three-stdlib
Version:
stand-alone library of threejs examples
649 lines (648 loc) • 22.5 kB
JavaScript
"use strict";
Object.defineProperty(exports, Symbol.toStringTag, { value: "Module" });
const THREE = require("three");
const IFFParser = require("./lwo/IFFParser.cjs");
const uv1 = require("../_polyfill/uv1.cjs");
let _lwoTree;
class LWOLoader extends THREE.Loader {
constructor(manager, parameters = {}) {
super(manager);
this.resourcePath = parameters.resourcePath !== void 0 ? parameters.resourcePath : "";
}
load(url, onLoad, onProgress, onError) {
const scope = this;
const path = scope.path === "" ? extractParentUrl(url, "Objects") : scope.path;
const modelName = url.split(path).pop().split(".")[0];
const loader = new THREE.FileLoader(this.manager);
loader.setPath(scope.path);
loader.setResponseType("arraybuffer");
loader.load(
url,
function(buffer) {
try {
onLoad(scope.parse(buffer, path, modelName));
} catch (e) {
if (onError) {
onError(e);
} else {
console.error(e);
}
scope.manager.itemError(url);
}
},
onProgress,
onError
);
}
parse(iffBuffer, path, modelName) {
_lwoTree = new IFFParser.IFFParser().parse(iffBuffer);
const textureLoader = new THREE.TextureLoader(this.manager).setPath(this.resourcePath || path).setCrossOrigin(this.crossOrigin);
return new LWOTreeParser(textureLoader).parse(modelName);
}
}
class LWOTreeParser {
constructor(textureLoader) {
this.textureLoader = textureLoader;
}
parse(modelName) {
this.materials = new MaterialParser(this.textureLoader).parse();
this.defaultLayerName = modelName;
this.meshes = this.parseLayers();
return {
materials: this.materials,
meshes: this.meshes
};
}
parseLayers() {
const meshes = [];
const finalMeshes = [];
const geometryParser = new GeometryParser();
const scope = this;
_lwoTree.layers.forEach(function(layer) {
const geometry = geometryParser.parse(layer.geometry, layer);
const mesh = scope.parseMesh(geometry, layer);
meshes[layer.number] = mesh;
if (layer.parent === -1)
finalMeshes.push(mesh);
else
meshes[layer.parent].add(mesh);
});
this.applyPivots(finalMeshes);
return finalMeshes;
}
parseMesh(geometry, layer) {
let mesh;
const materials = this.getMaterials(geometry.userData.matNames, layer.geometry.type);
if (uv1.UV1 === "uv2")
this.duplicateUVs(geometry, materials);
if (layer.geometry.type === "points")
mesh = new THREE.Points(geometry, materials);
else if (layer.geometry.type === "lines")
mesh = new THREE.LineSegments(geometry, materials);
else
mesh = new THREE.Mesh(geometry, materials);
if (layer.name)
mesh.name = layer.name;
else
mesh.name = this.defaultLayerName + "_layer_" + layer.number;
mesh.userData.pivot = layer.pivot;
return mesh;
}
// TODO: may need to be reversed in z to convert LWO to three.js coordinates
applyPivots(meshes) {
meshes.forEach(function(mesh) {
mesh.traverse(function(child) {
const pivot = child.userData.pivot;
child.position.x += pivot[0];
child.position.y += pivot[1];
child.position.z += pivot[2];
if (child.parent) {
const parentPivot = child.parent.userData.pivot;
child.position.x -= parentPivot[0];
child.position.y -= parentPivot[1];
child.position.z -= parentPivot[2];
}
});
});
}
getMaterials(namesArray, type) {
const materials = [];
const scope = this;
namesArray.forEach(function(name, i) {
materials[i] = scope.getMaterialByName(name);
});
if (type === "points" || type === "lines") {
materials.forEach(function(mat, i) {
const spec = {
color: mat.color
};
if (type === "points") {
spec.size = 0.1;
spec.map = mat.map;
spec.morphTargets = mat.morphTargets;
materials[i] = new THREE.PointsMaterial(spec);
} else if (type === "lines") {
materials[i] = new THREE.LineBasicMaterial(spec);
}
});
}
const filtered = materials.filter(Boolean);
if (filtered.length === 1)
return filtered[0];
return materials;
}
getMaterialByName(name) {
