three-stdlib
Version:
stand-alone library of threejs examples
297 lines (296 loc) • 11.9 kB
JavaScript
"use strict";
Object.defineProperty(exports, Symbol.toStringTag, { value: "Module" });
const THREE = require("three");
const ConvexGeometry = require("../geometries/ConvexGeometry.cjs");
const _v1 = /* @__PURE__ */ new THREE.Vector3();
const ConvexObjectBreaker = /* @__PURE__ */ (() => {
class ConvexObjectBreaker2 {
constructor(minSizeForBreak = 1.4, smallDelta = 1e-4) {
this.minSizeForBreak = minSizeForBreak;
this.smallDelta = smallDelta;
this.tempLine1 = new THREE.Line3();
this.tempPlane1 = new THREE.Plane();
this.tempPlane2 = new THREE.Plane();
this.tempPlane_Cut = new THREE.Plane();
this.tempCM1 = new THREE.Vector3();
this.tempCM2 = new THREE.Vector3();
this.tempVector3 = new THREE.Vector3();
this.tempVector3_2 = new THREE.Vector3();
this.tempVector3_3 = new THREE.Vector3();
this.tempVector3_P0 = new THREE.Vector3();
this.tempVector3_P1 = new THREE.Vector3();
this.tempVector3_P2 = new THREE.Vector3();
this.tempVector3_N0 = new THREE.Vector3();
this.tempVector3_N1 = new THREE.Vector3();
this.tempVector3_AB = new THREE.Vector3();
this.tempVector3_CB = new THREE.Vector3();
this.tempResultObjects = { object1: null, object2: null };
this.segments = [];
const n = 30 * 30;
for (let i = 0; i < n; i++)
this.segments[i] = false;
}
prepareBreakableObject(object, mass, velocity, angularVelocity, breakable) {
const userData = object.userData;
userData.mass = mass;
userData.velocity = velocity.clone();
userData.angularVelocity = angularVelocity.clone();
userData.breakable = breakable;
}
/*
* @param {int} maxRadialIterations Iterations for radial cuts.
* @param {int} maxRandomIterations Max random iterations for not-radial cuts
*
* Returns the array of pieces
*/
subdivideByImpact(object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations) {
const debris = [];
const tempPlane1 = this.tempPlane1;
const tempPlane2 = this.tempPlane2;
this.tempVector3.addVectors(pointOfImpact, normal);
tempPlane1.setFromCoplanarPoints(pointOfImpact, object.position, this.tempVector3);
const maxTotalIterations = maxRandomIterations + maxRadialIterations;
const scope = this;
function subdivideRadial(subObject, startAngle, endAngle, numIterations) {
if (Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations) {
debris.push(subObject);
return;
}
let angle = Math.PI;
if (numIterations === 0) {
tempPlane2.normal.copy(tempPlane1.normal);
tempPlane2.constant = tempPlane1.constant;
} else {
if (numIterations <= maxRadialIterations) {
angle = (endAngle - startAngle) * (0.2 + 0.6 * Math.random()) + startAngle;
scope.tempVector3_2.copy(object.position).sub(pointOfImpact).applyAxisAngle(normal, angle).add(pointOfImpact);
tempPlane2.setFromCoplanarPoints(pointOfImpact, scope.tempVector3, scope.tempVector3_2);
} else {
angle = (0.5 * (numIterations & 1) + 0.2 * (2 - Math.random())) * Math.PI;
scope.tempVector3_2.copy(pointOfImpact).sub(subObject.position).applyAxisAngle(normal, angle).add(subObject.position);
scope.tempVector3_3.copy(normal).add(subObject.position);
tempPlane2.setFromCoplanarPoints(subObject.position, scope.tempVector3_3, scope.tempVector3_2);
}
}
scope.cutByPlane(subObject, tempPlane2, scope.tempResultObjects);
