three-stdlib
Version:
stand-alone library of threejs examples
1,319 lines • 51.1 kB
JavaScript
import { DataTextureLoader, HalfFloatType, FloatType, RGBAFormat, RedFormat, LinearFilter, DataUtils } from "three";
import { unzlibSync } from "fflate";
import { version } from "../_polyfill/constants.js";
const hasColorSpace = version >= 152;
class EXRLoader extends DataTextureLoader {
constructor(manager) {
super(manager);
this.type = HalfFloatType;
}
parse(buffer) {
const USHORT_RANGE = 1 << 16;
const BITMAP_SIZE = USHORT_RANGE >> 3;
const HUF_ENCBITS = 16;
const HUF_DECBITS = 14;
const HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1;
const HUF_DECSIZE = 1 << HUF_DECBITS;
const HUF_DECMASK = HUF_DECSIZE - 1;
const NBITS = 16;
const A_OFFSET = 1 << NBITS - 1;
const MOD_MASK = (1 << NBITS) - 1;
const SHORT_ZEROCODE_RUN = 59;
const LONG_ZEROCODE_RUN = 63;
const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
const ULONG_SIZE = 8;
const FLOAT32_SIZE = 4;
const INT32_SIZE = 4;
const INT16_SIZE = 2;
const INT8_SIZE = 1;
const STATIC_HUFFMAN = 0;
const DEFLATE = 1;
const UNKNOWN = 0;
const LOSSY_DCT = 1;
const RLE = 2;
const logBase = Math.pow(2.7182818, 2.2);
function reverseLutFromBitmap(bitmap, lut) {
var k = 0;
for (var i = 0; i < USHORT_RANGE; ++i) {
if (i == 0 || bitmap[i >> 3] & 1 << (i & 7)) {
lut[k++] = i;
}
}
var n = k - 1;
while (k < USHORT_RANGE)
lut[k++] = 0;
return n;
}
function hufClearDecTable(hdec) {
for (var i = 0; i < HUF_DECSIZE; i++) {
hdec[i] = {};
hdec[i].len = 0;
hdec[i].lit = 0;
hdec[i].p = null;
}
}
const getBitsReturn = { l: 0, c: 0, lc: 0 };
function getBits(nBits, c, lc, uInt8Array2, inOffset) {
while (lc < nBits) {
c = c << 8 | parseUint8Array(uInt8Array2, inOffset);
lc += 8;
}
lc -= nBits;
getBitsReturn.l = c >> lc & (1 << nBits) - 1;
getBitsReturn.c = c;
getBitsReturn.lc = lc;
}
const hufTableBuffer = new Array(59);
function hufCanonicalCodeTable(hcode) {
for (var i = 0; i <= 58; ++i)
hufTableBuffer[i] = 0;
for (var i = 0; i < HUF_ENCSIZE; ++i)
hufTableBuffer[hcode[i]] += 1;
var c = 0;
for (var i = 58; i > 0; --i) {
var nc = c + hufTableBuffer[i] >> 1;
hufTableBuffer[i] = c;
c = nc;
}
for (var i = 0; i < HUF_ENCSIZE; ++i) {
var l = hcode[i];
if (l > 0)
hcode[i] = l | hufTableBuffer[l]++ << 6;
}
}
function hufUnpackEncTable(uInt8Array2, inDataView, inOffset, ni, im, iM, hcode) {
var p = inOffset;
var c = 0;
var lc = 0;
for (; im <= iM; im++) {
if (p.value - inOffset.value > ni)
return false;
getBits(6, c, lc, uInt8Array2, p);
var l = getBitsReturn.l;
c = getBitsReturn.c;
lc = getBitsReturn.lc;
hcode[im] = l;
if (l == LONG_ZEROCODE_RUN) {
if (p.value - inOffset.value > ni) {
throw "Something wrong with hufUnpackEncTable";
}
getBits(8, c, lc, uInt8Array2, p);
var zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
c = getBitsReturn.c;
lc = getBitsReturn.lc;
if (im + zerun > iM + 1) {
throw "Something wrong with hufUnpackEncTable";
}
while (zerun--)
hcode[im++] = 0;
im--;
} else if (l >= SHORT_ZEROCODE_RUN) {
var zerun = l - SHORT_ZEROCODE_RUN + 2;
if (im + zerun > iM + 1) {
throw "Something wrong with hufUnpackEncTable";
}
while (zerun--)
hcode[im++] = 0;
im--;
}
}
hufCanonicalCodeTable(hcode);
}
function hufLength(code) {
return code & 63;
}
function hufCode(code) {
return code >> 6;
}
function hufBuildDecTable(hcode, im, iM, hdecod) {
for (; im <= iM; im++) {
var c = hufCode(hcode[im]);
var l = hufLength(hcode[im]);
if (c >> l) {
throw "Invalid table entry";
}
if (l > HUF_DECBITS) {
var pl = hdecod[c >> l - HUF_DECBITS];
if (pl.len) {
throw "Invalid table entry";
}
pl.lit++;
if (pl.p) {
var p = pl.p;
pl.p = new Array(pl.lit);
for (var i = 0; i < pl.lit - 1; ++i) {
pl.p[i] = p[i];
}
} else {
pl.p = new Array(1);
}
pl.p[pl.lit - 1] = im;
} else if (l) {
var plOffset = 0;
for (var i = 1 << HUF_DECBITS - l; i > 0; i--) {
var pl = hdecod[(c << HUF_DECBITS - l) + plOffset];
if (pl.len || pl.p) {
throw "Invalid table entry";
}
pl.len = l;
pl.lit = im;
plOffset++;
}
}
}
return true;
}
const getCharReturn = { c: 0, lc: 0 };
function getChar(c, lc, uInt8Array2, inOffset) {
c = c << 8 | parseUint8Array(uInt8Array2, inOffset);
lc += 8;
getCharReturn.c = c;
getCharReturn.lc = lc;
}
const getCodeReturn = { c: 0, lc: 0 };
function getCode(po, rlc, c, lc, uInt8Array2, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset) {
if (po == rlc) {
if (lc < 8) {
getChar(c, lc, uInt8Array2, inOffset);
c = getCharReturn.c;
lc = getCharReturn.lc;
}
lc -= 8;
var cs = c >> lc;
var cs = new Uint8Array([cs])[0];
if (outBufferOffset.value + cs > outBufferEndOffset) {
return false;
}
var s = outBuffer[outBufferOffset.value - 1];
while (cs-- > 0) {
outBuffer[outBufferOffset.value++] = s;
}
} else if (outBufferOffset.value < outBufferEndOffset) {
outBuffer[outBufferOffset.value++] = po;
} else {
return false;
}
getCodeReturn.c = c;
getCodeReturn.lc = lc;
}
function UInt16(value) {
return value & 65535;
}
function Int16(value) {
var ref = UInt16(value);