return this.materials.filter(function(m) {
return m.name === name;
})[0];
}
// If the material has an aoMap, duplicate UVs
duplicateUVs(geometry, materials) {
let duplicateUVs = false;
if (!Array.isArray(materials)) {
if (materials.aoMap)
duplicateUVs = true;
} else {
materials.forEach(function(material) {
if (material.aoMap)
duplicateUVs = true;
});
}
if (!duplicateUVs)
return;
geometry.setAttribute("uv2", new THREE.BufferAttribute(geometry.attributes.uv.array, 2));
}
}
class MaterialParser {
constructor(textureLoader) {
this.textureLoader = textureLoader;
}
parse() {
const materials = [];
this.textures = {};
for (const name in _lwoTree.materials) {
if (_lwoTree.format === "LWO3") {
materials.push(this.parseMaterial(_lwoTree.materials[name], name, _lwoTree.textures));
} else if (_lwoTree.format === "LWO2") {
materials.push(this.parseMaterialLwo2(_lwoTree.materials[name], name, _lwoTree.textures));
}
}
return materials;
}
parseMaterial(materialData, name, textures) {
let params = {
name,
side: this.getSide(materialData.attributes),
flatShading: this.getSmooth(materialData.attributes)
};
const connections = this.parseConnections(materialData.connections, materialData.nodes);
const maps = this.parseTextureNodes(connections.maps);
this.parseAttributeImageMaps(connections.attributes, textures, maps, materialData.maps);
const attributes = this.parseAttributes(connections.attributes, maps);
this.parseEnvMap(connections, maps, attributes);
params = Object.assign(maps, params);
params = Object.assign(params, attributes);
const materialType = this.getMaterialType(connections.attributes);
return new materialType(params);
}
parseMaterialLwo2(materialData, name) {
let params = {
name,
side: this.getSide(materialData.attributes),
flatShading: this.getSmooth(materialData.attributes)
};
const attributes = this.parseAttributes(materialData.attributes, {});
params = Object.assign(params, attributes);
return new THREE.MeshPhongMaterial(params);
}
// Note: converting from left to right handed coords by switching x -> -x in vertices, and
// then switching mat FrontSide -> BackSide
// NB: this means that FrontSide and BackSide have been switched!
getSide(attributes) {
if (!attributes.side)
return THREE.BackSide;
switch (attributes.side) {
case 0:
case 1:
return THREE.BackSide;
case 2:
return THREE.FrontSide;
case 3:
return THREE.DoubleSide;
}
}
getSmooth(attributes) {
if (!attributes.smooth)
return true;
return !attributes.smooth;
}
parseConnections(connections, nodes) {
const materialConnections = {
maps: {}
};
const inputName = connections.inputName;
const inputNodeName = connections.inputNodeName;
const nodeName = connections.nodeName;
const scope = this;
inputName.forEach(function(name, index) {
if (name === "Material") {
const matNode = scope.getNodeByRefName(inputNodeName[index], nodes);
materialConnections.attributes = matNode.attributes;
materialConnections.envMap = matNode.fileName;
materialConnections.name = inputNodeName[index];
}
});
nodeName.forEach(function(name, index) {
if (name === materialConnections.name) {
materialConnections.maps[inputName[index]] = scope.getNodeByRefName(inputNodeName[index], nodes);
}
});
return materialConnections;
}
getNodeByRefName(refName, nodes) {
for (const name in nodes) {
if (nodes[name].refName === refName)
return nodes[name];
}
}
parseTextureNodes(textureNodes) {
const maps = {};
for (const name in textureNodes) {
const node = textureNodes[name];
const path = node.fileName;
if (!path)
return;
const texture = this.loadTexture(path);
if (node.widthWrappingMode !== void 0)
texture.wrapS = this.getWrappingType(node.widthWrappingMode);
if (node.heightWrappingMode !== void 0)
texture.wrapT = this.getWrappingType(node.heightWrappingMode);
switch (name) {
case "Color":
maps.map = texture;
break;
case "Roughness":