const obj1 = scope.tempResultObjects.object1;
const obj2 = scope.tempResultObjects.object2;
if (obj1) {
subdivideRadial(obj1, startAngle, angle, numIterations + 1);
}
if (obj2) {
subdivideRadial(obj2, angle, endAngle, numIterations + 1);
}
}
subdivideRadial(object, 0, 2 * Math.PI, 0);
return debris;
}
cutByPlane(object, plane, output) {
const geometry = object.geometry;
const coords = geometry.attributes.position.array;
const normals = geometry.attributes.normal.array;
const numPoints = coords.length / 3;
let numFaces = numPoints / 3;
let indices = geometry.getIndex();
if (indices) {
indices = indices.array;
numFaces = indices.length / 3;
}
function getVertexIndex(faceIdx, vert) {
const idx = faceIdx * 3 + vert;
return indices ? indices[idx] : idx;
}
const points1 = [];
const points2 = [];
const delta = this.smallDelta;
const numPointPairs = numPoints * numPoints;
for (let i = 0; i < numPointPairs; i++)
this.segments[i] = false;
const p0 = this.tempVector3_P0;
const p1 = this.tempVector3_P1;
const n0 = this.tempVector3_N0;
const n1 = this.tempVector3_N1;
for (let i = 0; i < numFaces - 1; i++) {
const a1 = getVertexIndex(i, 0);
const b1 = getVertexIndex(i, 1);
const c1 = getVertexIndex(i, 2);
n0.set(normals[a1], normals[a1] + 1, normals[a1] + 2);
for (let j = i + 1; j < numFaces; j++) {
const a2 = getVertexIndex(j, 0);
const b2 = getVertexIndex(j, 1);
const c2 = getVertexIndex(j, 2);
n1.set(normals[a2], normals[a2] + 1, normals[a2] + 2);
const coplanar = 1 - n0.dot(n1) < delta;
if (coplanar) {
if (a1 === a2 || a1 === b2 || a1 === c2) {
if (b1 === a2 || b1 === b2 || b1 === c2) {
this.segments[a1 * numPoints + b1] = true;
this.segments[b1 * numPoints + a1] = true;
} else {
this.segments[c1 * numPoints + a1] = true;
this.segments[a1 * numPoints + c1] = true;
}
} else if (b1 === a2 || b1 === b2 || b1 === c2) {
this.segments[c1 * numPoints + b1] = true;
this.segments[b1 * numPoints + c1] = true;
}
}
}
}
const localPlane = this.tempPlane_Cut;
object.updateMatrix();
ConvexObjectBreaker2.transformPlaneToLocalSpace(plane, object.matrix, localPlane);
for (let i = 0; i < numFaces; i++) {
const va = getVertexIndex(i, 0);
const vb = getVertexIndex(i, 1);
const vc = getVertexIndex(i, 2);
for (let segment = 0; segment < 3; segment++) {
const i0 = segment === 0 ? va : segment === 1 ? vb : vc;
const i1 = segment === 0 ? vb : segment === 1 ? vc : va;
const segmentState = this.segments[i0 * numPoints + i1];
if (segmentState)
continue;
this.segments[i0 * numPoints + i1] = true;
this.segments[i1 * numPoints + i0] = true;
p0.set(coords[3 * i0], coords[3 * i0 + 1], coords[3 * i0 + 2]);
p1.set(coords[3 * i1], coords[3 * i1 + 1], coords[3 * i1 + 2]);
let mark0 = 0;
let d = localPlane.distanceToPoint(p0);
if (d > delta) {
mark0 = 2;
points2.push(p0.clone());
} else if (d < -delta) {
mark0 = 1;
points1.push(p0.clone());
} else {
mark0 = 3;
points1.push(p0.clone());
points2.push(p0.clone());
}
let mark1 = 0;
d = localPlane.distanceToPoint(p1);
if (d > delta) {
mark1 = 2;
points2.push(p1.clone());
} else if (d < -delta) {
mark1 = 1;
points1.push(p1.clone());
} else {
mark1 = 3;
points1.push(p1.clone());
points2.push(p1.clone());
}
if (mark0 === 1 && mark1 === 2 || mark0 === 2 && mark1 === 1) {
