three-to-cannon
Version:
Convert a THREE.Mesh to a CANNON.Shape.
1,344 lines (1,105 loc) • 41.7 kB
JavaScript
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('cannon-es'), require('three')) :
typeof define === 'function' && define.amd ? define(['exports', 'cannon-es', 'three'], factory) :
(global = global || self, factory(global.threeToCannon = {}, global.cannonEs, global.THREE));
}(this, (function (exports, cannonEs, three) {
/**
* Ported from: https://github.com/maurizzzio/quickhull3d/ by Mauricio Poppe (https://github.com/maurizzzio)
*/
var ConvexHull = function () {
var Visible = 0;
var Deleted = 1;
var v1 = new three.Vector3();
function ConvexHull() {
this.tolerance = -1;
this.faces = []; // the generated faces of the convex hull
this.newFaces = []; // this array holds the faces that are generated within a single iteration
// the vertex lists work as follows:
//
// let 'a' and 'b' be 'Face' instances
// let 'v' be points wrapped as instance of 'Vertex'
//
// [v, v, ..., v, v, v, ...]
// ^ ^
// | |
// a.outside b.outside
//
this.assigned = new VertexList();
this.unassigned = new VertexList();
this.vertices = []; // vertices of the hull (internal representation of given geometry data)
}
Object.assign(ConvexHull.prototype, {
toJSON: function () {
// Original ('src') indices do not include interior vertices,
// but 'this.vertices' (the list they index) does. Output ('dst')
// arrays have interior vertices omitted.
const srcIndices = this.faces.map(f => f.toArray());
const uniqueSrcIndices = Array.from(new Set(srcIndices.flat())).sort(); // Output vertex positions, omitting interior vertices.
const dstPositions = [];
for (let i = 0; i < uniqueSrcIndices.length; i++) {
dstPositions.push(this.vertices[uniqueSrcIndices[i]].point.x, this.vertices[uniqueSrcIndices[i]].point.y, this.vertices[uniqueSrcIndices[i]].point.z);
} // Mapping from 'src' (this.vertices) to 'dst' (dstPositions) indices.
const srcToDstIndexMap = new Map();
for (let i = 0; i < uniqueSrcIndices.length; i++) {
srcToDstIndexMap.set(uniqueSrcIndices[i], i);
} // Output triangles, as indices on dstPositions.
const dstIndices = [];
for (let i = 0; i < srcIndices.length; i++) {
dstIndices.push([srcToDstIndexMap.get(srcIndices[i][0]), srcToDstIndexMap.get(srcIndices[i][1]), srcToDstIndexMap.get(srcIndices[i][2])]);
}
return [dstPositions, dstIndices];
},
setFromPoints: function (points) {
if (Array.isArray(points) !== true) {
console.error('THREE.ConvexHull: Points parameter is not an array.');
}
if (points.length < 4) {
console.error('THREE.ConvexHull: The algorithm needs at least four points.');
}
this.makeEmpty();
for (var i = 0, l = points.length; i < l; i++) {
this.vertices.push(new VertexNode(points[i], i));
}
this.compute();
return this;
},
setFromObject: function (object) {
var points = [];
object.updateMatrixWorld(true);
object.traverse(function (node) {
var i, l, point;
var geometry = node.geometry;
if (geometry === undefined) return;
if (geometry.isGeometry) {
geometry = geometry.toBufferGeometry ? geometry.toBufferGeometry() : new BufferGeometry().fromGeometry(geometry);
}
if (geometry.isBufferGeometry) {
var attribute = geometry.attributes.position;
if (attribute !== undefined) {
for (i = 0, l = attribute.count; i < l; i++) {
point = new three.Vector3();
point.fromBufferAttribute(attribute, i).applyMatrix4(node.matrixWorld);
points.push(point);
}
}
}
});
return this.setFromPoints(points);
},
containsPoint: function (point) {
var faces = this.faces;
for (var i = 0, l = faces.length; i < l; i++) {
var face = faces[i]; // compute signed distance and check on what half space the point lies
if (face.distanceToPoint(point) > this.tolerance) return false;
}
return true;
},
intersectRay: function (ray, target) {
// based on "Fast Ray-Convex Polyhedron Intersection" by Eric Haines, GRAPHICS GEMS II
var faces = this.faces;
var tNear = -Infinity;
var tFar = Infinity;
for (var i = 0, l = faces.length; i < l; i++) {
var face = faces[i]; // interpret faces as planes for the further computation
var vN = face.distanceToPoint(ray.origin);
var vD = face.normal.dot(ray.direction); // if the origin is on the positive side of a plane (so the plane can "see" the origin) and
// the ray is turned away or parallel to the plane, there is no intersection
if (vN > 0 && vD >= 0) return null; // compute the distance from the ray’s origin to the intersection with the plane
var t = vD !== 0 ? -vN / vD : 0; // only proceed if the distance is positive. a negative distance means the intersection point
// lies "behind" the origin
if (t <= 0) continue; // now categorized plane as front-facing or back-facing