return ref > 32767 ? ref - 65536 : ref;
}
const wdec14Return = { a: 0, b: 0 };
function wdec14(l, h) {
var ls = Int16(l);
var hs = Int16(h);
var hi = hs;
var ai = ls + (hi & 1) + (hi >> 1);
var as = ai;
var bs = ai - hi;
wdec14Return.a = as;
wdec14Return.b = bs;
}
function wdec16(l, h) {
var m = UInt16(l);
var d = UInt16(h);
var bb = m - (d >> 1) & MOD_MASK;
var aa = d + bb - A_OFFSET & MOD_MASK;
wdec14Return.a = aa;
wdec14Return.b = bb;
}
function wav2Decode(buffer2, j, nx, ox, ny, oy, mx) {
var w14 = mx < 1 << 14;
var n = nx > ny ? ny : nx;
var p = 1;
var p2;
while (p <= n)
p <<= 1;
p >>= 1;
p2 = p;
p >>= 1;
while (p >= 1) {
var py = 0;
var ey = py + oy * (ny - p2);
var oy1 = oy * p;
var oy2 = oy * p2;
var ox1 = ox * p;
var ox2 = ox * p2;
var i00, i01, i10, i11;
for (; py <= ey; py += oy2) {
var px = py;
var ex = py + ox * (nx - p2);
for (; px <= ex; px += ox2) {
var p01 = px + ox1;
var p10 = px + oy1;
var p11 = p10 + ox1;
if (w14) {
wdec14(buffer2[px + j], buffer2[p10 + j]);
i00 = wdec14Return.a;
i10 = wdec14Return.b;
wdec14(buffer2[p01 + j], buffer2[p11 + j]);
i01 = wdec14Return.a;
i11 = wdec14Return.b;
wdec14(i00, i01);
buffer2[px + j] = wdec14Return.a;
buffer2[p01 + j] = wdec14Return.b;
wdec14(i10, i11);
buffer2[p10 + j] = wdec14Return.a;
buffer2[p11 + j] = wdec14Return.b;
} else {
wdec16(buffer2[px + j], buffer2[p10 + j]);
i00 = wdec14Return.a;
i10 = wdec14Return.b;
wdec16(buffer2[p01 + j], buffer2[p11 + j]);
i01 = wdec14Return.a;
i11 = wdec14Return.b;
wdec16(i00, i01);
buffer2[px + j] = wdec14Return.a;
buffer2[p01 + j] = wdec14Return.b;
wdec16(i10, i11);
buffer2[p10 + j] = wdec14Return.a;
buffer2[p11 + j] = wdec14Return.b;
}
}
if (nx & p) {
var p10 = px + oy1;
if (w14)
wdec14(buffer2[px + j], buffer2[p10 + j]);
else
wdec16(buffer2[px + j], buffer2[p10 + j]);
i00 = wdec14Return.a;
buffer2[p10 + j] = wdec14Return.b;
buffer2[px + j] = i00;
}
}
if (ny & p) {
var px = py;
var ex = py + ox * (nx - p2);
for (; px <= ex; px += ox2) {
var p01 = px + ox1;
if (w14)
wdec14(buffer2[px + j], buffer2[p01 + j]);
else
wdec16(buffer2[px + j], buffer2[p01 + j]);
i00 = wdec14Return.a;
buffer2[p01 + j] = wdec14Return.b;
buffer2[px + j] = i00;
}
}
p2 = p;
p >>= 1;
}
return py;
}
function hufDecode(encodingTable, decodingTable, uInt8Array2, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset) {
var c = 0;
var lc = 0;
var outBufferEndOffset = no;
var inOffsetEnd = Math.trunc(inOffset.value + (ni + 7) / 8);
while (inOffset.value < inOffsetEnd) {
getChar(c, lc, uInt8Array2, inOffset);
c = getCharReturn.c;
lc = getCharReturn.lc;
while (lc >= HUF_DECBITS) {
var index = c >> lc - HUF_DECBITS & HUF_DECMASK;
var pl = decodingTable[index];
if (pl.len) {
lc -= pl.len;
getCode(pl.lit, rlc, c, lc, uInt8Array2, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset);
c = getCodeReturn.c;
lc = getCodeReturn.lc;
} else {
if (!pl.p) {
throw "hufDecode issues";
}
var j;
for (j = 0; j < pl.lit; j++) {
var l = hufLength(encodingTable[pl.p[j]]);
while (lc < l && inOffset.value < inOffsetEnd) {
getChar(c, lc, uInt8Array2, inOffset);
c = getCharReturn.c;
lc = getCharReturn.lc;
}
if (lc >= l) {
if (hufCode(encodingTable[pl.p[j]]) == (c >> lc - l & (1 << l) - 1)) {
lc -= l;
getCode(
pl.p[j],
rlc,
c,
lc,
uInt8Array2,
inDataView,
inOffset,
outBuffer,
outOffset,
outBufferEndOffset
);
c = getCodeReturn.c;
lc = getCodeReturn.lc;
break;
}
}
}
if (j == pl.lit) {
throw "hufDecode issues";
}
}
}
}
var i = 8 - ni & 7;
c >>= i;
lc -= i;
while (lc > 0) {
var pl = decodingTable[c << HUF_DECBITS - lc & HUF_DECMASK];
if (pl.len) {
lc -= pl.len;
getCode(pl.lit, rlc, c, lc, uInt8Array2, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset);
c = getCodeReturn.c;
lc = getCodeReturn.lc;
} else {
throw "hufDecode issues";
}
}
return true;
}
function hufUncompress(uInt8Array2, inDataView, inOffset, nCompressed, outBuffer, nRaw) {
var outOffset = { value: 0 };
var initialInOffset = inOffset.value;
var im = parseUint32(inDataView, inOffset);
var iM = parseUint32(inDataView, inOffset);
inOffset.value += 4;
var nBits = parseUint32(inDataView, inOffset);
inOffset.value += 4;
if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) {
throw "Something wrong with HUF_ENCSIZE";
}
var freq = new Array(HUF_ENCSIZE);
var hdec = new Array(HUF_DECSIZE);
hufClearDecTable(hdec);
var ni = nCompressed - (inOffset.value - initialInOffset);
hufUnpackEncTable(uInt8Array2, inDataView, inOffset, ni, im, iM, freq);
if (nBits > 8 * (nCompressed - (inOffset.value - initialInOffset))) {
throw "Something wrong with hufUncompress";
}
hufBuildDecTable(freq, im, iM, hdec);
hufDecode(freq, hdec, uInt8Array2, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset);
}
function applyLut(lut, data, nData) {
for (var i = 0; i < nData; ++i) {
data[i] = lut[data[i]];
}
}
function predictor(source) {
for (var t = 1; t < source.length; t++) {
var d = source[t - 1] + source[t] - 128;
source[t] = d;
}
}
function interleaveScalar(source, out) {