maps.roughnessMap = texture;
maps.roughness = 0.5;
break;
case "Specular":
maps.specularMap = texture;
maps.specular = 16777215;
break;
case "Luminous":
maps.emissiveMap = texture;
maps.emissive = 8421504;
break;
case "Luminous Color":
maps.emissive = 8421504;
break;
case "Metallic":
maps.metalnessMap = texture;
maps.metalness = 0.5;
break;
case "Transparency":
case "Alpha":
maps.alphaMap = texture;
maps.transparent = true;
break;
case "Normal":
maps.normalMap = texture;
if (node.amplitude !== void 0)
maps.normalScale = new THREE.Vector2(node.amplitude, node.amplitude);
break;
case "Bump":
maps.bumpMap = texture;
break;
}
}
if (maps.roughnessMap && maps.specularMap)
delete maps.specularMap;
return maps;
}
// maps can also be defined on individual material attributes, parse those here
// This occurs on Standard (Phong) surfaces
parseAttributeImageMaps(attributes, textures, maps) {
for (const name in attributes) {
const attribute = attributes[name];
if (attribute.maps) {
const mapData = attribute.maps[0];
const path = this.getTexturePathByIndex(mapData.imageIndex, textures);
if (!path)
return;
const texture = this.loadTexture(path);
if (mapData.wrap !== void 0)
texture.wrapS = this.getWrappingType(mapData.wrap.w);
if (mapData.wrap !== void 0)
texture.wrapT = this.getWrappingType(mapData.wrap.h);
switch (name) {
case "Color":
maps.map = texture;
break;
case "Diffuse":
maps.aoMap = texture;
break;
case "Roughness":
maps.roughnessMap = texture;
maps.roughness = 1;
break;
case "Specular":
maps.specularMap = texture;
maps.specular = 16777215;
break;
case "Luminosity":
maps.emissiveMap = texture;
maps.emissive = 8421504;
break;
case "Metallic":
maps.metalnessMap = texture;
maps.metalness = 1;
break;
case "Transparency":
case "Alpha":
maps.alphaMap = texture;
maps.transparent = true;
break;
case "Normal":
maps.normalMap = texture;
break;
case "Bump":
maps.bumpMap = texture;
break;
}
}
}
}
parseAttributes(attributes, maps) {
const params = {};
if (attributes.Color && !maps.map) {
params.color = new THREE.Color().fromArray(attributes.Color.value);
} else {
params.color = new THREE.Color();
}
if (attributes.Transparency && attributes.Transparency.value !== 0) {
params.opacity = 1 - attributes.Transparency.value;
params.transparent = true;
}
if (attributes["Bump Height"])
params.bumpScale = attributes["Bump Height"].value * 0.1;
if (attributes["Refraction Index"])
params.refractionRatio = 1 / attributes["Refraction Index"].value;
this.parsePhysicalAttributes(params, attributes, maps);
this.parseStandardAttributes(params, attributes, maps);
this.parsePhongAttributes(params, attributes, maps);
return params;
}
parsePhysicalAttributes(params, attributes) {
if (attributes.Clearcoat && attributes.Clearcoat.value > 0) {
params.clearcoat = attributes.Clearcoat.value;
if (attributes["Clearcoat Gloss"]) {
params.clearcoatRoughness = 0.5 * (1 - attributes["Clearcoat Gloss"].value);
}
}
}
parseStandardAttributes(params, attributes, maps) {
if (attributes.Luminous) {
params.emissiveIntensity = attributes.Luminous.value;
if (attributes["Luminous Color"] && !maps.emissive) {
params.emissive = new THREE.Color().fromArray(attributes["Luminous Color"].value);
} else {
params.emissive = new THREE.Color(8421504);
}
}
if (attributes.Roughness && !maps.roughnessMap)
params.roughness = attributes.Roughness.value;
if (attributes.Metallic && !maps.metalnessMap)
params.metalness = attributes.Metallic.value;
}
parsePhongAttributes(params, attributes, maps) {
if (attributes.Diffuse)
params.color.multiplyScalar(attributes.Diffuse.value);
if (attributes.Reflection) {
params.reflectivity = attributes.Reflection.value;
params.combine = THREE.AddOperation;
}
if (attributes.Luminosity) {
params.emissiveIntensity = attributes.Luminosity.value;
