three-stdlib
Version:
stand-alone library of threejs examples
576 lines (571 loc) • 21.5 kB
JavaScript
import { BufferAttribute, Matrix4, Vector3, Matrix3, MeshPhongMaterial, UniformsUtils, ShaderLib, ShaderChunk } from "three";
import { version } from "../_polyfill/constants.js";
var GeometryCompressionUtils = {
/**
* Make the input mesh.geometry's normal attribute encoded and compressed by 3 different methods.
* Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the normal data.
*
* @param {THREE.Mesh} mesh
* @param {String} encodeMethod "DEFAULT" || "OCT1Byte" || "OCT2Byte" || "ANGLES"
*
*/
compressNormals: function(mesh, encodeMethod) {
if (!mesh.geometry) {
console.error("Mesh must contain geometry. ");
}
const normal = mesh.geometry.attributes.normal;
if (!normal) {
console.error("Geometry must contain normal attribute. ");
}
if (normal.isPacked)
return;
if (normal.itemSize != 3) {
console.error("normal.itemSize is not 3, which cannot be encoded. ");
}
const array = normal.array;
const count = normal.count;
let result;
if (encodeMethod == "DEFAULT") {
result = new Uint8Array(count * 3);
for (let idx = 0; idx < array.length; idx += 3) {
const encoded = this.EncodingFuncs.defaultEncode(array[idx], array[idx + 1], array[idx + 2], 1);
result[idx + 0] = encoded[0];
result[idx + 1] = encoded[1];
result[idx + 2] = encoded[2];
}
mesh.geometry.setAttribute("normal", new BufferAttribute(result, 3, true));
mesh.geometry.attributes.normal.bytes = result.length * 1;
} else if (encodeMethod == "OCT1Byte") {
result = new Int8Array(count * 2);
for (let idx = 0; idx < array.length; idx += 3) {
const encoded = this.EncodingFuncs.octEncodeBest(array[idx], array[idx + 1], array[idx + 2], 1);
result[idx / 3 * 2 + 0] = encoded[0];
result[idx / 3 * 2 + 1] = encoded[1];
}
mesh.geometry.setAttribute("normal", new BufferAttribute(result, 2, true));
mesh.geometry.attributes.normal.bytes = result.length * 1;
} else if (encodeMethod == "OCT2Byte") {
result = new Int16Array(count * 2);
for (let idx = 0; idx < array.length; idx += 3) {
const encoded = this.EncodingFuncs.octEncodeBest(array[idx], array[idx + 1], array[idx + 2], 2);
result[idx / 3 * 2 + 0] = encoded[0];
result[idx / 3 * 2 + 1] = encoded[1];
}
mesh.geometry.setAttribute("normal", new BufferAttribute(result, 2, true));
mesh.geometry.attributes.normal.bytes = result.length * 2;
} else if (encodeMethod == "ANGLES") {
result = new Uint16Array(count * 2);
for (let idx = 0; idx < array.length; idx += 3) {
const encoded = this.EncodingFuncs.anglesEncode(array[idx], array[idx + 1], array[idx + 2]);
result[idx / 3 * 2 + 0] = encoded[0];
result[idx / 3 * 2 + 1] = encoded[1];
}
mesh.geometry.setAttribute("normal", new BufferAttribute(result, 2, true));
mesh.geometry.attributes.normal.bytes = result.length * 2;
} else {
console.error("Unrecognized encoding method, should be `DEFAULT` or `ANGLES` or `OCT`. ");
}
mesh.geometry.attributes.normal.needsUpdate = true;
mesh.geometry.attributes.normal.isPacked = true;
mesh.geometry.attributes.normal.packingMethod = encodeMethod;
if (!(mesh.material instanceof PackedPhongMaterial)) {
mesh.material = new PackedPhongMaterial().copy(mesh.material);
}
if (encodeMethod == "ANGLES") {
mesh.material.defines.USE_PACKED_NORMAL = 0;
}
if (encodeMethod == "OCT1Byte") {
mesh.material.defines.USE_PACKED_NORMAL = 1;
}
if (encodeMethod == "OCT2Byte") {
mesh.material.defines.USE_PACKED_NORMAL = 1;
}
if (encodeMethod == "DEFAULT") {
mesh.material.defines.USE_PACKED_NORMAL = 2;
}
},
/**
* Make the input mesh.geometry's position attribute encoded and compressed.
* Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the position data.
*
* @param {THREE.Mesh} mesh
*
*/
compressPositions: function(mesh) {
if (!mesh.geometry) {
console.error("Mesh must contain geometry. ");
}
const position = mesh.geometry.attributes.position;
if (!position) {
console.error("Geometry must contain position attribute. ");
}
if (position.isPacked)
return;
if (position.itemSize != 3) {
console.error("position.itemSize is not 3, which cannot be packed. ");
}
const array = position.array;
const encodingBytes = 2;
const result = this.EncodingFuncs.quantizedEncode(array, encodingBytes);
const quantized = result.quantized;
const decodeMat = result.decodeMat;
if (mesh.geometry.boundingBox == null)
mesh.geometry.computeBoundingBox();
if (mesh.geometry.boundingSphere == null)
mesh.geometry.computeBoundingSphere();
mesh.geometry.setAttribute("position", new BufferAttribute(quantized, 3));
mesh.geometry.attributes.position.isPacked = true;
mesh.geometry.attributes.position.needsUpdate = true;
mesh.geometry.attributes.position.bytes = quantized.length * encodingBytes;
if (!(mesh.material instanceof PackedPhongMaterial)) {
mesh.material = new PackedPhongMaterial().copy(mesh.material);
}
mesh.material.defines.USE_PACKED_POSITION = 0;
mesh.material.uniforms.quantizeMatPos.value = decodeMat;
mesh.material.uniforms.quantizeMatPos.needsUpdate = true;
},
/**
* Make the input mesh.geometry's uv attribute encoded and compressed.
* Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the uv data.
*
* @param {THREE.Mesh} mesh
*
*/
compressUvs: function(mesh) {
if (!mesh.geometry) {
console.error("Mesh must contain geometry property. ");
}
const uvs = mesh.geometry.attributes.uv;
if (!uvs) {
console.error("Geometry must contain uv attribute. ");
}
if (uvs.isPacked)
return;
const range = { min: Infinity, max: -Infinity };
const array = uvs.array;
for (let i = 0; i < array.length; i++) {
range.min = Math.min(range.min, array[i]);
range.max = Math.max(range.max, array[i]);
}
let result;
if (range.min >= -1 && range.max <= 1) {
result = new Uint16Array(array.length);
for (let i = 0; i < array.length; i += 2) {
const encoded = this.EncodingFuncs.defaultEncode(array[i], array[i + 1], 0, 2);
result[i] = encoded[0];
result[i + 1] = encoded[1];
}
mesh.geometry.setAttribute("uv", new BufferAttribute(result, 2, true));
mesh.geometry.attributes.uv.isPacked = true;
mesh.geometry.attributes.uv.needsUpdate = true;
mesh.geometry.attributes.uv.bytes = result.length * 2;
if (!(mesh.material instanceof PackedPhongMaterial)) {
mesh.material = new PackedPhongMaterial().copy(mesh.material);
}
mesh.material.defines.USE_PACKED_UV = 0;
} else {
result = this.EncodingFuncs.quantizedEncodeUV(array, 2);
mesh.geometry.setAttribute("uv", new BufferAttribute(result.quantized, 2));
mesh.geometry.attributes.uv.isPacked = true;
mesh.geometry.attributes.uv.needsUpdate = true;
