndex ].joints;
for ( var i = 0, il = joints.length; i < il; i ++ ) {
nodeDefs[ joints[ i ] ].isBone = true;
}
}
// Meshes can (and should) be reused by multiple nodes in a glTF asset. To
// avoid having more than one THREE.Mesh with the same name, count
// references and rename instances below.
//
// Example: CesiumMilkTruck sample model reuses "Wheel" meshes.
for ( var nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {
var nodeDef = nodeDefs[ nodeIndex ];
if ( nodeDef.mesh !== undefined ) {
if ( meshReferences[ nodeDef.mesh ] === undefined ) {
meshReferences[ nodeDef.mesh ] = meshUses[ nodeDef.mesh ] = 0;
}
meshReferences[ nodeDef.mesh ] ++;
// Nothing in the mesh definition indicates whether it is
// a SkinnedMesh or Mesh. Use the node's mesh reference
// to mark SkinnedMesh if node has skin.
if ( nodeDef.skin !== undefined ) {
meshDefs[ nodeDef.mesh ].isSkinnedMesh = true;
}
}
}
this.json.meshReferences = meshReferences;
this.json.meshUses = meshUses;
};
/**
* Requests the specified dependency asynchronously, with caching.
* @param {string} type
* @param {number} index
* @return {Promise<THREE.Object3D|THREE.Material|THREE.Texture|THREE.AnimationClip|ArrayBuffer|Object>}
*/
GLTFParser.prototype.getDependency = function ( type, index ) {
var cacheKey = type + ':' + index;
var dependency = this.cache.get( cacheKey );
if ( ! dependency ) {
switch ( type ) {
case 'scene':
dependency = this.loadScene( index );
break;
case 'node':
dependency = this.loadNode( index );
break;
case 'mesh':
dependency = this.loadMesh( index );
break;
case 'accessor':
dependency = this.loadAccessor( index );
break;
case 'bufferView':
dependency = this.loadBufferView( index );
break;
case 'buffer':
dependency = this.loadBuffer( index );
break;
case 'material':
dependency = this.loadMaterial( index );
break;
case 'texture':
dependency = this.loadTexture( index );
break;
case 'skin':
dependency = this.loadSkin( index );
break;
case 'animation':
dependency = this.loadAnimation( index );
break;
case 'camera':
dependency = this.loadCamera( index );
break;
case 'light':
dependency = this.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].loadLight( index );
break;
default:
throw new Error( 'Unknown type: ' + type );
}
this.cache.add( cacheKey, dependency );
}
return dependency;
};
/**
* Requests all dependencies of the specified type asynchronously, with caching.
* @param {string} type
* @return {Promise<Array<Object>>}
*/
GLTFParser.prototype.getDependencies = function ( type ) {
var dependencies = this.cache.get( type );
if ( ! dependencies ) {
var parser = this;
var defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || [];
dependencies = Promise.all( defs.map( function ( def, index ) {
return parser.getDependency( type, index );
} ) );
this.cache.add( type, dependencies );
}
return dependencies;
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
* @param {number} bufferIndex
* @return {Promise<ArrayBuffer>}
*/
GLTFParser.prototype.loadBuffer = function ( bufferIndex ) {
var bufferDef = this.json.buffers[ bufferIndex ];
var loader = this.fileLoader;
if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) {
throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' );
}
// If present, GLB container is required to be the first buffer.
if ( bufferDef.uri === undefined && bufferIndex === 0 ) {
return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body );
}
var options = this.options;
return new Promise( function ( resolve, reject ) {
loader.load( resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () {
reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) );
} );
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
* @param {number} bufferViewIndex
* @return {Promise<ArrayBuffer>}
*/
GLTFParser.prototype.loadBufferView = function ( bufferViewIndex ) {
var bufferViewDef = this.json.bufferViews[ bufferViewIndex ];
return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) {
var byteLength = bufferViewDef.byteLength || 0;
var byteOffset = bufferViewDef.byteOffset || 0;
return buffer.slice( byteOffset, byteOffset + byteLength );
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors
* @param {number} accessorIndex
* @return {Promise<THREE.BufferAttribute|THREE.InterleavedBufferAttribute>}
*/
GLTFParser.prototype.loadAccessor = function ( accessorIndex ) {
var parser = this;
var json = this.json;
var accessorDef = this.json.accessors[ accessorIndex ];
if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) {
// Ignore empty accessors, which may be used to declare runtime
// information about attributes coming from another source (e.g. Draco
// compression extension).
return Promise.resolve( null );
}
var pendingBufferViews = [];
if ( accessorDef.bufferView !== undefined ) {
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) );
} else {
pendingBufferViews.push( null );
}
if ( accessorDef.sparse !== undefined ) {
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) );
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) );
}
return Promise.all( pendingBufferViews ).then( function ( bufferViews ) {
var bufferView = bufferViews[ 0 ];
var itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
var TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
// For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12.
var elementBytes = TypedArray.BYTES_PER_ELEMENT;
var itemBytes = elementBytes * itemSize;
var byteOffset = accessorDef.byteOffset || 0;
var byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferView ].byteStride : undefined;
var normalized = accessorDef.normalized === true;
var array, bufferAttribute;
// The buffer is not interleaved if the stride is the item size in bytes.
if ( byteStride && byteStride !== itemBytes ) {
var ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType;
var ib = parser.cache.get( ibCacheKey );
if ( ! ib ) {
// Use the full buffer if it's interleaved.
array = new TypedArray( bufferView );
// Integer parameters to IB/IBA are in array elements, not bytes.
ib = new THREE.InterleavedBuffer( array, byteStride / elementBytes );
parser.cache.add( ibCacheKey, ib );
}
bufferAttribute = new THREE.InterleavedBufferAttribute( ib, itemSize, byteOffset / elementBytes, normalized );
} else {
if ( bufferView === null ) {
array = new TypedArray( accessorDef.count * itemSize );
} else {
array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize );
}
bufferAttribute = new THREE.BufferAttribute( array, itemSize, normalized );
}
// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors
if ( accessorDef.sparse !== undefined ) {
var itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR;
var TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ];
var byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0;
var byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;
var sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices );
var sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize );
if ( bufferView !== null ) {
// Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes.
bufferAttribute.setArray( bufferAttribute.array.slice() );
}
for ( var i = 0, il = sparseIndices.length; i < il; i ++ ) {
var index = sparseIndice