if (!maps.emissiveMap && !maps.map) {
params.emissive = params.color;
} else {
params.emissive = new THREE.Color(8421504);
}
}
if (!attributes.Roughness && attributes.Specular && !maps.specularMap) {
if (attributes["Color Highlight"]) {
params.specular = new THREE.Color().setScalar(attributes.Specular.value).lerp(params.color.clone().multiplyScalar(attributes.Specular.value), attributes["Color Highlight"].value);
} else {
params.specular = new THREE.Color().setScalar(attributes.Specular.value);
}
}
if (params.specular && attributes.Glossiness) {
params.shininess = 7 + Math.pow(2, attributes.Glossiness.value * 12 + 2);
}
}
parseEnvMap(connections, maps, attributes) {
if (connections.envMap) {
const envMap = this.loadTexture(connections.envMap);
if (attributes.transparent && attributes.opacity < 0.999) {
envMap.mapping = THREE.EquirectangularRefractionMapping;
if (attributes.reflectivity !== void 0) {
delete attributes.reflectivity;
delete attributes.combine;
}
if (attributes.metalness !== void 0) {
delete attributes.metalness;
}
} else {
envMap.mapping = THREE.EquirectangularReflectionMapping;
}
maps.envMap = envMap;
}
}
// get texture defined at top level by its index
getTexturePathByIndex(index) {
let fileName = "";
if (!_lwoTree.textures)
return fileName;
_lwoTree.textures.forEach(function(texture) {
if (texture.index === index)
fileName = texture.fileName;
});
return fileName;
}
loadTexture(path) {
if (!path)
return null;
const texture = this.textureLoader.load(path, void 0, void 0, function() {
console.warn(
"LWOLoader: non-standard resource hierarchy. Use `resourcePath` parameter to specify root content directory."
);
});
return texture;
}
// 0 = Reset, 1 = Repeat, 2 = Mirror, 3 = Edge
getWrappingType(num) {
switch (num) {
case 0:
console.warn('LWOLoader: "Reset" texture wrapping type is not supported in three.js');
return THREE.ClampToEdgeWrapping;
case 1:
return THREE.RepeatWrapping;
case 2:
return THREE.MirroredRepeatWrapping;
case 3:
return THREE.ClampToEdgeWrapping;
}
}
getMaterialType(nodeData) {
if (nodeData.Clearcoat && nodeData.Clearcoat.value > 0)
return THREE.MeshPhysicalMaterial;
if (nodeData.Roughness)
return THREE.MeshStandardMaterial;
return THREE.MeshPhongMaterial;
}
}
class GeometryParser {
parse(geoData, layer) {
const geometry = new THREE.BufferGeometry();
geometry.setAttribute("position", new THREE.Float32BufferAttribute(geoData.points, 3));
const indices = this.splitIndices(geoData.vertexIndices, geoData.polygonDimensions);
geometry.setIndex(indices);
this.parseGroups(geometry, geoData);
geometry.computeVertexNormals();
this.parseUVs(geometry, layer, indices);
this.parseMorphTargets(geometry, layer, indices);
geometry.translate(-layer.pivot[0], -layer.pivot[1], -layer.pivot[2]);
return geometry;
}
// split quads into tris
splitIndices(indices, polygonDimensions) {
const remappedIndices = [];
let i = 0;
polygonDimensions.forEach(function(dim) {
if (dim < 4) {
for (let k = 0; k < dim; k++)
remappedIndices.push(indices[i + k]);
} else if (dim === 4) {
remappedIndices.push(
indices[i],
indices[i + 1],
indices[i + 2],
indices[i],
indices[i + 2],
indices[i + 3]
);
} else if (dim > 4) {
for (let k = 1; k < dim - 1; k++) {
remappedIndices.push(indices[i], indices[i + k], indices[i + k + 1]);
}
console.warn("LWOLoader: polygons with greater than 4 sides are not supported");
}
i += dim;
});
return remappedIndices;
}
// NOTE: currently ignoring poly indices and assuming that they are intelligently ordered
parseGroups(geometry, geoData) {
const tags = _lwoTree.tags;
const matNames = [];
let elemSize = 3;
if (geoData.type === "lines")
elemSize = 2;
if (geoData.type === "points")
elemSize = 1;
const remappedIndices = this.splitMaterialIndices(geoData.polygonDimensions, geoData.materialIndices);
let indexNum = 0;