mesh.geometry.attributes.uv.bytes = result.quantized.length * 2;
if (!(mesh.material instanceof PackedPhongMaterial)) {
mesh.material = new PackedPhongMaterial().copy(mesh.material);
}
mesh.material.defines.USE_PACKED_UV = 1;
mesh.material.uniforms.quantizeMatUV.value = result.decodeMat;
mesh.material.uniforms.quantizeMatUV.needsUpdate = true;
}
},
EncodingFuncs: {
defaultEncode: function(x, y, z, bytes) {
if (bytes == 1) {
const tmpx = Math.round((x + 1) * 0.5 * 255);
const tmpy = Math.round((y + 1) * 0.5 * 255);
const tmpz = Math.round((z + 1) * 0.5 * 255);
return new Uint8Array([tmpx, tmpy, tmpz]);
} else if (bytes == 2) {
const tmpx = Math.round((x + 1) * 0.5 * 65535);
const tmpy = Math.round((y + 1) * 0.5 * 65535);
const tmpz = Math.round((z + 1) * 0.5 * 65535);
return new Uint16Array([tmpx, tmpy, tmpz]);
} else {
console.error("number of bytes must be 1 or 2");
}
},
defaultDecode: function(array, bytes) {
if (bytes == 1) {
return [array[0] / 255 * 2 - 1, array[1] / 255 * 2 - 1, array[2] / 255 * 2 - 1];
} else if (bytes == 2) {
return [array[0] / 65535 * 2 - 1, array[1] / 65535 * 2 - 1, array[2] / 65535 * 2 - 1];
} else {
console.error("number of bytes must be 1 or 2");
}
},
// for `Angles` encoding
anglesEncode: function(x, y, z) {
const normal0 = parseInt(0.5 * (1 + Math.atan2(y, x) / Math.PI) * 65535);
const normal1 = parseInt(0.5 * (1 + z) * 65535);
return new Uint16Array([normal0, normal1]);
},
// for `Octahedron` encoding
octEncodeBest: function(x, y, z, bytes) {
var oct, dec, best, currentCos, bestCos;
best = oct = octEncodeVec3(x, y, z, "floor", "floor");
dec = octDecodeVec2(oct);
bestCos = dot(x, y, z, dec);
oct = octEncodeVec3(x, y, z, "ceil", "floor");
dec = octDecodeVec2(oct);
currentCos = dot(x, y, z, dec);
if (currentCos > bestCos) {
best = oct;
bestCos = currentCos;
}
oct = octEncodeVec3(x, y, z, "floor", "ceil");
dec = octDecodeVec2(oct);
currentCos = dot(x, y, z, dec);
if (currentCos > bestCos) {
best = oct;
bestCos = currentCos;
}
oct = octEncodeVec3(x, y, z, "ceil", "ceil");
dec = octDecodeVec2(oct);
currentCos = dot(x, y, z, dec);
if (currentCos > bestCos) {
best = oct;
}
return best;
function octEncodeVec3(x0, y0, z0, xfunc, yfunc) {
var x2 = x0 / (Math.abs(x0) + Math.abs(y0) + Math.abs(z0));
var y2 = y0 / (Math.abs(x0) + Math.abs(y0) + Math.abs(z0));
if (z < 0) {
var tempx = (1 - Math.abs(y2)) * (x2 >= 0 ? 1 : -1);
var tempy = (1 - Math.abs(x2)) * (y2 >= 0 ? 1 : -1);
x2 = tempx;
y2 = tempy;
var diff = 1 - Math.abs(x2) - Math.abs(y2);
if (diff > 0) {
diff += 1e-3;
x2 += x2 > 0 ? diff / 2 : -diff / 2;
y2 += y2 > 0 ? diff / 2 : -diff / 2;
}
}
if (bytes == 1) {
return new Int8Array([Math[xfunc](x2 * 127.5 + (x2 < 0 ? 1 : 0)), Math[yfunc](y2 * 127.5 + (y2 < 0 ? 1 : 0))]);
}
if (bytes == 2) {
return new Int16Array([
Math[xfunc](x2 * 32767.5 + (x2 < 0 ? 1 : 0)),