var t1 = 0;
var t2 = Math.floor((source.length + 1) / 2);
var s = 0;
var stop = source.length - 1;
while (true) {
if (s > stop)
break;
out[s++] = source[t1++];
if (s > stop)
break;
out[s++] = source[t2++];
}
}
function decodeRunLength(source) {
var size = source.byteLength;
var out = new Array();
var p = 0;
var reader = new DataView(source);
while (size > 0) {
var l = reader.getInt8(p++);
if (l < 0) {
var count = -l;
size -= count + 1;
for (var i = 0; i < count; i++) {
out.push(reader.getUint8(p++));
}
} else {
var count = l;
size -= 2;
var value = reader.getUint8(p++);
for (var i = 0; i < count + 1; i++) {
out.push(value);
}
}
}
return out;
}
function lossyDctDecode(cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer) {
var dataView = new DataView(outBuffer.buffer);
var width = channelData[cscSet.idx[0]].width;
var height = channelData[cscSet.idx[0]].height;
var numComp = 3;
var numFullBlocksX = Math.floor(width / 8);
var numBlocksX = Math.ceil(width / 8);
var numBlocksY = Math.ceil(height / 8);
var leftoverX = width - (numBlocksX - 1) * 8;
var leftoverY = height - (numBlocksY - 1) * 8;
var currAcComp = { value: 0 };
var currDcComp = new Array(numComp);
var dctData = new Array(numComp);
var halfZigBlock = new Array(numComp);
var rowBlock = new Array(numComp);
var rowOffsets = new Array(numComp);
for (let comp2 = 0; comp2 < numComp; ++comp2) {
rowOffsets[comp2] = rowPtrs[cscSet.idx[comp2]];
currDcComp[comp2] = comp2 < 1 ? 0 : currDcComp[comp2 - 1] + numBlocksX * numBlocksY;
dctData[comp2] = new Float32Array(64);
halfZigBlock[comp2] = new Uint16Array(64);
rowBlock[comp2] = new Uint16Array(numBlocksX * 64);
}
for (let blocky = 0; blocky < numBlocksY; ++blocky) {
var maxY = 8;
if (blocky == numBlocksY - 1)
maxY = leftoverY;
var maxX = 8;
for (let blockx = 0; blockx < numBlocksX; ++blockx) {
if (blockx == numBlocksX - 1)
maxX = leftoverX;
for (let comp2 = 0; comp2 < numComp; ++comp2) {
halfZigBlock[comp2].fill(0);
halfZigBlock[comp2][0] = dcBuffer[currDcComp[comp2]++];
unRleAC(currAcComp, acBuffer, halfZigBlock[comp2]);
unZigZag(halfZigBlock[comp2], dctData[comp2]);
dctInverse(dctData[comp2]);
}
{
csc709Inverse(dctData);
}
for (let comp2 = 0; comp2 < numComp; ++comp2) {
convertToHalf(dctData[comp2], rowBlock[comp2], blockx * 64);
}
}
let offset2 = 0;
for (let comp2 = 0; comp2 < numComp; ++comp2) {
const type2 = channelData[cscSet.idx[comp2]].type;
for (let y2 = 8 * blocky; y2 < 8 * blocky + maxY; ++y2) {
offset2 = rowOffsets[comp2][y2];
for (let blockx = 0; blockx < numFullBlocksX; ++blockx) {
const src = blockx * 64 + (y2 & 7) * 8;
dataView.setUint16(offset2 + 0 * INT16_SIZE * type2, rowBlock[comp2][src + 0], true);
dataView.setUint16(offset2 + 1 * INT16_SIZE * type2, rowBlock[comp2][src + 1], true);
dataView.setUint16(offset2 + 2 * INT16_SIZE * type2, rowBlock[comp2][src + 2], true);
dataView.setUint16(offset2 + 3 * INT16_SIZE * type2, rowBlock[comp2][src + 3], true);
dataView.setUint16(offset2 + 4 * INT16_SIZE * type2, rowBlock[comp2][src + 4], true);
dataView.setUint16(offset2 + 5 * INT16_SIZE * type2, rowBlock[comp2][src + 5], true);
dataView.setUint16(offset2 + 6 * INT16_SIZE * type2, rowBlock[comp2][src + 6], true);
dataView.setUint16(offset2 + 7 * INT16_SIZE * type2, rowBlock[comp2][src + 7], true);
offset2 += 8 * INT16_SIZE * type2;
}
}
if (numFullBlocksX != numBlocksX) {
for (let y2 = 8 * blocky; y2 < 8 * blocky + maxY; ++y2) {
const offset3 = rowOffsets[comp2][y2] + 8 * numFullBlocksX * INT16_SIZE * type2;
const src = numFullBlocksX * 64 + (y2 & 7) * 8;
for (let x2 = 0; x2 < maxX; ++x2) {
dataView.setUint16(offset3 + x2 * INT16_SIZE * type2, rowBlock[comp2][src + x2], true);
}
}
}
}
}
var halfRow = new Uint16Array(width);
var dataView = new DataView(outBuffer.buffer);
for (var comp = 0; comp < numComp; ++comp) {
channelData[cscSet.idx[comp]].decoded = true;
var type = channelData[cscSet.idx[comp]].type;
if (channelData[comp].type != 2)
continue;
for (var y = 0; y < height; ++y) {
const offset2 = rowOffsets[comp][y];
for (var x = 0; x < width; ++x) {
halfRow[x] = dataView.getUint16(offset2 + x * INT16_SIZE * type, true);
}
for (var x = 0; x < width; ++x) {
dataView.setFloat32(offset2 + x * INT16_SIZE * type, decodeFloat16(halfRow[x]), true);
}
}
}
}
function unRleAC(currAcComp, acBuffer, halfZigBlock) {
var acValue;
var dctComp = 1;
while (dctComp < 64) {
acValue = acBuffer[currAcComp.value];
if (acValue == 65280) {
dctComp = 64;
} else if (acValue >> 8 == 255) {
dctComp += acValue & 255;
} else {
halfZigBlock[dctComp] = acValue;
dctComp++;
}
currAcComp.value++;
}
}
function unZigZag(src, dst) {
dst[0] = decodeFloat16(src[0]);
dst[1] = decodeFloat16(src[1]);
dst[2] = decodeFloat16(src[5]);
dst[3] = decodeFloat16(src[6]);
dst[4] = decodeFloat16(src[14]);
dst[5] = decodeFloat16(src[15]);
dst[6] = decodeFloat16(src[27]);
dst[7] = decodeFloat16(src[28]);
dst[8] = decodeFloat16(src[2]);
dst[9] = decodeFloat16(src[4]);
dst[10] = decodeFloat16(src[7]);