if (vD > 0) {
// plane faces away from the ray, so this plane is a back-face
tFar = Math.min(t, tFar);
} else {
// front-face
tNear = Math.max(t, tNear);
}
if (tNear > tFar) {
// if tNear ever is greater than tFar, the ray must miss the convex hull
return null;
}
} // evaluate intersection point
// always try tNear first since its the closer intersection point
if (tNear !== -Infinity) {
ray.at(tNear, target);
} else {
ray.at(tFar, target);
}
return target;
},
intersectsRay: function (ray) {
return this.intersectRay(ray, v1) !== null;
},
makeEmpty: function () {
this.faces = [];
this.vertices = [];
return this;
},
// Adds a vertex to the 'assigned' list of vertices and assigns it to the given face
addVertexToFace: function (vertex, face) {
vertex.face = face;
if (face.outside === null) {
this.assigned.append(vertex);
} else {
this.assigned.insertBefore(face.outside, vertex);
}
face.outside = vertex;
return this;
},
// Removes a vertex from the 'assigned' list of vertices and from the given face
removeVertexFromFace: function (vertex, face) {
if (vertex === face.outside) {
// fix face.outside link
if (vertex.next !== null && vertex.next.face === face) {
// face has at least 2 outside vertices, move the 'outside' reference
face.outside = vertex.next;
} else {
// vertex was the only outside vertex that face had
face.outside = null;
}
}
this.assigned.remove(vertex);
return this;
},
// Removes all the visible vertices that a given face is able to see which are stored in the 'assigned' vertext list
removeAllVerticesFromFace: function (face) {
if (face.outside !== null) {
// reference to the first and last vertex of this face
var start = face.outside;
var end = face.outside;
while (end.next !== null && end.next.face === face) {
end = end.next;
}
this.assigned.removeSubList(start, end); // fix references
start.prev = end.next = null;
face.outside = null;
return start;
}
},
// Removes all the visible vertices that 'face' is able to see
deleteFaceVertices: function (face, absorbingFace) {
var faceVertices = this.removeAllVerticesFromFace(face);
if (faceVertices !== undefined) {
if (absorbingFace === undefined) {
// mark the vertices to be reassigned to some other face
this.unassigned.appendChain(faceVertices);
} else {
// if there's an absorbing face try to assign as many vertices as possible to it
var vertex = faceVertices;
do {
// we need to buffer the subsequent vertex at this point because the 'vertex.next' reference
// will be changed by upcoming method calls
var nextVertex = vertex.next;
var distance = absorbingFace.distanceToPoint(vertex.point); // check if 'vertex' is able to see 'absorbingFace'
if (distance > this.tolerance) {
this.addVertexToFace(vertex, absorbingFace);
} else {
this.unassigned.append(vertex);
} // now assign next vertex
vertex = nextVertex;
} while (vertex !== null);
}
}
return this;
},
// Reassigns as many vertices as possible from the unassigned list to the new faces
resolveUnassignedPoints: function (newFaces) {
if (this.unassigned.isEmpty() === false) {
var vertex = this.unassigned.first();
do {
// buffer 'next' reference, see .deleteFaceVertices()
var nextVertex = vertex.next;
var maxDistance = this.tolerance;
var maxFace = null;
for (var i = 0; i < newFaces.length; i++) {
var face = newFaces[i];
if (face.mark === Visible) {
var distance = face.distanceToPoint(vertex.point);
if (distance > maxDistance) {
maxDistance = distance;
maxFace = face;
}
if (maxDistance > 1000 * this.tolerance) break;
}
} // 'maxFace' can be null e.g. if there are identical vertices
if (maxFace !== null) {
this.addVertexToFace(vertex, maxFace);
}
vertex = nextVertex;
} while (vertex !== null);
}
return this;
},
// Computes the extremes of a simplex which will be the initial hull
computeExtremes: function () {
var min = new three.Vector3();
var max = new three.Vector3();
var minVertices = [];
var maxVertices = [];
var i, l, j; // initially assume that the first vertex is the min/max
for (i = 0; i < 3; i++) {
minVertices[i] = maxVertices[i] = this.vertices[0];
}
min.copy(this.vertices[0].point);
max.copy(this.vertices[0].point); // compute the min/max vertex on all six directions
for (i = 0, l = this.vertices.length; i < l; i++) {
var vertex = this.vertices[i];
var point = vertex.point; // update the min coordinates
for (j = 0; j < 3; j++) {
if (point.getComponent(j) < min.getComponent(j)) {
min.setComponent(j, point.getComponent(j));
minVertices[j] = vertex;
}
} // update the max coordinates
for (j = 0; j < 3; j++) {
if (point.getComponent(j) > max.getComponent(j)) {
max.setComponent(j, point.getComponent(j));
maxVertices[j] = vertex;
}
}