Math[yfunc](y2 * 32767.5 + (y2 < 0 ? 1 : 0))
]);
}
}
function octDecodeVec2(oct2) {
var x2 = oct2[0];
var y2 = oct2[1];
if (bytes == 1) {
x2 /= x2 < 0 ? 127 : 128;
y2 /= y2 < 0 ? 127 : 128;
} else if (bytes == 2) {
x2 /= x2 < 0 ? 32767 : 32768;
y2 /= y2 < 0 ? 32767 : 32768;
}
var z2 = 1 - Math.abs(x2) - Math.abs(y2);
if (z2 < 0) {
var tmpx = x2;
x2 = (1 - Math.abs(y2)) * (x2 >= 0 ? 1 : -1);
y2 = (1 - Math.abs(tmpx)) * (y2 >= 0 ? 1 : -1);
}
var length = Math.sqrt(x2 * x2 + y2 * y2 + z2 * z2);
return [x2 / length, y2 / length, z2 / length];
}
function dot(x2, y2, z2, vec3) {
return x2 * vec3[0] + y2 * vec3[1] + z2 * vec3[2];
}
},
quantizedEncode: function(array, bytes) {
let quantized, segments;
if (bytes == 1) {
quantized = new Uint8Array(array.length);
segments = 255;
} else if (bytes == 2) {
quantized = new Uint16Array(array.length);
segments = 65535;
} else {
console.error("number of bytes error! ");
}
const decodeMat = new Matrix4();
const min = new Float32Array(3);
const max = new Float32Array(3);
min[0] = min[1] = min[2] = Number.MAX_VALUE;
max[0] = max[1] = max[2] = -Number.MAX_VALUE;
for (let i = 0; i < array.length; i += 3) {
min[0] = Math.min(min[0], array[i + 0]);
min[1] = Math.min(min[1], array[i + 1]);
min[2] = Math.min(min[2], array[i + 2]);
max[0] = Math.max(max[0], array[i + 0]);
max[1] = Math.max(max[1], array[i + 1]);
max[2] = Math.max(max[2], array[i + 2]);
}
decodeMat.scale(
new Vector3((max[0] - min[0]) / segments, (max[1] - min[1]) / segments, (max[2] - min[2]) / segments)
);
decodeMat.elements[12] = min[0];
decodeMat.elements[13] = min[1];
decodeMat.elements[14] = min[2];
decodeMat.transpose();
const multiplier = new Float32Array([
max[0] !== min[0] ? segments / (max[0] - min[0]) : 0,
max[1] !== min[1] ? segments / (max[1] - min[1]) : 0,
max[2] !== min[2] ? segments / (max[2] - min[2]) : 0
]);
for (let i = 0; i < array.length; i += 3) {
quantized[i + 0] = Math.floor((array[i + 0] - min[0]) * multiplier[0]);
quantized[i + 1] = Math.floor((array[i + 1] - min[1]) * multiplier[1]);
quantized[i + 2] = Math.floor((array[i + 2] - min[2]) * multiplier[2]);
}
return {
quantized,
decodeMat
};
},
quantizedEncodeUV: function(array, bytes) {
let quantized, segments;
if (bytes == 1) {
quantized = new Uint8Array(array.length);
segments = 255;
} else if (bytes == 2) {
quantized = new Uint16Array(array.length);
segments = 65535;
} else {
console.error("number of bytes error! ");
}
const decodeMat = new Matrix3();
const min = new Float32Array(2);
const max = new Float32Array(2);
min[0] = min[1] = Number.MAX_VALUE;
max[0] = max[1] = -Number.MAX_VALUE;
for (let i = 0; i < array.length; i += 2) {
min[0] = Math.min(min[0], array[i + 0]);
min[1] = Math.min(min[1], array[i + 1]);
max[0] = Math.max(max[0], array[i + 0]);
max[1] = Math.max(max[1], array[i + 1]);
}
decodeMat.scale((max[0] - min[0]) / segments, (max[1] - min[1]) / segments);