dst[11] = decodeFloat16(src[13]);
dst[12] = decodeFloat16(src[16]);
dst[13] = decodeFloat16(src[26]);
dst[14] = decodeFloat16(src[29]);
dst[15] = decodeFloat16(src[42]);
dst[16] = decodeFloat16(src[3]);
dst[17] = decodeFloat16(src[8]);
dst[18] = decodeFloat16(src[12]);
dst[19] = decodeFloat16(src[17]);
dst[20] = decodeFloat16(src[25]);
dst[21] = decodeFloat16(src[30]);
dst[22] = decodeFloat16(src[41]);
dst[23] = decodeFloat16(src[43]);
dst[24] = decodeFloat16(src[9]);
dst[25] = decodeFloat16(src[11]);
dst[26] = decodeFloat16(src[18]);
dst[27] = decodeFloat16(src[24]);
dst[28] = decodeFloat16(src[31]);
dst[29] = decodeFloat16(src[40]);
dst[30] = decodeFloat16(src[44]);
dst[31] = decodeFloat16(src[53]);
dst[32] = decodeFloat16(src[10]);
dst[33] = decodeFloat16(src[19]);
dst[34] = decodeFloat16(src[23]);
dst[35] = decodeFloat16(src[32]);
dst[36] = decodeFloat16(src[39]);
dst[37] = decodeFloat16(src[45]);
dst[38] = decodeFloat16(src[52]);
dst[39] = decodeFloat16(src[54]);
dst[40] = decodeFloat16(src[20]);
dst[41] = decodeFloat16(src[22]);
dst[42] = decodeFloat16(src[33]);
dst[43] = decodeFloat16(src[38]);
dst[44] = decodeFloat16(src[46]);
dst[45] = decodeFloat16(src[51]);
dst[46] = decodeFloat16(src[55]);
dst[47] = decodeFloat16(src[60]);
dst[48] = decodeFloat16(src[21]);
dst[49] = decodeFloat16(src[34]);
dst[50] = decodeFloat16(src[37]);
dst[51] = decodeFloat16(src[47]);
dst[52] = decodeFloat16(src[50]);
dst[53] = decodeFloat16(src[56]);
dst[54] = decodeFloat16(src[59]);
dst[55] = decodeFloat16(src[61]);
dst[56] = decodeFloat16(src[35]);
dst[57] = decodeFloat16(src[36]);
dst[58] = decodeFloat16(src[48]);
dst[59] = decodeFloat16(src[49]);
dst[60] = decodeFloat16(src[57]);
dst[61] = decodeFloat16(src[58]);
dst[62] = decodeFloat16(src[62]);
dst[63] = decodeFloat16(src[63]);
}
function dctInverse(data) {
const a = 0.5 * Math.cos(3.14159 / 4);
const b = 0.5 * Math.cos(3.14159 / 16);
const c = 0.5 * Math.cos(3.14159 / 8);
const d = 0.5 * Math.cos(3 * 3.14159 / 16);
const e = 0.5 * Math.cos(5 * 3.14159 / 16);
const f = 0.5 * Math.cos(3 * 3.14159 / 8);
const g = 0.5 * Math.cos(7 * 3.14159 / 16);
var alpha = new Array(4);
var beta = new Array(4);
var theta = new Array(4);
var gamma = new Array(4);
for (var row = 0; row < 8; ++row) {
var rowPtr = row * 8;
alpha[0] = c * data[rowPtr + 2];
alpha[1] = f * data[rowPtr + 2];
alpha[2] = c * data[rowPtr + 6];
alpha[3] = f * data[rowPtr + 6];
beta[0] = b * data[rowPtr + 1] + d * data[rowPtr + 3] + e * data[rowPtr + 5] + g * data[rowPtr + 7];
beta[1] = d * data[rowPtr + 1] - g * data[rowPtr + 3] - b * data[rowPtr + 5] - e * data[rowPtr + 7];
beta[2] = e * data[rowPtr + 1] - b * data[rowPtr + 3] + g * data[rowPtr + 5] + d * data[rowPtr + 7];
beta[3] = g * data[rowPtr + 1] - e * data[rowPtr + 3] + d * data[rowPtr + 5] - b * data[rowPtr + 7];
theta[0] = a * (data[rowPtr + 0] + data[rowPtr + 4]);
theta[3] = a * (data[rowPtr + 0] - data[rowPtr + 4]);
theta[1] = alpha[0] + alpha[3];
theta[2] = alpha[1] - alpha[2];
gamma[0] = theta[0] + theta[1];
gamma[1] = theta[3] + theta[2];
gamma[2] = theta[3] - theta[2];
gamma[3] = theta[0] - theta[1];
data[rowPtr + 0] = gamma[0] + beta[0];
data[rowPtr + 1] = gamma[1] + beta[1];
data[rowPtr + 2] = gamma[2] + beta[2];
data[rowPtr + 3] = gamma[3] + beta[3];
data[rowPtr + 4] = gamma[3] - beta[3];
data[rowPtr + 5] = gamma[2] - beta[2];
data[rowPtr + 6] = gamma[1] - beta[1];
data[rowPtr + 7] = gamma[0] - beta[0];
}
for (var column = 0; column < 8; ++column) {
alpha[0] = c * data[16 + column];
alpha[1] = f * data[16 + column];
alpha[2] = c * data[48 + column];
alpha[3] = f * data[48 + column];
beta[0] = b * data[8 + column] + d * data[24 + column] + e * data[40 + column] + g * data[56 + column];
beta[1] = d * data[8 + column] - g * data[24 + column] - b * data[40 + column] - e * data[56 + column];
beta[2] = e * data[8 + column] - b * data[24 + column] + g * data[40 + column] + d * data[56 + column];
beta[3] = g * data[8 + column] - e * data[24 + column] + d * data[40 + column] - b * data[56 + column];
theta[0] = a * (data[column] + data[32 + column]);
theta[3] = a * (data[column] - data[32 + column]);
theta[1] = alpha[0] + alpha[3];
theta[2] = alpha[1] - alpha[2];
gamma[0] = theta[0] + theta[1];
gamma[1] = theta[3] + theta[2];
gamma[2] = theta[3] - theta[2];
gamma[3] = theta[0] - theta[1];
data[0 + column] = gamma[0] + beta[0];
data[8 + column] = gamma[1] + beta[1];
data[16 + column] = gamma[2] + beta[2];
data[24 + column] = gamma[3] + beta[3];
data[32 + column] = gamma[3] - beta[3];
data[40 + column] = gamma[2] - beta[2];
data[48 + column] = gamma[1] - beta[1];
data[56 + column] = gamma[0] - beta[0];
}
}
function csc709Inverse(data) {
for (var i = 0; i < 64; ++i) {
var y = data[0][i];
var cb = data[1][i];
var cr = data[2][i];
data[0][i] = y + 1.5747 * cr;
data[1][i] = y - 0.1873 * cb - 0.4682 * cr;
data[2][i] = y + 1.8556 * cb;
}
}
function convertToHalf(src, dst, idx) {
for (var i = 0; i < 64; ++i) {
