three-stdlib
Version:
stand-alone library of threejs examples
442 lines (441 loc) • 11.9 kB
JavaScript
"use strict";
var __defProp = Object.defineProperty;
var __defNormalProp = (obj, key, value) => key in obj ? __defProp(obj, key, { enumerable: true, configurable: true, writable: true, value }) : obj[key] = value;
var __publicField = (obj, key, value) => {
__defNormalProp(obj, typeof key !== "symbol" ? key + "" : key, value);
return value;
};
Object.defineProperty(exports, Symbol.toStringTag, { value: "Module" });
class SimplexNoise {
/**
* You can pass in a random number generator object if you like.
* It is assumed to have a random() method.
*/
constructor(r = Math) {
__publicField(this, "grad3", [
[1, 1, 0],
[-1, 1, 0],
[1, -1, 0],
[-1, -1, 0],
[1, 0, 1],
[-1, 0, 1],
[1, 0, -1],
[-1, 0, -1],
[0, 1, 1],
[0, -1, 1],
[0, 1, -1],
[0, -1, -1]
]);
__publicField(this, "grad4", [
[0, 1, 1, 1],
[0, 1, 1, -1],
[0, 1, -1, 1],
[0, 1, -1, -1],
[0, -1, 1, 1],
[0, -1, 1, -1],
[0, -1, -1, 1],
[0, -1, -1, -1],
[1, 0, 1, 1],
[1, 0, 1, -1],
[1, 0, -1, 1],
[1, 0, -1, -1],
[-1, 0, 1, 1],
[-1, 0, 1, -1],
[-1, 0, -1, 1],
[-1, 0, -1, -1],
[1, 1, 0, 1],
[1, 1, 0, -1],
[1, -1, 0, 1],
[1, -1, 0, -1],
[-1, 1, 0, 1],
[-1, 1, 0, -1],
[-1, -1, 0, 1],
[-1, -1, 0, -1],
[1, 1, 1, 0],
[1, 1, -1, 0],
[1, -1, 1, 0],
[1, -1, -1, 0],
[-1, 1, 1, 0],
[-1, 1, -1, 0],
[-1, -1, 1, 0],
[-1, -1, -1, 0]
]);
__publicField(this, "p", []);
// To remove the need for index wrapping, double the permutation table length
__publicField(this, "perm", []);
// A lookup table to traverse the simplex around a given point in 4D.
// Details can be found where this table is used, in the 4D noise method.
__publicField(this, "simplex", [
[0, 1, 2, 3],
[0, 1, 3, 2],
[0, 0, 0, 0],
[0, 2, 3, 1],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[1, 2, 3, 0],
[0, 2, 1, 3],
[0, 0, 0, 0],
[0, 3, 1, 2],
[0, 3, 2, 1],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[1, 3, 2, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[1, 2, 0, 3],
[0, 0, 0, 0],
[1, 3, 0, 2],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 3, 0, 1],
[2, 3, 1, 0],
[1, 0, 2, 3],
[1, 0, 3, 2],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 0, 3, 1],
[0, 0, 0, 0],
[2, 1, 3, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 0, 1, 3],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[3, 0, 1, 2],
[3, 0, 2, 1],
[0, 0, 0, 0],
[3, 1, 2, 0],
[2, 1, 0, 3],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[3, 1, 0, 2],
[0, 0, 0, 0],
[3, 2, 0, 1],
[3, 2, 1, 0]
]);
__publicField(this, "dot", (g, x, y) => {
return g[0] * x + g[1] * y;
});
__publicField(this, "dot3", (g, x, y, z) => {
return g[0] * x + g[1] * y + g[2] * z;
});
__publicField(this, "dot4", (g, x, y, z, w) => {
return g[0] * x + g[1] * y + g[2] * z + g[3] * w;
});
__publicField(this, "noise", (xin, yin) => {
let n0;
let n1;
let n2;
const F2 = 0.5 * (Math.sqrt(3) - 1);
const s = (xin + yin) * F2;
const i = Math.floor(xin + s);
const j = Math.floor(yin + s);
const G2 = (3 - Math.sqrt(3)) / 6;
const t = (i + j) * G2;
const X0 = i - t;
const Y0 = j - t;