const indexPairs = {};
let prevMaterialIndex;
let materialIndex;
let prevStart = 0;
let currentCount = 0;
for (let i = 0; i < remappedIndices.length; i += 2) {
materialIndex = remappedIndices[i + 1];
if (i === 0)
matNames[indexNum] = tags[materialIndex];
if (prevMaterialIndex === void 0)
prevMaterialIndex = materialIndex;
if (materialIndex !== prevMaterialIndex) {
let currentIndex;
if (indexPairs[tags[prevMaterialIndex]]) {
currentIndex = indexPairs[tags[prevMaterialIndex]];
} else {
currentIndex = indexNum;
indexPairs[tags[prevMaterialIndex]] = indexNum;
matNames[indexNum] = tags[prevMaterialIndex];
indexNum++;
}
geometry.addGroup(prevStart, currentCount, currentIndex);
prevStart += currentCount;
prevMaterialIndex = materialIndex;
currentCount = 0;
}
currentCount += elemSize;
}
if (geometry.groups.length > 0) {
let currentIndex;
if (indexPairs[tags[materialIndex]]) {
currentIndex = indexPairs[tags[materialIndex]];
} else {
currentIndex = indexNum;
indexPairs[tags[materialIndex]] = indexNum;
matNames[indexNum] = tags[materialIndex];
}
geometry.addGroup(prevStart, currentCount, currentIndex);
}
geometry.userData.matNames = matNames;
}
splitMaterialIndices(polygonDimensions, indices) {
const remappedIndices = [];
polygonDimensions.forEach(function(dim, i) {
if (dim <= 3) {
remappedIndices.push(indices[i * 2], indices[i * 2 + 1]);
} else if (dim === 4) {
remappedIndices.push(indices[i * 2], indices[i * 2 + 1], indices[i * 2], indices[i * 2 + 1]);
} else {
for (let k = 0; k < dim - 2; k++) {
remappedIndices.push(indices[i * 2], indices[i * 2 + 1]);
}
}
});
return remappedIndices;
}
// UV maps:
// 1: are defined via index into an array of points, not into a geometry
// - the geometry is also defined by an index into this array, but the indexes may not match
// 2: there can be any number of UV maps for a single geometry. Here these are combined,
// with preference given to the first map encountered
// 3: UV maps can be partial - that is, defined for only a part of the geometry
// 4: UV maps can be VMAP or VMAD (discontinuous, to allow for seams). In practice, most
// UV maps are defined as partially VMAP and partially VMAD
// VMADs are currently not supported
parseUVs(geometry, layer) {
const remappedUVs = Array.from(Array(geometry.attributes.position.count * 2), function() {
return 0;
});
for (const name in layer.uvs) {
const uvs = layer.uvs[name].uvs;
const uvIndices = layer.uvs[name].uvIndices;
uvIndices.forEach(function(i, j) {
remappedUVs[i * 2] = uvs[j * 2];
remappedUVs[i * 2 + 1] = uvs[j * 2 + 1];
});
}
geometry.setAttribute("uv", new THREE.Float32BufferAttribute(remappedUVs, 2));
}
parseMorphTargets(geometry, layer) {
let num = 0;
for (const name in layer.morphTargets) {
const remappedPoints = geometry.attributes.position.array.slice();
if (!geometry.morphAttributes.position)
geometry.morphAttributes.position = [];
const morphPoints = layer.morphTargets[name].points;
const morphIndices = layer.morphTargets[name].indices;
const type = layer.morphTargets[name].type;
morphIndices.forEach(function(i, j) {
if (type === "relative") {
remappedPoints[i * 3] += morphPoints[j * 3];
remappedPoints[i * 3 + 1] += morphPoints[j * 3 + 1];
remappedPoints[i * 3 + 2] += morphPoints[j * 3 + 2];
} else {
remappedPoints[i * 3] = morphPoints[j * 3];
remappedPoints[i * 3 + 1] = morphPoints[j * 3 + 1];
remappedPoints[i * 3 + 2] = morphPoints[j * 3 + 2];
}
});
geometry.morphAttributes.position[num] = new THREE.Float32BufferAttribute(remappedPoints, 3);
geometry.morphAttributes.position[num].name = name;
num++;
}
geometry.morphTargetsRelative = false;
}
}
function extractParentUrl(url, dir) {
const index = url.indexOf(dir);
if (index === -1)
return "./";
return url.substr(0, index);
}
exports.LWOLoader = LWOLoader;
//# sourceMappingURL=LWOLoader.cjs.map