} // use min/max vectors to compute an optimal epsilon
this.tolerance = 3 * Number.EPSILON * (Math.max(Math.abs(min.x), Math.abs(max.x)) + Math.max(Math.abs(min.y), Math.abs(max.y)) + Math.max(Math.abs(min.z), Math.abs(max.z)));
return {
min: minVertices,
max: maxVertices
};
},
// Computes the initial simplex assigning to its faces all the points
// that are candidates to form part of the hull
computeInitialHull: function () {
var line3, plane, closestPoint;
return function computeInitialHull() {
if (line3 === undefined) {
line3 = new three.Line3();
plane = new three.Plane();
closestPoint = new three.Vector3();
}
var vertex,
vertices = this.vertices;
var extremes = this.computeExtremes();
var min = extremes.min;
var max = extremes.max;
var v0, v1, v2, v3;
var i, l, j; // 1. Find the two vertices 'v0' and 'v1' with the greatest 1d separation
// (max.x - min.x)
// (max.y - min.y)
// (max.z - min.z)
var distance,
maxDistance = 0;
var index = 0;
for (i = 0; i < 3; i++) {
distance = max[i].point.getComponent(i) - min[i].point.getComponent(i);
if (distance > maxDistance) {
maxDistance = distance;
index = i;
}
}
v0 = min[index];
v1 = max[index]; // 2. The next vertex 'v2' is the one farthest to the line formed by 'v0' and 'v1'
maxDistance = 0;
line3.set(v0.point, v1.point);
for (i = 0, l = this.vertices.length; i < l; i++) {
vertex = vertices[i];
if (vertex !== v0 && vertex !== v1) {
line3.closestPointToPoint(vertex.point, true, closestPoint);
distance = closestPoint.distanceToSquared(vertex.point);
if (distance > maxDistance) {
maxDistance = distance;
v2 = vertex;
}
}
} // 3. The next vertex 'v3' is the one farthest to the plane 'v0', 'v1', 'v2'
maxDistance = -1;
plane.setFromCoplanarPoints(v0.point, v1.point, v2.point);
for (i = 0, l = this.vertices.length; i < l; i++) {
vertex = vertices[i];
if (vertex !== v0 && vertex !== v1 && vertex !== v2) {
distance = Math.abs(plane.distanceToPoint(vertex.point));
if (distance > maxDistance) {
maxDistance = distance;
v3 = vertex;
}
}
}
var faces = [];
if (plane.distanceToPoint(v3.point) < 0) {
// the face is not able to see the point so 'plane.normal' is pointing outside the tetrahedron
faces.push(Face.create(v0, v1, v2), Face.create(v3, v1, v0), Face.create(v3, v2, v1), Face.create(v3, v0, v2)); // set the twin edge
for (i = 0; i < 3; i++) {
j = (i + 1) % 3; // join face[ i ] i > 0, with the first face
faces[i + 1].getEdge(2).setTwin(faces[0].getEdge(j)); // join face[ i ] with face[ i + 1 ], 1 <= i <= 3
faces[i + 1].getEdge(1).setTwin(faces[j + 1].getEdge(0));
}
} else {
// the face is able to see the point so 'plane.normal' is pointing inside the tetrahedron
faces.push(Face.create(v0, v2, v1), Face.create(v3, v0, v1), Face.create(v3, v1, v2), Face.create(v3, v2, v0)); // set the twin edge
for (i = 0; i < 3; i++) {
j = (i + 1) % 3; // join face[ i ] i > 0, with the first face
faces[i + 1].getEdge(2).setTwin(faces[0].getEdge((3 - i) % 3)); // join face[ i ] with face[ i + 1 ]
faces[i + 1].getEdge(0).setTwin(faces[j + 1].getEdge(1));
}
} // the initial hull is the tetrahedron
for (i = 0; i < 4; i++) {
this.faces.push(faces[i]);
} // initial assignment of vertices to the faces of the tetrahedron
for (i = 0, l = vertices.length; i < l; i++) {
vertex = vertices[i];
if (vertex !== v0 && vertex !== v1 && vertex !== v2 && vertex !== v3) {
maxDistance = this.tolerance;
var maxFace = null;
for (j = 0; j < 4; j++) {
distance = this.faces[j].distanceToPoint(vertex.point);
if (distance > maxDistance) {
maxDistance = distance;
maxFace = this.faces[j];
}
}
if (maxFace !== null) {
this.addVertexToFace(vertex, maxFace);
}
}
}
return this;
};
}(),
// Removes inactive faces
reindexFaces: function () {
var activeFaces = [];
for (var i = 0; i < this.faces.length; i++) {
var face = this.faces[i];
if (face.mark === Visible) {
activeFaces.push(face);
}
}
this.faces = activeFaces;
return this;
},
// Finds the next vertex to create faces with the current hull
nextVertexToAdd: function () {
// if the 'assigned' list of vertices is empty, no vertices are left. return with 'undefined'
if (this.assigned.isEmpty() === false) {
var eyeVertex,
maxDistance = 0; // grap the first available face and start with the first visible vertex of that face
var eyeFace = this.assigned.first().face;
var vertex = eyeFace.outside; // now calculate the farthest vertex that face can see
do {
var distance = eyeFace.distanceToPoint(vertex.point);
if (distance > maxDistance) {
maxDistance = distance;
eyeVertex = vertex;
}
vertex = vertex.next;
} while (vertex !== null && vertex.face === eyeFace);
return eyeVertex;
}
},
// Computes a chain of half edges in CCW order called the 'horizon'.