const x0 = xin - X0;
const y0 = yin - Y0;
let i1 = 0;
let j1 = 1;
if (x0 > y0) {
i1 = 1;
j1 = 0;
}
const x1 = x0 - i1 + G2;
const y1 = y0 - j1 + G2;
const x2 = x0 - 1 + 2 * G2;
const y2 = y0 - 1 + 2 * G2;
const ii = i & 255;
const jj = j & 255;
const gi0 = this.perm[ii + this.perm[jj]] % 12;
const gi1 = this.perm[ii + i1 + this.perm[jj + j1]] % 12;
const gi2 = this.perm[ii + 1 + this.perm[jj + 1]] % 12;
let t0 = 0.5 - x0 * x0 - y0 * y0;
if (t0 < 0) {
n0 = 0;
} else {
t0 *= t0;
n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0);
}
let t1 = 0.5 - x1 * x1 - y1 * y1;
if (t1 < 0) {
n1 = 0;
} else {
t1 *= t1;
n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1);
}
let t2 = 0.5 - x2 * x2 - y2 * y2;
if (t2 < 0) {
n2 = 0;
} else {
t2 *= t2;
n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2);
}
return 70 * (n0 + n1 + n2);
});
// 3D simplex noise
__publicField(this, "noise3d", (xin, yin, zin) => {
let n0;
let n1;
let n2;
let n3;
const F3 = 1 / 3;
const s = (xin + yin + zin) * F3;
const i = Math.floor(xin + s);
const j = Math.floor(yin + s);
const k = Math.floor(zin + s);
const G3 = 1 / 6;
const t = (i + j + k) * G3;
const X0 = i - t;
const Y0 = j - t;
const Z0 = k - t;
const x0 = xin - X0;
const y0 = yin - Y0;
const z0 = zin - Z0;
let i1;
let j1;
let k1;
let i2;
let j2;
let k2;
if (x0 >= y0) {
if (y0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} else if (x0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
} else {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
}
} else {
if (y0 < z0) {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 0;
j2 = 1;
k2 = 1;
} else if (x0 < z0) {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 0;
j2 = 1;
k2 = 1;
} else {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
}
}
const x1 = x0 - i1 + G3;
const y1 = y0 - j1 + G3;
const z1 = z0 - k1 + G3;
const x2 = x0 - i2 + 2 * G3;
const y2 = y0 - j2 + 2 * G3;
const z2 = z0 - k2 + 2 * G3;
const x3 = x0 - 1 + 3 * G3;
const y3 = y0 - 1 + 3 * G3;
const z3 = z0 - 1 + 3 * G3;
const ii = i & 255;
const jj = j & 255;
const kk = k & 255;
const gi0 = this.perm[ii + this.perm[jj + this.perm[kk]]] % 12;
const gi1 = this.perm[ii + i1 + this.perm[jj + j1 + this.perm[kk + k1]]] % 12;
const gi2 = this.perm[ii + i2 + this.perm[jj + j2 + this.perm[kk + k2]]] % 12;
const gi3 = this.perm[ii + 1 + this.perm[jj + 1 + this.perm[kk + 1]]] % 12;
let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
if (t0 < 0) {
n0 = 0;
} else {
t0 *= t0;
n0 = t0 * t0 * this.dot3(this.grad3[gi0], x0, y0, z0);
}
let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
if (t1 < 0) {
n1 = 0;
} else {
t1 *= t1;
n1 = t1 * t1 * this.dot3(this.grad3[gi1], x1, y1, z1);
}
let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
if (t2 < 0) {
n2 = 0;
} else {
t2 *= t2;
n2 = t2 * t2 * this.dot3(this.grad3[gi2], x2, y2, z2);
}
let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
if (t3 < 0) {
n3 = 0;
} else {
t3 *= t3;
n3 = t3 * t3 * this.dot3(this.grad3[gi3], x3, y3, z3);
}
return 32 * (n0 + n1 + n2 + n3);
});
// 4D simplex noise
__publicField(this, "noise4d", (x, y, z, w) => {
const grad4 = this.grad4;