dst[idx + i] = DataUtils.toHalfFloat(toLinear(src[i]));
}
}
function toLinear(float) {
if (float <= 1) {
return Math.sign(float) * Math.pow(Math.abs(float), 2.2);
} else {
return Math.sign(float) * Math.pow(logBase, Math.abs(float) - 1);
}
}
function uncompressRAW(info) {
return new DataView(info.array.buffer, info.offset.value, info.size);
}
function uncompressRLE(info) {
var compressed = info.viewer.buffer.slice(info.offset.value, info.offset.value + info.size);
var rawBuffer = new Uint8Array(decodeRunLength(compressed));
var tmpBuffer = new Uint8Array(rawBuffer.length);
predictor(rawBuffer);
interleaveScalar(rawBuffer, tmpBuffer);
return new DataView(tmpBuffer.buffer);
}
function uncompressZIP(info) {
var compressed = info.array.slice(info.offset.value, info.offset.value + info.size);
var rawBuffer = unzlibSync(compressed);
var tmpBuffer = new Uint8Array(rawBuffer.length);
predictor(rawBuffer);
interleaveScalar(rawBuffer, tmpBuffer);
return new DataView(tmpBuffer.buffer);
}
function uncompressPIZ(info) {
var inDataView = info.viewer;
var inOffset = { value: info.offset.value };
var outBuffer = new Uint16Array(info.width * info.scanlineBlockSize * (info.channels * info.type));
var bitmap = new Uint8Array(BITMAP_SIZE);
var outBufferEnd = 0;
var pizChannelData = new Array(info.channels);
for (var i = 0; i < info.channels; i++) {
pizChannelData[i] = {};
pizChannelData[i]["start"] = outBufferEnd;
pizChannelData[i]["end"] = pizChannelData[i]["start"];
pizChannelData[i]["nx"] = info.width;
pizChannelData[i]["ny"] = info.lines;
pizChannelData[i]["size"] = info.type;
outBufferEnd += pizChannelData[i].nx * pizChannelData[i].ny * pizChannelData[i].size;
}
var minNonZero = parseUint16(inDataView, inOffset);
var maxNonZero = parseUint16(inDataView, inOffset);
if (maxNonZero >= BITMAP_SIZE) {
throw "Something is wrong with PIZ_COMPRESSION BITMAP_SIZE";
}
if (minNonZero <= maxNonZero) {
for (var i = 0; i < maxNonZero - minNonZero + 1; i++) {
bitmap[i + minNonZero] = parseUint8(inDataView, inOffset);
}
}
var lut = new Uint16Array(USHORT_RANGE);
var maxValue = reverseLutFromBitmap(bitmap, lut);
var length = parseUint32(inDataView, inOffset);
hufUncompress(info.array, inDataView, inOffset, length, outBuffer, outBufferEnd);
for (var i = 0; i < info.channels; ++i) {
var cd = pizChannelData[i];
for (var j = 0; j < pizChannelData[i].size; ++j) {
wav2Decode(outBuffer, cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size, maxValue);
}
}
applyLut(lut, outBuffer, outBufferEnd);
var tmpOffset2 = 0;
var tmpBuffer = new Uint8Array(outBuffer.buffer.byteLength);
for (var y = 0; y < info.lines; y++) {
for (var c = 0; c < info.channels; c++) {
var cd = pizChannelData[c];
var n = cd.nx * cd.size;
var cp = new Uint8Array(outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE);
tmpBuffer.set(cp, tmpOffset2);
tmpOffset2 += n * INT16_SIZE;
cd.end += n;
}
}
return new DataView(tmpBuffer.buffer);
}
function uncompressPXR(info) {
var compressed = info.array.slice(info.offset.value, info.offset.value + info.size);
var rawBuffer = unzlibSync(compressed);
const sz = info.lines * info.channels * info.width;
const tmpBuffer = info.type == 1 ? new Uint16Array(sz) : new Uint32Array(sz);
let tmpBufferEnd = 0;
let writePtr = 0;
const ptr = new Array(4);
for (let y = 0; y < info.lines; y++) {
for (let c = 0; c < info.channels; c++) {
let pixel = 0;
switch (info.type) {
case 1:
ptr[0] = tmpBufferEnd;
ptr[1] = ptr[0] + info.width;
tmpBufferEnd = ptr[1] + info.width;
for (let j = 0; j < info.width; ++j) {
const diff = rawBuffer[ptr[0]++] << 8 | rawBuffer[ptr[1]++];
pixel += diff;
tmpBuffer[writePtr] = pixel;
writePtr++;
}
break;
case 2:
ptr[0] = tmpBufferEnd;
ptr[1] = ptr[0] + info.width;
ptr[2] = ptr[1] + info.width;
tmpBufferEnd = ptr[2] + info.width;
for (let j = 0; j < info.width; ++j) {
const diff = rawBuffer[ptr[0]++] << 24 | rawBuffer[ptr[1]++] << 16 | rawBuffer[ptr[2]++] << 8;
pixel += diff;
tmpBuffer[writePtr] = pixel;
writePtr++;
}
break;
}
}
}
return new DataView(tmpBuffer.buffer);
}
function uncompressDWA(info) {
var inDataView = info.viewer;
var inOffset = { value: info.offset.value };
var outBuffer = new Uint8Array(info.width * info.lines * (info.channels * info.type * INT16_SIZE));
var dwaHeader = {
version: parseInt64(inDataView, inOffset),
unknownUncompressedSize: parseInt64(inDataView, inOffset),
unknownCompressedSize: parseInt64(inDataView, inOffset),
acCompressedSize: parseInt64(inDataView, inOffset),
dcCompressedSize: parseInt64(inDataView, inOffset),
rleCompressedSize: parseInt64(inDataView, inOffset),
rleUncompressedSize: parseInt64(inDataView, inOffset),
rleRawSize: parseInt64(inDataView, inOffset),
totalAcUncompressedCount: parseInt64(inDataView, inOffset),
totalDcUncompressedCount: parseInt64(inDataView, inOffset),
acCompression: parseInt64(inDataView, inOffset)
};
if (dwaHeader.version < 2) {
throw "EXRLoader.parse: " + EXRHeader.compression + " version " + dwaHeader.version + " is unsupported";