// For an edge to be part of the horizon it must join a face that can see
// 'eyePoint' and a face that cannot see 'eyePoint'.
computeHorizon: function (eyePoint, crossEdge, face, horizon) {
// moves face's vertices to the 'unassigned' vertex list
this.deleteFaceVertices(face);
face.mark = Deleted;
var edge;
if (crossEdge === null) {
edge = crossEdge = face.getEdge(0);
} else {
// start from the next edge since 'crossEdge' was already analyzed
// (actually 'crossEdge.twin' was the edge who called this method recursively)
edge = crossEdge.next;
}
do {
var twinEdge = edge.twin;
var oppositeFace = twinEdge.face;
if (oppositeFace.mark === Visible) {
if (oppositeFace.distanceToPoint(eyePoint) > this.tolerance) {
// the opposite face can see the vertex, so proceed with next edge
this.computeHorizon(eyePoint, twinEdge, oppositeFace, horizon);
} else {
// the opposite face can't see the vertex, so this edge is part of the horizon
horizon.push(edge);
}
}
edge = edge.next;
} while (edge !== crossEdge);
return this;
},
// Creates a face with the vertices 'eyeVertex.point', 'horizonEdge.tail' and 'horizonEdge.head' in CCW order
addAdjoiningFace: function (eyeVertex, horizonEdge) {
// all the half edges are created in ccw order thus the face is always pointing outside the hull
var face = Face.create(eyeVertex, horizonEdge.tail(), horizonEdge.head());
this.faces.push(face); // join face.getEdge( - 1 ) with the horizon's opposite edge face.getEdge( - 1 ) = face.getEdge( 2 )
face.getEdge(-1).setTwin(horizonEdge.twin);
return face.getEdge(0); // the half edge whose vertex is the eyeVertex
},
// Adds 'horizon.length' faces to the hull, each face will be linked with the
// horizon opposite face and the face on the left/right
addNewFaces: function (eyeVertex, horizon) {
this.newFaces = [];
var firstSideEdge = null;
var previousSideEdge = null;
for (var i = 0; i < horizon.length; i++) {
var horizonEdge = horizon[i]; // returns the right side edge
var sideEdge = this.addAdjoiningFace(eyeVertex, horizonEdge);
if (firstSideEdge === null) {
firstSideEdge = sideEdge;
} else {
// joins face.getEdge( 1 ) with previousFace.getEdge( 0 )
sideEdge.next.setTwin(previousSideEdge);
}
this.newFaces.push(sideEdge.face);
previousSideEdge = sideEdge;
} // perform final join of new faces
firstSideEdge.next.setTwin(previousSideEdge);
return this;
},
// Adds a vertex to the hull
addVertexToHull: function (eyeVertex) {
var horizon = [];
this.unassigned.clear(); // remove 'eyeVertex' from 'eyeVertex.face' so that it can't be added to the 'unassigned' vertex list
this.removeVertexFromFace(eyeVertex, eyeVertex.face);
this.computeHorizon(eyeVertex.point, null, eyeVertex.face, horizon);
this.addNewFaces(eyeVertex, horizon); // reassign 'unassigned' vertices to the new faces
this.resolveUnassignedPoints(this.newFaces);
return this;
},
cleanup: function () {
this.assigned.clear();
this.unassigned.clear();
this.newFaces = [];
return this;
},
compute: function () {
var vertex;
this.computeInitialHull(); // add all available vertices gradually to the hull
while ((vertex = this.nextVertexToAdd()) !== undefined) {
this.addVertexToHull(vertex);
}
this.reindexFaces();
this.cleanup();
return this;
}
}); //
function Face() {
this.normal = new three.Vector3();
this.midpoint = new three.Vector3();
this.area = 0;
this.constant = 0; // signed distance from face to the origin
this.outside = null; // reference to a vertex in a vertex list this face can see
this.mark = Visible;
this.edge = null;
}
Object.assign(Face, {
create: function (a, b, c) {
var face = new Face();
var e0 = new HalfEdge(a, face);
var e1 = new HalfEdge(b, face);
var e2 = new HalfEdge(c, face); // join edges
e0.next = e2.prev = e1;
e1.next = e0.prev = e2;
e2.next = e1.prev = e0; // main half edge reference
face.edge = e0;
return face.compute();
}
});
Object.assign(Face.prototype, {
toArray: function () {
const indices = [];
let edge = this.edge;
do {
indices.push(edge.head().index);
edge = edge.next;
} while (edge !== this.edge);
return indices;
},