this.tempLine1.start.copy(p0);
this.tempLine1.end.copy(p1);
let intersection = new THREE.Vector3();
intersection = localPlane.intersectLine(this.tempLine1, intersection);
if (intersection === null) {
console.error("Internal error: segment does not intersect plane.");
output.segmentedObject1 = null;
output.segmentedObject2 = null;
return 0;
}
points1.push(intersection);
points2.push(intersection.clone());
}
}
}
const newMass = object.userData.mass * 0.5;
this.tempCM1.set(0, 0, 0);
let radius1 = 0;
const numPoints1 = points1.length;
if (numPoints1 > 0) {
for (let i = 0; i < numPoints1; i++)
this.tempCM1.add(points1[i]);
this.tempCM1.divideScalar(numPoints1);
for (let i = 0; i < numPoints1; i++) {
const p = points1[i];
p.sub(this.tempCM1);
radius1 = Math.max(radius1, p.x, p.y, p.z);
}
this.tempCM1.add(object.position);
}
this.tempCM2.set(0, 0, 0);
let radius2 = 0;
const numPoints2 = points2.length;
if (numPoints2 > 0) {
for (let i = 0; i < numPoints2; i++)
this.tempCM2.add(points2[i]);
this.tempCM2.divideScalar(numPoints2);
for (let i = 0; i < numPoints2; i++) {
const p = points2[i];
p.sub(this.tempCM2);
radius2 = Math.max(radius2, p.x, p.y, p.z);
}
this.tempCM2.add(object.position);
}
let object1 = null;
let object2 = null;
let numObjects = 0;
if (numPoints1 > 4) {
object1 = new THREE.Mesh(new ConvexGeometry.ConvexGeometry(points1), object.material);
object1.position.copy(this.tempCM1);
object1.quaternion.copy(object.quaternion);
this.prepareBreakableObject(
object1,
newMass,
object.userData.velocity,
object.userData.angularVelocity,
2 * radius1 > this.minSizeForBreak
);
numObjects++;
}
if (numPoints2 > 4) {
object2 = new THREE.Mesh(new ConvexGeometry.ConvexGeometry(points2), object.material);
object2.position.copy(this.tempCM2);
object2.quaternion.copy(object.quaternion);
this.prepareBreakableObject(
object2,
newMass,
object.userData.velocity,
object.userData.angularVelocity,
2 * radius2 > this.minSizeForBreak
);
numObjects++;
}
output.object1 = object1;
output.object2 = object2;
return numObjects;
}
static transformFreeVector(v, m) {
const x = v.x, y = v.y, z = v.z;
const e = m.elements;
v.x = e[0] * x + e[4] * y + e[8] * z;
v.y = e[1] * x + e[5] * y + e[9] * z;
v.z = e[2] * x + e[6] * y + e[10] * z;
return v;
}
static transformFreeVectorInverse(v, m) {
const x = v.x, y = v.y, z = v.z;
const e = m.elements;
v.x = e[0] * x + e[1] * y + e[2] * z;
v.y = e[4] * x + e[5] * y + e[6] * z;
v.z = e[8] * x + e[9] * y + e[10] * z;
return v;
}
static transformTiedVectorInverse(v, m) {
const x = v.x, y = v.y, z = v.z;
const e = m.elements;
v.x = e[0] * x + e[1] * y + e[2] * z - e[12];
v.y = e[4] * x + e[5] * y + e[6] * z - e[13];
v.z = e[8] * x + e[9] * y + e[10] * z - e[14];
return v;
}
static transformPlaneToLocalSpace(plane, m, resultPlane) {
resultPlane.normal.copy(plane.normal);
resultPlane.constant = plane.constant;
const referencePoint = ConvexObjectBreaker2.transformTiedVectorInverse(plane.coplanarPoint(_v1), m);
ConvexObjectBreaker2.transformFreeVectorInverse(resultPlane.normal, m);
resultPlane.constant = -referencePoint.dot(resultPlane.normal);
}
}
return ConvexObjectBreaker2;
})();
exports.ConvexObjectBreaker = ConvexObjectBreaker;
//# sourceMappingURL=ConvexObjectBreaker.cjs.map