}
var channelRules = new Array();
var ruleSize = parseUint16(inDataView, inOffset) - INT16_SIZE;
while (ruleSize > 0) {
var name = parseNullTerminatedString(inDataView.buffer, inOffset);
var value = parseUint8(inDataView, inOffset);
var compression = value >> 2 & 3;
var csc = (value >> 4) - 1;
var index = new Int8Array([csc])[0];
var type = parseUint8(inDataView, inOffset);
channelRules.push({
name,
index,
type,
compression
});
ruleSize -= name.length + 3;
}
var channels = EXRHeader.channels;
var channelData = new Array(info.channels);
for (var i = 0; i < info.channels; ++i) {
var cd = channelData[i] = {};
var channel = channels[i];
cd.name = channel.name;
cd.compression = UNKNOWN;
cd.decoded = false;
cd.type = channel.pixelType;
cd.pLinear = channel.pLinear;
cd.width = info.width;
cd.height = info.lines;
}
var cscSet = {
idx: new Array(3)
};
for (var offset2 = 0; offset2 < info.channels; ++offset2) {
var cd = channelData[offset2];
for (var i = 0; i < channelRules.length; ++i) {
var rule = channelRules[i];
if (cd.name == rule.name) {
cd.compression = rule.compression;
if (rule.index >= 0) {
cscSet.idx[rule.index] = offset2;
}
cd.offset = offset2;
}
}
}
if (dwaHeader.acCompressedSize > 0) {
switch (dwaHeader.acCompression) {
case STATIC_HUFFMAN:
var acBuffer = new Uint16Array(dwaHeader.totalAcUncompressedCount);
hufUncompress(
info.array,
inDataView,
inOffset,
dwaHeader.acCompressedSize,
acBuffer,
dwaHeader.totalAcUncompressedCount
);
break;
case DEFLATE:
var compressed = info.array.slice(inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount);
var data = unzlibSync(compressed);
var acBuffer = new Uint16Array(data.buffer);
inOffset.value += dwaHeader.totalAcUncompressedCount;
break;
}
}
if (dwaHeader.dcCompressedSize > 0) {
var zlibInfo = {
array: info.array,
offset: inOffset,
size: dwaHeader.dcCompressedSize
};
var dcBuffer = new Uint16Array(uncompressZIP(zlibInfo).buffer);
inOffset.value += dwaHeader.dcCompressedSize;
}
if (dwaHeader.rleRawSize > 0) {
var compressed = info.array.slice(inOffset.value, inOffset.value + dwaHeader.rleCompressedSize);
var data = unzlibSync(compressed);
var rleBuffer = decodeRunLength(data.buffer);
inOffset.value += dwaHeader.rleCompressedSize;
}
var outBufferEnd = 0;
var rowOffsets = new Array(channelData.length);
for (var i = 0; i < rowOffsets.length; ++i) {
rowOffsets[i] = new Array();
}
for (var y = 0; y < info.lines; ++y) {
for (var chan = 0; chan < channelData.length; ++chan) {
rowOffsets[chan].push(outBufferEnd);
outBufferEnd += channelData[chan].width * info.type * INT16_SIZE;
}
}
lossyDctDecode(cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer);
for (var i = 0; i < channelData.length; ++i) {
var cd = channelData[i];
if (cd.decoded)
continue;
switch (cd.compression) {
case RLE:
var row = 0;
var rleOffset = 0;
for (var y = 0; y < info.lines; ++y) {
var rowOffsetBytes = rowOffsets[i][row];
for (var x = 0; x < cd.width; ++x) {
for (var byte = 0; byte < INT16_SIZE * cd.type; ++byte) {
outBuffer[rowOffsetBytes++] = rleBuffer[rleOffset + byte * cd.width * cd.height];
}
rleOffset++;
}
row++;
}
break;
case LOSSY_DCT:
default:
throw "EXRLoader.parse: unsupported channel compression";
}
}
return new DataView(outBuffer.buffer);
}
function parseNullTerminatedString(buffer2, offset2) {
var uintBuffer = new Uint8Array(buffer2);
var endOffset = 0;
while (uintBuffer[offset2.value + endOffset] != 0) {
endOffset += 1;
}
var stringValue = new TextDecoder().decode(uintBuffer.slice(offset2.value, offset2.value + endOffset));
offset2.value = offset2.value + endOffset + 1;
return stringValue;
}
function parseFixedLengthString(buffer2, offset2, size) {
var stringValue = new TextDecoder().decode(new Uint8Array(buffer2).slice(offset2.value, offset2.value + size));
offset2.value = offset2.value + size;
return stringValue;
}
function parseRational(dataView, offset2) {
var x = parseInt32(dataView, offset2);
var y = parseUint32(dataView, offset2);
return [x, y];
}
function parseTimecode(dataView, offset2) {
var x = parseUint32(dataView, offset2);
var y = parseUint32(dataView, offset2);
return [x, y];
}
function parseInt32(dataView, offset2) {
var Int32 = dataView.getInt32(offset2.value, true);
offset2.value = offset2.value + INT32_SIZE;
return Int32;
}
function parseUint32(dataView, offset2) {
var Uint32 = dataView.getUint32(offset2.value, true);
offset2.value = offset2.value + INT32_SIZE;
return Uint32;
}
function parseUint8Array(uInt8Array2, offset2) {
var Uint8 = uInt8Array2[offset2.value];
offset2.value = offset2.value + INT8_SIZE;
return Uint8;
}
function parseUint8(dataView, offset2) {
var Uint8 = dataView.getUint8(offset2.value);
offset2.value = offset2.value + INT8_SIZE;
return Uint8;
}
const parseInt64 = function(dataView, offset2) {
let int;
if ("getBigInt64" in DataView.prototype) {
int = Number(dataView.getBigInt64(offset2.value, true));
} else {