getEdge: function (i) {
var edge = this.edge;
while (i > 0) {
edge = edge.next;
i--;
}
while (i < 0) {
edge = edge.prev;
i++;
}
return edge;
},
compute: function () {
var triangle;
return function compute() {
if (triangle === undefined) triangle = new three.Triangle();
var a = this.edge.tail();
var b = this.edge.head();
var c = this.edge.next.head();
triangle.set(a.point, b.point, c.point);
triangle.getNormal(this.normal);
triangle.getMidpoint(this.midpoint);
this.area = triangle.getArea();
this.constant = this.normal.dot(this.midpoint);
return this;
};
}(),
distanceToPoint: function (point) {
return this.normal.dot(point) - this.constant;
}
}); // Entity for a Doubly-Connected Edge List (DCEL).
function HalfEdge(vertex, face) {
this.vertex = vertex;
this.prev = null;
this.next = null;
this.twin = null;
this.face = face;
}
Object.assign(HalfEdge.prototype, {
head: function () {
return this.vertex;
},
tail: function () {
return this.prev ? this.prev.vertex : null;
},
length: function () {
var head = this.head();
var tail = this.tail();
if (tail !== null) {
return tail.point.distanceTo(head.point);
}
return -1;
},
lengthSquared: function () {
var head = this.head();
var tail = this.tail();
if (tail !== null) {
return tail.point.distanceToSquared(head.point);
}
return -1;
},
setTwin: function (edge) {
this.twin = edge;
edge.twin = this;
return this;
}
}); // A vertex as a double linked list node.
function VertexNode(point, index) {
this.point = point; // index in the input array
this.index = index;
this.prev = null;
this.next = null; // the face that is able to see this vertex
this.face = null;
} // A double linked list that contains vertex nodes.
function VertexList() {
this.head = null;
this.tail = null;
}
Object.assign(VertexList.prototype, {
first: function () {
return this.head;
},
last: function () {
return this.tail;
},
clear: function () {
this.head = this.tail = null;
return this;
},
// Inserts a vertex before the target vertex
insertBefore: function (target, vertex) {
vertex.prev = target.prev;
vertex.next = target;
if (vertex.prev === null) {
this.head = vertex;
} else {
vertex.prev.next = vertex;
}
target.prev = vertex;
return this;
},
// Inserts a vertex after the target vertex
insertAfter: function (target, vertex) {
vertex.prev = target;
vertex.next = target.next;
if (vertex.next === null) {
this.tail = vertex;
} else {
vertex.next.prev = vertex;
}
target.next = vertex;
return this;
},
// Appends a vertex to the end of the linked list
append: function (vertex) {
if (this.head === null) {
this.head = vertex;
} else {
this.tail.next = vertex;
}
vertex.prev = this.tail;
vertex.next = null; // the tail has no subsequent vertex
this.tail = vertex;
return this;
},
// Appends a chain of vertices where 'vertex' is the head.
appendChain: function (vertex) {
if (this.head === null) {
this.head = vertex;
} else {
this.tail.next = vertex;
}
vertex.prev = this.tail; // ensure that the 'tail' reference points to the last vertex of the chain
while (vertex.next !== null) {
vertex = vertex.next;
}
this.tail = vertex;
return this;
},
// Removes a vertex from the linked list
remove: function (vertex) {
if (vertex.prev === null) {
this.head = vertex.next;
} else {
vertex.prev.next = vertex.next;
}
if (vertex.next === null) {
this.tail = vertex.prev;
} else {
vertex.next.prev = vertex.prev;
}
return this;
},
// Removes a list of vertices whose 'head' is 'a' and whose 'tail' is b
removeSubList: function (a, b) {
if (a.prev === null) {
this.head = b.next;
} else {
a.prev.next = b.next;
}
if (b.next === null) {
this.tail = a.prev;
} else {
b.next.prev = a.prev;
}
return this;
},
isEmpty: function () {
return this.head === null;
}
});
return ConvexHull;
}();
const _v1 = new three.Vector3();
const _v2 = new three.Vector3();
const _q1 = new three.Quaternion();
/**
* Returns a single geometry for the given object. If the object is compound,
* its geometries are automatically merged. Bake world scale into each
* geometry, because we can't easily apply that to the cannonjs shapes later.