decodeMat.elements[6] = min[0];
decodeMat.elements[7] = min[1];
decodeMat.transpose();
const multiplier = new Float32Array([
max[0] !== min[0] ? segments / (max[0] - min[0]) : 0,
max[1] !== min[1] ? segments / (max[1] - min[1]) : 0
]);
for (let i = 0; i < array.length; i += 2) {
quantized[i + 0] = Math.floor((array[i + 0] - min[0]) * multiplier[0]);
quantized[i + 1] = Math.floor((array[i + 1] - min[1]) * multiplier[1]);
}
return {
quantized,
decodeMat
};
}
}
};
class PackedPhongMaterial extends MeshPhongMaterial {
constructor(parameters) {
super();
this.defines = {};
this.type = "PackedPhongMaterial";
this.uniforms = UniformsUtils.merge([
ShaderLib.phong.uniforms,
{
quantizeMatPos: { value: null },
quantizeMatUV: { value: null }
}
]);
this.vertexShader = [
"#define PHONG",
"varying vec3 vViewPosition;",
"#ifndef FLAT_SHADED",
"varying vec3 vNormal;",
"#endif",
ShaderChunk.common,
ShaderChunk.uv_pars_vertex,
ShaderChunk.uv2_pars_vertex,
ShaderChunk.displacementmap_pars_vertex,
ShaderChunk.envmap_pars_vertex,
ShaderChunk.color_pars_vertex,
ShaderChunk.fog_pars_vertex,
ShaderChunk.morphtarget_pars_vertex,
ShaderChunk.skinning_pars_vertex,
ShaderChunk.shadowmap_pars_vertex,
ShaderChunk.logdepthbuf_pars_vertex,
ShaderChunk.clipping_planes_pars_vertex,
`#ifdef USE_PACKED_NORMAL
#if USE_PACKED_NORMAL == 0
vec3 decodeNormal(vec3 packedNormal)
{
float x = packedNormal.x * 2.0 - 1.0;
float y = packedNormal.y * 2.0 - 1.0;
vec2 scth = vec2(sin(x * PI), cos(x * PI));
vec2 scphi = vec2(sqrt(1.0 - y * y), y);
return normalize( vec3(scth.y * scphi.x, scth.x * scphi.x, scphi.y) );
}
#endif
#if USE_PACKED_NORMAL == 1
vec3 decodeNormal(vec3 packedNormal)
{
vec3 v = vec3(packedNormal.xy, 1.0 - abs(packedNormal.x) - abs(packedNormal.y));
if (v.z < 0.0)
{
v.xy = (1.0 - abs(v.yx)) * vec2((v.x >= 0.0) ? +1.0 : -1.0, (v.y >= 0.0) ? +1.0 : -1.0);
}
return normalize(v);
}
#endif
#if USE_PACKED_NORMAL == 2
vec3 decodeNormal(vec3 packedNormal)
{
vec3 v = (packedNormal * 2.0) - 1.0;
return normalize(v);
}
#endif
#endif`,
`#ifdef USE_PACKED_POSITION
#if USE_PACKED_POSITION == 0
uniform mat4 quantizeMatPos;
#endif
#endif`,
`#ifdef USE_PACKED_UV
#if USE_PACKED_UV == 1
uniform mat3 quantizeMatUV;
#endif
#endif`,
`#ifdef USE_PACKED_UV
#if USE_PACKED_UV == 0
vec2 decodeUV(vec2 packedUV)
{
vec2 uv = (packedUV * 2.0) - 1.0;
return uv;
}
#endif
#if USE_PACKED_UV == 1
vec2 decodeUV(vec2 packedUV)
{
vec2 uv = ( vec3(packedUV, 1.0) * quantizeMatUV ).xy;
return uv;
}
#endif
#endif`,
"void main() {",
ShaderChunk.uv_vertex,
`#ifdef USE_UV
#ifdef USE_PACKED_UV
vUv = decodeUV(vUv);
#endif
#endif`,
ShaderChunk.uv2_vertex,
ShaderChunk.color_vertex,
ShaderChunk.beginnormal_vertex,
`#ifdef USE_PACKED_NORMAL
objectNormal = decodeNormal(objectNormal);
#endif
#ifdef USE_TANGENT
vec3 objectTangent = vec3( tangent.xyz );
#endif
`,
ShaderChunk.morphnormal_vertex,
ShaderChunk.skinbase_vertex,