int = dataView.getUint32(offset2.value + 4, true) + Number(dataView.getUint32(offset2.value, true) << 32);
}
offset2.value += ULONG_SIZE;
return int;
};
function parseFloat32(dataView, offset2) {
var float = dataView.getFloat32(offset2.value, true);
offset2.value += FLOAT32_SIZE;
return float;
}
function decodeFloat32(dataView, offset2) {
return DataUtils.toHalfFloat(parseFloat32(dataView, offset2));
}
function decodeFloat16(binary) {
var exponent = (binary & 31744) >> 10, fraction = binary & 1023;
return (binary >> 15 ? -1 : 1) * (exponent ? exponent === 31 ? fraction ? NaN : Infinity : Math.pow(2, exponent - 15) * (1 + fraction / 1024) : 6103515625e-14 * (fraction / 1024));
}
function parseUint16(dataView, offset2) {
var Uint16 = dataView.getUint16(offset2.value, true);
offset2.value += INT16_SIZE;
return Uint16;
}
function parseFloat16(buffer2, offset2) {
return decodeFloat16(parseUint16(buffer2, offset2));
}
function parseChlist(dataView, buffer2, offset2, size) {
var startOffset = offset2.value;
var channels = [];
while (offset2.value < startOffset + size - 1) {
var name = parseNullTerminatedString(buffer2, offset2);
var pixelType = parseInt32(dataView, offset2);
var pLinear = parseUint8(dataView, offset2);
offset2.value += 3;
var xSampling = parseInt32(dataView, offset2);
var ySampling = parseInt32(dataView, offset2);
channels.push({
name,
pixelType,
pLinear,
xSampling,
ySampling
});
}
offset2.value += 1;
return channels;
}
function parseChromaticities(dataView, offset2) {
var redX = parseFloat32(dataView, offset2);
var redY = parseFloat32(dataView, offset2);
var greenX = parseFloat32(dataView, offset2);
var greenY = parseFloat32(dataView, offset2);
var blueX = parseFloat32(dataView, offset2);
var blueY = parseFloat32(dataView, offset2);
var whiteX = parseFloat32(dataView, offset2);
var whiteY = parseFloat32(dataView, offset2);
return {
redX,
redY,
greenX,
greenY,
blueX,
blueY,
whiteX,
whiteY
};
}
function parseCompression(dataView, offset2) {
var compressionCodes = [
"NO_COMPRESSION",
"RLE_COMPRESSION",
"ZIPS_COMPRESSION",
"ZIP_COMPRESSION",
"PIZ_COMPRESSION",
"PXR24_COMPRESSION",
"B44_COMPRESSION",
"B44A_COMPRESSION",
"DWAA_COMPRESSION",
"DWAB_COMPRESSION"
];
var compression = parseUint8(dataView, offset2);
return compressionCodes[compression];
}
function parseBox2i(dataView, offset2) {
var xMin = parseUint32(dataView, offset2);
var yMin = parseUint32(dataView, offset2);
var xMax = parseUint32(dataView, offset2);
var yMax = parseUint32(dataView, offset2);
return { xMin, yMin, xMax, yMax };
}
function parseLineOrder(dataView, offset2) {
var lineOrders = ["INCREASING_Y"];
var lineOrder = parseUint8(dataView, offset2);
return lineOrders[lineOrder];
}
function parseV2f(dataView, offset2) {
var x = parseFloat32(dataView, offset2);
var y = parseFloat32(dataView, offset2);
return [x, y];
}
function parseV3f(dataView, offset2) {
var x = parseFloat32(dataView, offset2);
var y = parseFloat32(dataView, offset2);
var z = parseFloat32(dataView, offset2);
return [x, y, z];
}
function parseValue(dataView, buffer2, offset2, type, size) {
if (type === "string" || type === "stringvector" || type === "iccProfile") {
return parseFixedLengthString(buffer2, offset2, size);
} else if (type === "chlist") {
return parseChlist(dataView, buffer2, offset2, size);
} else if (type === "chromaticities") {
return parseChromaticities(dataView, offset2);
} else if (type === "compression") {
return parseCompression(dataView, offset2);
} else if (type === "box2i") {
return parseBox2i(dataView, offset2);
} else if (type === "lineOrder") {
return parseLineOrder(dataView, offset2);
} else if (type === "float") {
return parseFloat32(dataView, offset2);
} else if (type === "v2f") {
return parseV2f(dataView, offset2);
} else if (type === "v3f") {
return parseV3f(dataView, offset2);
} else if (type === "int") {
return parseInt32(dataView, offset2);
} else if (type === "rational") {
return parseRational(dataView, offset2);
} else if (type === "timecode") {
return parseTimecode(dataView, offset2);
} else if (type === "preview") {
offset2.value += size;
return "skipped";
} else {
offset2.value += size;
return void 0;
}
}
function parseHeader(dataView, buffer2, offset2) {
const EXRHeader2 = {};
if (dataView.getUint32(0, true) != 20000630) {
throw "THREE.EXRLoader: provided file doesn't appear to be in OpenEXR format.";
}
EXRHeader2.version = dataView.getUint8(4);
const spec = dataView.getUint8(5);
EXRHeader2.spec = {
singleTile: !!(spec & 2),
longName: !!(spec & 4),
deepFormat: !!(spec & 8),
multiPart: !!(spec & 16)
};
offset2.value = 8;
var keepReading = true;
while (keepReading) {
var attributeName = parseNullTerminatedString(buffer2, offset2);
if (attributeName == 0) {
keepReading = false;
} else {
var attributeType = parseNullTerminatedString(buffer2, offset2);
var attributeSize = parseUint32(dataView, offset2);
var attributeValue = parseValue(dataView, buffer2, offset2, attributeType, attributeSize);
if (attributeValue === void 0) {