*/
function getGeometry(object) {
const meshes = getMeshes(object);
if (meshes.length === 0) return null; // Single mesh. Return, preserving original type.
if (meshes.length === 1) {
return normalizeGeometry(meshes[0]);
} // Multiple meshes. Merge and return.
let mesh;
const geometries = [];
while (mesh = meshes.pop()) {
geometries.push(simplifyGeometry(normalizeGeometry(mesh)));
}
return mergeBufferGeometries(geometries);
}
function normalizeGeometry(mesh) {
// Preserve original type, e.g. CylinderBufferGeometry.
const geometry = mesh.geometry.clone();
mesh.updateMatrixWorld();
mesh.matrixWorld.decompose(_v1, _q1, _v2);
geometry.scale(_v2.x, _v2.y, _v2.z);
return geometry;
}
/**
* Greatly simplified version of BufferGeometryUtils.mergeBufferGeometries.
* Because we only care about the vertex positions, and not the indices or
* other attributes, we throw everything else away.
*/
function mergeBufferGeometries(geometries) {
let vertexCount = 0;
for (let i = 0; i < geometries.length; i++) {
const position = geometries[i].attributes.position;
if (position && position.itemSize === 3) {
vertexCount += position.count;
}
}
const positionArray = new Float32Array(vertexCount * 3);
let positionOffset = 0;
for (let i = 0; i < geometries.length; i++) {
const position = geometries[i].attributes.position;
if (position && position.itemSize === 3) {
for (let j = 0; j < position.count; j++) {
positionArray[positionOffset++] = position.getX(j);
positionArray[positionOffset++] = position.getY(j);
positionArray[positionOffset++] = position.getZ(j);
}
}
}
return new three.BufferGeometry().setAttribute('position', new three.BufferAttribute(positionArray, 3));
}
function getVertices(geometry) {
const position = geometry.attributes.position;
const vertices = new Float32Array(position.count * 3);
for (let i = 0; i < position.count; i++) {
vertices[i * 3] = position.getX(i);
vertices[i * 3 + 1] = position.getY(i);
vertices[i * 3 + 2] = position.getZ(i);
}
return vertices;
}
/**
* Returns a flat array of THREE.Mesh instances from the given object. If
* nested transformations are found, they are applied to child meshes
* as mesh.userData.matrix, so that each mesh has its position/rotation/scale
* independently of all of its parents except the top-level object.
*/
function getMeshes(object) {
const meshes = [];
object.traverse(function (o) {
if (o.isMesh) {
meshes.push(o);
}
});
return meshes;
}
function getComponent(v, component) {
switch (component) {
case 'x':
return v.x;
case 'y':
return v.y;
case 'z':
return v.z;
}
throw new Error("Unexpected component " + component);
}
/**
* Modified version of BufferGeometryUtils.mergeVertices, ignoring vertex
* attributes other than position.
*
* @param {THREE.BufferGeometry} geometry
* @param {number} tolerance
* @return {THREE.BufferGeometry>}
*/
function simplifyGeometry(geometry, tolerance = 1e-4) {
tolerance = Math.max(tolerance, Number.EPSILON); // Generate an index buffer if the geometry doesn't have one, or optimize it
// if it's already available.
const hashToIndex = {};
const indices = geometry.getIndex();
const positions = geometry.getAttribute('position');
const vertexCount = indices ? indices.count : positions.count; // Next value for triangle indices.
let nextIndex = 0;
const newIndices = [];
const newPositions = []; // Convert the error tolerance to an amount of decimal places to truncate to.
const decimalShift = Math.log10(1 / tolerance);
const shiftMultiplier = Math.pow(10, decimalShift);
for (let i = 0; i < vertexCount; i++) {
const index = indices ? indices.getX(i) : i; // Generate a hash for the vertex attributes at the current index 'i'.
let hash = ''; // Double tilde truncates the decimal value.
hash += ~~(positions.getX(index) * shiftMultiplier) + ",";
hash += ~~(positions.getY(index) * shiftMultiplier) + ",";
hash += ~~(positions.getZ(index) * shiftMultiplier) + ","; // Add another reference to the vertex if it's already
// used by another index.
if (hash in hashToIndex) {
newIndices.push(hashToIndex[hash]);
} else {
newPositions.push(positions.getX(index));
newPositions.push(positions.getY(index));
newPositions.push(positions.getZ(index));
hashToIndex[hash] = nextIndex;
newIndices.push(nextIndex);
nextIndex++;
}
} // Construct merged BufferGeometry.