ShaderChunk.skinnormal_vertex,
ShaderChunk.defaultnormal_vertex,
"#ifndef FLAT_SHADED",
" vNormal = normalize( transformedNormal );",
"#endif",
ShaderChunk.begin_vertex,
`#ifdef USE_PACKED_POSITION
#if USE_PACKED_POSITION == 0
transformed = ( vec4(transformed, 1.0) * quantizeMatPos ).xyz;
#endif
#endif`,
ShaderChunk.morphtarget_vertex,
ShaderChunk.skinning_vertex,
ShaderChunk.displacementmap_vertex,
ShaderChunk.project_vertex,
ShaderChunk.logdepthbuf_vertex,
ShaderChunk.clipping_planes_vertex,
"vViewPosition = - mvPosition.xyz;",
ShaderChunk.worldpos_vertex,
ShaderChunk.envmap_vertex,
ShaderChunk.shadowmap_vertex,
ShaderChunk.fog_vertex,
"}"
].join("\n");
this.fragmentShader = [
"#define PHONG",
"uniform vec3 diffuse;",
"uniform vec3 emissive;",
"uniform vec3 specular;",
"uniform float shininess;",
"uniform float opacity;",
ShaderChunk.common,
ShaderChunk.packing,
ShaderChunk.dithering_pars_fragment,
ShaderChunk.color_pars_fragment,
ShaderChunk.uv_pars_fragment,
ShaderChunk.uv2_pars_fragment,
ShaderChunk.map_pars_fragment,
ShaderChunk.alphamap_pars_fragment,
ShaderChunk.aomap_pars_fragment,
ShaderChunk.lightmap_pars_fragment,
ShaderChunk.emissivemap_pars_fragment,
ShaderChunk.envmap_common_pars_fragment,
ShaderChunk.envmap_pars_fragment,
ShaderChunk.cube_uv_reflection_fragment,
ShaderChunk.fog_pars_fragment,
ShaderChunk.bsdfs,
ShaderChunk.lights_pars_begin,
ShaderChunk.lights_phong_pars_fragment,
ShaderChunk.shadowmap_pars_fragment,
ShaderChunk.bumpmap_pars_fragment,
ShaderChunk.normalmap_pars_fragment,
ShaderChunk.specularmap_pars_fragment,
ShaderChunk.logdepthbuf_pars_fragment,
ShaderChunk.clipping_planes_pars_fragment,
"void main() {",
ShaderChunk.clipping_planes_fragment,
"vec4 diffuseColor = vec4( diffuse, opacity );",
"ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );",
"vec3 totalEmissiveRadiance = emissive;",
ShaderChunk.logdepthbuf_fragment,
ShaderChunk.map_fragment,
ShaderChunk.color_fragment,
ShaderChunk.alphamap_fragment,
ShaderChunk.alphatest_fragment,
ShaderChunk.specularmap_fragment,
ShaderChunk.normal_fragment_begin,
ShaderChunk.normal_fragment_maps,
ShaderChunk.emissivemap_fragment,
// accumulation
ShaderChunk.lights_phong_fragment,
ShaderChunk.lights_fragment_begin,
ShaderChunk.lights_fragment_maps,
ShaderChunk.lights_fragment_end,
// modulation
ShaderChunk.aomap_fragment,
"vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;",
ShaderChunk.envmap_fragment,
"gl_FragColor = vec4( outgoingLight, diffuseColor.a );",
ShaderChunk.tonemapping_fragment,
version >= 154 ? ShaderChunk.colorspace_fragment : ShaderChunk.encodings_fragment,
ShaderChunk.fog_fragment,
ShaderChunk.premultiplied_alpha_fragment,
ShaderChunk.dithering_fragment,
"}"
].join("\n");
this.setValues(parameters);
}
}
export {
GeometryCompressionUtils,
PackedPhongMaterial
};
//# sourceMappingURL=GeometryCompressionUtils.js.map