console.warn(`EXRLoader.parse: skipped unknown header attribute type '${attributeType}'.`);
} else {
EXRHeader2[attributeName] = attributeValue;
}
}
}
if ((spec & ~4) != 0) {
console.error("EXRHeader:", EXRHeader2);
throw "THREE.EXRLoader: provided file is currently unsupported.";
}
return EXRHeader2;
}
function setupDecoder(EXRHeader2, dataView, uInt8Array2, offset2, outputType) {
const EXRDecoder2 = {
size: 0,
viewer: dataView,
array: uInt8Array2,
offset: offset2,
width: EXRHeader2.dataWindow.xMax - EXRHeader2.dataWindow.xMin + 1,
height: EXRHeader2.dataWindow.yMax - EXRHeader2.dataWindow.yMin + 1,
channels: EXRHeader2.channels.length,
bytesPerLine: null,
lines: null,
inputSize: null,
type: EXRHeader2.channels[0].pixelType,
uncompress: null,
getter: null,
format: null,
[hasColorSpace ? "colorSpace" : "encoding"]: null
};
switch (EXRHeader2.compression) {
case "NO_COMPRESSION":
EXRDecoder2.lines = 1;
EXRDecoder2.uncompress = uncompressRAW;
break;
case "RLE_COMPRESSION":
EXRDecoder2.lines = 1;
EXRDecoder2.uncompress = uncompressRLE;
break;
case "ZIPS_COMPRESSION":
EXRDecoder2.lines = 1;
EXRDecoder2.uncompress = uncompressZIP;
break;
case "ZIP_COMPRESSION":
EXRDecoder2.lines = 16;
EXRDecoder2.uncompress = uncompressZIP;
break;
case "PIZ_COMPRESSION":
EXRDecoder2.lines = 32;
EXRDecoder2.uncompress = uncompressPIZ;
break;
case "PXR24_COMPRESSION":
EXRDecoder2.lines = 16;
EXRDecoder2.uncompress = uncompressPXR;
break;
case "DWAA_COMPRESSION":
EXRDecoder2.lines = 32;
EXRDecoder2.uncompress = uncompressDWA;
break;
case "DWAB_COMPRESSION":
EXRDecoder2.lines = 256;
EXRDecoder2.uncompress = uncompressDWA;
break;
default:
throw "EXRLoader.parse: " + EXRHeader2.compression + " is unsupported";
}
EXRDecoder2.scanlineBlockSize = EXRDecoder2.lines;
if (EXRDecoder2.type == 1) {
switch (outputType) {
case FloatType:
EXRDecoder2.getter = parseFloat16;
EXRDecoder2.inputSize = INT16_SIZE;
break;
case HalfFloatType:
EXRDecoder2.getter = parseUint16;
EXRDecoder2.inputSize = INT16_SIZE;
break;
}
} else if (EXRDecoder2.type == 2) {
switch (outputType) {
case FloatType:
EXRDecoder2.getter = parseFloat32;
EXRDecoder2.inputSize = FLOAT32_SIZE;
break;
case HalfFloatType:
EXRDecoder2.getter = decodeFloat32;
EXRDecoder2.inputSize = FLOAT32_SIZE;
}
} else {
throw "EXRLoader.parse: unsupported pixelType " + EXRDecoder2.type + " for " + EXRHeader2.compression + ".";
}
EXRDecoder2.blockCount = (EXRHeader2.dataWindow.yMax + 1) / EXRDecoder2.scanlineBlockSize;
for (var i = 0; i < EXRDecoder2.blockCount; i++)
parseInt64(dataView, offset2);
EXRDecoder2.outputChannels = EXRDecoder2.channels == 3 ? 4 : EXRDecoder2.channels;
const size = EXRDecoder2.width * EXRDecoder2.height * EXRDecoder2.outputChannels;
switch (outputType) {
case FloatType:
EXRDecoder2.byteArray = new Float32Array(size);
if (EXRDecoder2.channels < EXRDecoder2.outputChannels)
EXRDecoder2.byteArray.fill(1, 0, size);
break;
case HalfFloatType:
EXRDecoder2.byteArray = new Uint16Array(size);
if (EXRDecoder2.channels < EXRDecoder2.outputChannels)
EXRDecoder2.byteArray.fill(15360, 0, size);
break;
default:
console.error("THREE.EXRLoader: unsupported type: ", outputType);
break;
}
EXRDecoder2.bytesPerLine = EXRDecoder2.width * EXRDecoder2.inputSize * EXRDecoder2.channels;
if (EXRDecoder2.outputChannels == 4)
EXRDecoder2.format = RGBAFormat;
else
EXRDecoder2.format = RedFormat;
if (hasColorSpace)
EXRDecoder2.colorSpace = "srgb-linear";
else
EXRDecoder2.encoding = 3e3;
return EXRDecoder2;
}
const bufferDataView = new DataView(buffer);
const uInt8Array = new Uint8Array(buffer);
const offset = { value: 0 };
const EXRHeader = parseHeader(bufferDataView, buffer, offset);
const EXRDecoder = setupDecoder(EXRHeader, bufferDataView, uInt8Array, offset, this.type);
const tmpOffset = { value: 0 };
const channelOffsets = { R: 0, G: 1, B: 2, A: 3, Y: 0 };
for (let scanlineBlockIdx = 0; scanlineBlockIdx < EXRDecoder.height / EXRDecoder.scanlineBlockSize; scanlineBlockIdx++) {
const line = parseUint32(bufferDataView, offset);
EXRDecoder.size = parseUint32(bufferDataView, offset);
EXRDecoder.lines = line + EXRDecoder.scanlineBlockSize > EXRDecoder.height ? EXRDecoder.height - line : EXRDecoder.scanlineBlockSize;
const isCompressed = EXRDecoder.size < EXRDecoder.lines * EXRDecoder.bytesPerLine;
const viewer = isCompressed ? EXRDecoder.uncompress(EXRDecoder) : uncompressRAW(EXRDecoder);
offset.value += EXRDecoder.size;
for (let line_y = 0; line_y < EXRDecoder.scanlineBlockSize; line_y++) {
const true_y = line_y + scanlineBlockIdx * EXRDecoder.scanlineBlockSize;
if (true_y >= EXRDecoder.height)
break;
for (let channelID = 0; channelID < EXRDecoder.channels; channelID++) {
const cOff = channelOffsets[EXRHeader.channels[channelID].name];
for (let x = 0; x < EXRDecoder.width; x++) {
tmpOffset.value = (line_y * (EXRDecoder.channels * EXRDecoder.width) + channelID * EXRDecoder.width + x) * EXRDecoder.inputSize;
const outIndex = (EXRDecoder.height - 1 - true_y)