const positionAttribute = new three.BufferAttribute(new Float32Array(newPositions), positions.itemSize, positions.normalized);
const result = new three.BufferGeometry();
result.setAttribute('position', positionAttribute);
result.setIndex(newIndices);
return result;
}
const PI_2 = Math.PI / 2;
exports.ShapeType = void 0;
(function (ShapeType) {
ShapeType["BOX"] = "Box";
ShapeType["CYLINDER"] = "Cylinder";
ShapeType["SPHERE"] = "Sphere";
ShapeType["HULL"] = "ConvexPolyhedron";
ShapeType["MESH"] = "Trimesh";
})(exports.ShapeType || (exports.ShapeType = {}));
/**
* Given a THREE.Object3D instance, creates parameters for a CANNON shape.
*/
const getShapeParameters = function (object, options = {}) {
let geometry;
if (options.type === exports.ShapeType.BOX) {
return getBoundingBoxParameters(object);
} else if (options.type === exports.ShapeType.CYLINDER) {
return getBoundingCylinderParameters(object, options);
} else if (options.type === exports.ShapeType.SPHERE) {
return getBoundingSphereParameters(object, options);
} else if (options.type === exports.ShapeType.HULL) {
return getConvexPolyhedronParameters(object);
} else if (options.type === exports.ShapeType.MESH) {
geometry = getGeometry(object);
return geometry ? getTrimeshParameters(geometry) : null;
} else if (options.type) {
throw new Error("[CANNON.getShapeParameters] Invalid type \"" + options.type + "\".");
}
geometry = getGeometry(object);
if (!geometry) return null;
switch (geometry.type) {
case 'BoxGeometry':
case 'BoxBufferGeometry':
return getBoxParameters(geometry);
case 'CylinderGeometry':
case 'CylinderBufferGeometry':
return getCylinderParameters(geometry);
case 'PlaneGeometry':
case 'PlaneBufferGeometry':
return getPlaneParameters(geometry);
case 'SphereGeometry':
case 'SphereBufferGeometry':
return getSphereParameters(geometry);
case 'TubeGeometry':
case 'BufferGeometry':
return getBoundingBoxParameters(object);
default:
console.warn('Unrecognized geometry: "%s". Using bounding box as shape.', geometry.type);
return getBoxParameters(geometry);
}
};
/**
* Given a THREE.Object3D instance, creates a corresponding CANNON shape.
*/
const threeToCannon = function (object, options = {}) {
const shapeParameters = getShapeParameters(object, options);
if (!shapeParameters) {
return null;
}
const {
type,
params,
offset,
orientation
} = shapeParameters;
let shape;
if (type === exports.ShapeType.BOX) {
shape = createBox(params);
} else if (type === exports.ShapeType.CYLINDER) {
shape = createCylinder(params);
} else if (type === exports.ShapeType.SPHERE) {
shape = createSphere(params);
} else if (type === exports.ShapeType.HULL) {
shape = createConvexPolyhedron(params);
} else {
shape = createTrimesh(params);
}
return {
shape,
offset,
orientation
};
};
/******************************************************************************
* Shape construction
*/
function createBox(params) {
const {
x,
y,
z
} = params;
const shape = new cannonEs.Box(new cannonEs.Vec3(x, y, z));
return shape;
}
function createCylinder(params) {
const {
radiusTop,
radiusBottom,
height,
segments
} = params;
const shape = new cannonEs.Cylinder(radiusTop, radiusBottom, height, segments); // Include metadata for serialization.
// TODO(cleanup): Is this still necessary?
shape.radiusTop = radiusBottom;
shape.radiusBottom = radiusBottom;
shape.height = height;
shape.numSegments = segments;
return shape;
}
function createSphere(params) {
const shape = new cannonEs.Sphere(params.radius);
return shape;
}
function createConvexPolyhedron(params) {
const {
faces,
vertices: verticesArray
} = params;
const vertices = [];
for (let i = 0; i < verticesArray.length; i += 3) {
vertices.push(new cannonEs.Vec3(verticesArray[i], verticesArray[i + 1], verticesArray[i + 2]));
}
const shape = new cannonEs.ConvexPolyhedron({
faces,
vertices
});
return shape;
}
function createTrimesh(params) {
const {
vertices,
indices
} = params;
const shape = new cannonEs.Trimesh(vertices, indices);
return shape;
}
/******************************************************************************
* Shape parameters
*/
function getBoxParameters(geometry) {
const vertices = getVertices(geometry);
if (!vertices.length) return null;
geometry.computeBoundingBox();
const box = geometry.boundingBox;
return {
type: exports.ShapeType.BOX,
params: {
x: (box.max.x - box.min.x) / 2,
y: (box.max.y - box.min.y) / 2,
z: (box.max.z - box.min.z) / 2
}
};
}
/** Bounding box needs to be computed with the entire subtree, not just geometry. */
function getBoundingBoxParameters(object) {
const clone = object.clone();
clone.quaternion.set(0, 0, 0, 1);
clone.updateMatrixWorld();
const box = new three.Box3().setFromObject(clone);
if (!isFinite(box.min.lengthSq())) return null;
const localPosition = box.translate(clone.position.negate()).getCenter(new three.Vector3());
return {
type: exports.ShapeType.BOX,
params: {
x: (box.max.x - box.min.x) / 2,
y: (box.max.y - box.min.y) / 2,
z: (box.max.z - box.min.z) / 2
},
offset: localPosition.lengthSq() ? new cannonEs.Vec3(localPosition.x, localPosition.y, localPosition.z) : undefined
};
}
/** Computes 3D convex hull as a CANNON.ConvexPolyhedron. */
function getConvexPolyhedronParameters(object) {
const geometry = getGeometry(object);
if (!geometry) return null; // Perturb.