const simplex = this.simplex;
const perm = this.perm;
const F4 = (Math.sqrt(5) - 1) / 4;
const G4 = (5 - Math.sqrt(5)) / 20;
let n0;
let n1;
let n2;
let n3;
let n4;
const s = (x + y + z + w) * F4;
const i = Math.floor(x + s);
const j = Math.floor(y + s);
const k = Math.floor(z + s);
const l = Math.floor(w + s);
const t = (i + j + k + l) * G4;
const X0 = i - t;
const Y0 = j - t;
const Z0 = k - t;
const W0 = l - t;
const x0 = x - X0;
const y0 = y - Y0;
const z0 = z - Z0;
const w0 = w - W0;
const c1 = x0 > y0 ? 32 : 0;
const c2 = x0 > z0 ? 16 : 0;
const c3 = y0 > z0 ? 8 : 0;
const c4 = x0 > w0 ? 4 : 0;
const c5 = y0 > w0 ? 2 : 0;
const c6 = z0 > w0 ? 1 : 0;
const c = c1 + c2 + c3 + c4 + c5 + c6;
let i1;
let j1;
let k1;
let l1;
let i2;
let j2;
let k2;
let l2;
let i3;
let j3;
let k3;
let l3;
i1 = simplex[c][0] >= 3 ? 1 : 0;
j1 = simplex[c][1] >= 3 ? 1 : 0;
k1 = simplex[c][2] >= 3 ? 1 : 0;
l1 = simplex[c][3] >= 3 ? 1 : 0;
i2 = simplex[c][0] >= 2 ? 1 : 0;
j2 = simplex[c][1] >= 2 ? 1 : 0;
k2 = simplex[c][2] >= 2 ? 1 : 0;
l2 = simplex[c][3] >= 2 ? 1 : 0;
i3 = simplex[c][0] >= 1 ? 1 : 0;
j3 = simplex[c][1] >= 1 ? 1 : 0;
k3 = simplex[c][2] >= 1 ? 1 : 0;
l3 = simplex[c][3] >= 1 ? 1 : 0;
const x1 = x0 - i1 + G4;
const y1 = y0 - j1 + G4;
const z1 = z0 - k1 + G4;
const w1 = w0 - l1 + G4;
const x2 = x0 - i2 + 2 * G4;
const y2 = y0 - j2 + 2 * G4;
const z2 = z0 - k2 + 2 * G4;
const w2 = w0 - l2 + 2 * G4;
const x3 = x0 - i3 + 3 * G4;
const y3 = y0 - j3 + 3 * G4;
const z3 = z0 - k3 + 3 * G4;
const w3 = w0 - l3 + 3 * G4;
const x4 = x0 - 1 + 4 * G4;
const y4 = y0 - 1 + 4 * G4;
const z4 = z0 - 1 + 4 * G4;
const w4 = w0 - 1 + 4 * G4;
const ii = i & 255;
const jj = j & 255;
const kk = k & 255;
const ll = l & 255;
const gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32;
const gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32;
const gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32;
const gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32;
const gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32;
let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
if (t0 < 0) {
n0 = 0;
} else {
t0 *= t0;
n0 = t0 * t0 * this.dot4(grad4[gi0], x0, y0, z0, w0);
}
let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
if (t1 < 0) {
n1 = 0;
} else {
t1 *= t1;
n1 = t1 * t1 * this.dot4(grad4[gi1], x1, y1, z1, w1);
}
let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
if (t2 < 0) {
n2 = 0;
} else {
t2 *= t2;
n2 = t2 * t2 * this.dot4(grad4[gi2], x2, y2, z2, w2);
}
let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
if (t3 < 0) {
n3 = 0;
} else {
t3 *= t3;
n3 = t3 * t3 * this.dot4(grad4[gi3], x3, y3, z3, w3);
}
let t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
if (t4 < 0) {
n4 = 0;
} else {
t4 *= t4;
n4 = t4 * t4 * this.dot4(grad4[gi4], x4, y4, z4, w4);
}
return 27 * (n0 + n1 + n2 + n3 + n4);
});
for (let i = 0; i < 256; i++) {
this.p[i] = Math.floor(r.random() * 256);
}
for (let i = 0; i < 512; i++) {
this.perm[i] = this.p[i & 255];
}
}
}
exports.SimplexNoise = SimplexNoise;
//# sourceMappingURL=SimplexNoise.cjs.map