const eps = 1e-4;
for (let i = 0; i < geometry.attributes.position.count; i++) {
geometry.attributes.position.setXYZ(i, geometry.attributes.position.getX(i) + (Math.random() - 0.5) * eps, geometry.attributes.position.getY(i) + (Math.random() - 0.5) * eps, geometry.attributes.position.getZ(i) + (Math.random() - 0.5) * eps);
} // Compute the 3D convex hull and collect convex hull vertices and faces.
const [positions, indices] = new ConvexHull().setFromObject(new three.Mesh(geometry)).toJSON();
return {
type: exports.ShapeType.HULL,
params: {
vertices: new Float32Array(positions),
faces: indices
}
};
}
function getCylinderParameters(geometry) {
const params = geometry.parameters;
return {
type: exports.ShapeType.CYLINDER,
params: {
radiusTop: params.radiusTop,
radiusBottom: params.radiusBottom,
height: params.height,
segments: params.radialSegments
},
orientation: new cannonEs.Quaternion().setFromEuler(three.MathUtils.degToRad(-90), 0, 0, 'XYZ').normalize()
};
}
function getBoundingCylinderParameters(object, options) {
const axes = ['x', 'y', 'z'];
const majorAxis = options.cylinderAxis || 'y';
const minorAxes = axes.splice(axes.indexOf(majorAxis), 1) && axes;
const box = new three.Box3().setFromObject(object);
if (!isFinite(box.min.lengthSq())) return null; // Compute cylinder dimensions.
const height = box.max[majorAxis] - box.min[majorAxis];
const radius = 0.5 * Math.max(getComponent(box.max, minorAxes[0]) - getComponent(box.min, minorAxes[0]), getComponent(box.max, minorAxes[1]) - getComponent(box.min, minorAxes[1]));
const eulerX = majorAxis === 'y' ? PI_2 : 0;
const eulerY = majorAxis === 'z' ? PI_2 : 0;
return {
type: exports.ShapeType.CYLINDER,
params: {
radiusTop: radius,
radiusBottom: radius,
height,
segments: 12
},
orientation: new cannonEs.Quaternion().setFromEuler(eulerX, eulerY, 0, 'XYZ').normalize()
};
}
function getPlaneParameters(geometry) {
geometry.computeBoundingBox();
const box = geometry.boundingBox;
return {
type: exports.ShapeType.BOX,
params: {
x: (box.max.x - box.min.x) / 2 || 0.1,
y: (box.max.y - box.min.y) / 2 || 0.1,
z: (box.max.z - box.min.z) / 2 || 0.1
}
};
}
function getSphereParameters(geometry) {
return {
type: exports.ShapeType.SPHERE,
params: {
radius: geometry.parameters.radius
}
};
}
function getBoundingSphereParameters(object, options) {
if (options.sphereRadius) {
return {
type: exports.ShapeType.SPHERE,
params: {
radius: options.sphereRadius
}
};
}
const geometry = getGeometry(object);
if (!geometry) return null;
geometry.computeBoundingSphere();
return {
type: exports.ShapeType.SPHERE,
params: {
radius: geometry.boundingSphere.radius
}
};
}
function getTrimeshParameters(geometry) {
const vertices = getVertices(geometry);
if (!vertices.length) return null;
const indices = new Uint32Array(vertices.length);
for (let i = 0; i < vertices.length; i++) {
indices[i] = i;
}
return {
type: exports.ShapeType.MESH,
params: {
vertices,
indices
}
};
}
exports.getShapeParameters = getShapeParameters;
exports.threeToCannon = threeToCannon;
})));
//# sourceMappingURL=three-to-cannon.umd.js.map