UNPKG

three-stdlib

Version:

stand-alone library of threejs examples

1,320 lines 51.3 kB
"use strict"; Object.defineProperty(exports, Symbol.toStringTag, { value: "Module" }); const THREE = require("three"); const fflate = require("fflate"); const constants = require("../_polyfill/constants.cjs"); const hasColorSpace = constants.version >= 152; class EXRLoader extends THREE.DataTextureLoader { constructor(manager) { super(manager); this.type = THREE.HalfFloatType; } parse(buffer) { const USHORT_RANGE = 1 << 16; const BITMAP_SIZE = USHORT_RANGE >> 3; const HUF_ENCBITS = 16; const HUF_DECBITS = 14; const HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; const HUF_DECSIZE = 1 << HUF_DECBITS; const HUF_DECMASK = HUF_DECSIZE - 1; const NBITS = 16; const A_OFFSET = 1 << NBITS - 1; const MOD_MASK = (1 << NBITS) - 1; const SHORT_ZEROCODE_RUN = 59; const LONG_ZEROCODE_RUN = 63; const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN; const ULONG_SIZE = 8; const FLOAT32_SIZE = 4; const INT32_SIZE = 4; const INT16_SIZE = 2; const INT8_SIZE = 1; const STATIC_HUFFMAN = 0; const DEFLATE = 1; const UNKNOWN = 0; const LOSSY_DCT = 1; const RLE = 2; const logBase = Math.pow(2.7182818, 2.2); function reverseLutFromBitmap(bitmap, lut) { var k = 0; for (var i = 0; i < USHORT_RANGE; ++i) { if (i == 0 || bitmap[i >> 3] & 1 << (i & 7)) { lut[k++] = i; } } var n = k - 1; while (k < USHORT_RANGE) lut[k++] = 0; return n; } function hufClearDecTable(hdec) { for (var i = 0; i < HUF_DECSIZE; i++) { hdec[i] = {}; hdec[i].len = 0; hdec[i].lit = 0; hdec[i].p = null; } } const getBitsReturn = { l: 0, c: 0, lc: 0 }; function getBits(nBits, c, lc, uInt8Array2, inOffset) { while (lc < nBits) { c = c << 8 | parseUint8Array(uInt8Array2, inOffset); lc += 8; } lc -= nBits; getBitsReturn.l = c >> lc & (1 << nBits) - 1; getBitsReturn.c = c; getBitsReturn.lc = lc; } const hufTableBuffer = new Array(59); function hufCanonicalCodeTable(hcode) { for (var i = 0; i <= 58; ++i) hufTableBuffer[i] = 0; for (var i = 0; i < HUF_ENCSIZE; ++i) hufTableBuffer[hcode[i]] += 1; var c = 0; for (var i = 58; i > 0; --i) { var nc = c + hufTableBuffer[i] >> 1; hufTableBuffer[i] = c; c = nc; } for (var i = 0; i < HUF_ENCSIZE; ++i) { var l = hcode[i]; if (l > 0) hcode[i] = l | hufTableBuffer[l]++ << 6; } } function hufUnpackEncTable(uInt8Array2, inDataView, inOffset, ni, im, iM, hcode) { var p = inOffset; var c = 0; var lc = 0; for (; im <= iM; im++) { if (p.value - inOffset.value > ni) return false; getBits(6, c, lc, uInt8Array2, p); var l = getBitsReturn.l; c = getBitsReturn.c; lc = getBitsReturn.lc; hcode[im] = l; if (l == LONG_ZEROCODE_RUN) { if (p.value - inOffset.value > ni) { throw "Something wrong with hufUnpackEncTable"; } getBits(8, c, lc, uInt8Array2, p); var zerun = getBitsReturn.l + SHORTEST_LONG_RUN; c = getBitsReturn.c; lc = getBitsReturn.lc; if (im + zerun > iM + 1) { throw "Something wrong with hufUnpackEncTable"; } while (zerun--) hcode[im++] = 0; im--; } else if (l >= SHORT_ZEROCODE_RUN) { var zerun = l - SHORT_ZEROCODE_RUN + 2; if (im + zerun > iM + 1) { throw "Something wrong with hufUnpackEncTable"; } while (zerun--) hcode[im++] = 0; im--; } } hufCanonicalCodeTable(hcode); } function hufLength(code) { return code & 63; } function hufCode(code) { return code >> 6; } function hufBuildDecTable(hcode, im, iM, hdecod) { for (; im <= iM; im++) { var c = hufCode(hcode[im]); var l = hufLength(hcode[im]); if (c >> l) { throw "Invalid table entry"; } if (l > HUF_DECBITS) { var pl = hdecod[c >> l - HUF_DECBITS]; if (pl.len) { throw "Invalid table entry"; } pl.lit++; if (pl.p) { var p = pl.p; pl.p = new Array(pl.lit); for (var i = 0; i < pl.lit - 1; ++i) { pl.p[i] = p[i]; } } else { pl.p = new Array(1); } pl.p[pl.lit - 1] = im; } else if (l) { var plOffset = 0; for (var i = 1 << HUF_DECBITS - l; i > 0; i--) { var pl = hdecod[(c << HUF_DECBITS - l) + plOffset]; if (pl.len || pl.p) { throw "Invalid table entry"; } pl.len = l; pl.lit = im; plOffset++; } } } return true; } const getCharReturn = { c: 0, lc: 0 }; function getChar(c, lc, uInt8Array2, inOffset) { c = c << 8 | parseUint8Array(uInt8Array2, inOffset); lc += 8; getCharReturn.c = c; getCharReturn.lc = lc; } const getCodeReturn = { c: 0, lc: 0 }; function getCode(po, rlc, c, lc, uInt8Array2, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset) { if (po == rlc) { if (lc < 8) { getChar(c, lc, uInt8Array2, inOffset); c = getCharReturn.c; lc = getCharReturn.lc; } lc -= 8; var cs = c >> lc; var cs = new Uint8Array([cs])[0]; if (outBufferOffset.value + cs > outBufferEndOffset) { return false; } var s = outBuffer[outBufferOffset.value - 1]; while (cs-- > 0) { outBuffer[outBufferOffset.value++] = s; } } else if (outBufferOffset.value < outBufferEndOffset) { outBuffer[outBufferOffset.value++] = po; } else { return false; } getCodeReturn.c = c; getCodeReturn.lc = lc; } function UInt16(value) { return value & 65535; } function Int16(value) { var ref = UInt16(value); return ref > 32767 ? ref - 65536 : ref; } const wdec14Return = { a: 0, b: 0 }; function wdec14(l, h) { var ls = Int16(l); var hs = Int16(h); var hi = hs; var ai = ls + (hi & 1) + (hi >> 1); var as = ai; var bs = ai - hi; wdec14Return.a = as; wdec14Return.b = bs; } function wdec16(l, h) { var m = UInt16(l); var d = UInt16(h); var bb = m - (d >> 1) & MOD_MASK; var aa = d + bb - A_OFFSET & MOD_MASK; wdec14Return.a = aa; wdec14Return.b = bb; } function wav2Decode(buffer2, j, nx, ox, ny, oy, mx) { var w14 = mx < 1 << 14; var n = nx > ny ? ny : nx; var p = 1; var p2; while (p <= n) p <<= 1; p >>= 1; p2 = p; p >>= 1; while (p >= 1) { var py = 0; var ey = py + oy * (ny - p2); var oy1 = oy * p; var oy2 = oy * p2; var ox1 = ox * p; var ox2 = ox * p2; var i00, i01, i10, i11; for (; py <= ey; py += oy2) { var px = py; var ex = py + ox * (nx - p2); for (; px <= ex; px += ox2) { var p01 = px + ox1; var p10 = px + oy1; var p11 = p10 + ox1; if (w14) { wdec14(buffer2[px + j], buffer2[p10 + j]); i00 = wdec14Return.a; i10 = wdec14Return.b; wdec14(buffer2[p01 + j], buffer2[p11 + j]); i01 = wdec14Return.a; i11 = wdec14Return.b; wdec14(i00, i01); buffer2[px + j] = wdec14Return.a; buffer2[p01 + j] = wdec14Return.b; wdec14(i10, i11); buffer2[p10 + j] = wdec14Return.a; buffer2[p11 + j] = wdec14Return.b; } else { wdec16(buffer2[px + j], buffer2[p10 + j]); i00 = wdec14Return.a; i10 = wdec14Return.b; wdec16(buffer2[p01 + j], buffer2[p11 + j]); i01 = wdec14Return.a; i11 = wdec14Return.b; wdec16(i00, i01); buffer2[px + j] = wdec14Return.a; buffer2[p01 + j] = wdec14Return.b; wdec16(i10, i11); buffer2[p10 + j] = wdec14Return.a; buffer2[p11 + j] = wdec14Return.b; } } if (nx & p) { var p10 = px + oy1; if (w14) wdec14(buffer2[px + j], buffer2[p10 + j]); else wdec16(buffer2[px + j], buffer2[p10 + j]); i00 = wdec14Return.a; buffer2[p10 + j] = wdec14Return.b; buffer2[px + j] = i00; } } if (ny & p) { var px = py; var ex = py + ox * (nx - p2); for (; px <= ex; px += ox2) { var p01 = px + ox1; if (w14) wdec14(buffer2[px + j], buffer2[p01 + j]); else wdec16(buffer2[px + j], buffer2[p01 + j]); i00 = wdec14Return.a; buffer2[p01 + j] = wdec14Return.b; buffer2[px + j] = i00; } } p2 = p; p >>= 1; } return py; } function hufDecode(encodingTable, decodingTable, uInt8Array2, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset) { var c = 0; var lc = 0; var outBufferEndOffset = no; var inOffsetEnd = Math.trunc(inOffset.value + (ni + 7) / 8); while (inOffset.value < inOffsetEnd) { getChar(c, lc, uInt8Array2, inOffset); c = getCharReturn.c; lc = getCharReturn.lc; while (lc >= HUF_DECBITS) { var index = c >> lc - HUF_DECBITS & HUF_DECMASK; var pl = decodingTable[index]; if (pl.len) { lc -= pl.len; getCode(pl.lit, rlc, c, lc, uInt8Array2, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset); c = getCodeReturn.c; lc = getCodeReturn.lc; } else { if (!pl.p) { throw "hufDecode issues"; } var j; for (j = 0; j < pl.lit; j++) { var l = hufLength(encodingTable[pl.p[j]]); while (lc < l && inOffset.value < inOffsetEnd) { getChar(c, lc, uInt8Array2, inOffset); c = getCharReturn.c; lc = getCharReturn.lc; } if (lc >= l) { if (hufCode(encodingTable[pl.p[j]]) == (c >> lc - l & (1 << l) - 1)) { lc -= l; getCode( pl.p[j], rlc, c, lc, uInt8Array2, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset ); c = getCodeReturn.c; lc = getCodeReturn.lc; break; } } } if (j == pl.lit) { throw "hufDecode issues"; } } } } var i = 8 - ni & 7; c >>= i; lc -= i; while (lc > 0) { var pl = decodingTable[c << HUF_DECBITS - lc & HUF_DECMASK]; if (pl.len) { lc -= pl.len; getCode(pl.lit, rlc, c, lc, uInt8Array2, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset); c = getCodeReturn.c; lc = getCodeReturn.lc; } else { throw "hufDecode issues"; } } return true; } function hufUncompress(uInt8Array2, inDataView, inOffset, nCompressed, outBuffer, nRaw) { var outOffset = { value: 0 }; var initialInOffset = inOffset.value; var im = parseUint32(inDataView, inOffset); var iM = parseUint32(inDataView, inOffset); inOffset.value += 4; var nBits = parseUint32(inDataView, inOffset); inOffset.value += 4; if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) { throw "Something wrong with HUF_ENCSIZE"; } var freq = new Array(HUF_ENCSIZE); var hdec = new Array(HUF_DECSIZE); hufClearDecTable(hdec); var ni = nCompressed - (inOffset.value - initialInOffset); hufUnpackEncTable(uInt8Array2, inDataView, inOffset, ni, im, iM, freq); if (nBits > 8 * (nCompressed - (inOffset.value - initialInOffset))) { throw "Something wrong with hufUncompress"; } hufBuildDecTable(freq, im, iM, hdec); hufDecode(freq, hdec, uInt8Array2, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset); } function applyLut(lut, data, nData) { for (var i = 0; i < nData; ++i) { data[i] = lut[data[i]]; } } function predictor(source) { for (var t = 1; t < source.length; t++) { var d = source[t - 1] + source[t] - 128; source[t] = d; } } function interleaveScalar(source, out) { var t1 = 0; var t2 = Math.floor((source.length + 1) / 2); var s = 0; var stop = source.length - 1; while (true) { if (s > stop) break; out[s++] = source[t1++]; if (s > stop) break; out[s++] = source[t2++]; } } function decodeRunLength(source) { var size = source.byteLength; var out = new Array(); var p = 0; var reader = new DataView(source); while (size > 0) { var l = reader.getInt8(p++); if (l < 0) { var count = -l; size -= count + 1; for (var i = 0; i < count; i++) { out.push(reader.getUint8(p++)); } } else { var count = l; size -= 2; var value = reader.getUint8(p++); for (var i = 0; i < count + 1; i++) { out.push(value); } } } return out; } function lossyDctDecode(cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer) { var dataView = new DataView(outBuffer.buffer); var width = channelData[cscSet.idx[0]].width; var height = channelData[cscSet.idx[0]].height; var numComp = 3; var numFullBlocksX = Math.floor(width / 8); var numBlocksX = Math.ceil(width / 8); var numBlocksY = Math.ceil(height / 8); var leftoverX = width - (numBlocksX - 1) * 8; var leftoverY = height - (numBlocksY - 1) * 8; var currAcComp = { value: 0 }; var currDcComp = new Array(numComp); var dctData = new Array(numComp); var halfZigBlock = new Array(numComp); var rowBlock = new Array(numComp); var rowOffsets = new Array(numComp); for (let comp2 = 0; comp2 < numComp; ++comp2) { rowOffsets[comp2] = rowPtrs[cscSet.idx[comp2]]; currDcComp[comp2] = comp2 < 1 ? 0 : currDcComp[comp2 - 1] + numBlocksX * numBlocksY; dctData[comp2] = new Float32Array(64); halfZigBlock[comp2] = new Uint16Array(64); rowBlock[comp2] = new Uint16Array(numBlocksX * 64); } for (let blocky = 0; blocky < numBlocksY; ++blocky) { var maxY = 8; if (blocky == numBlocksY - 1) maxY = leftoverY; var maxX = 8; for (let blockx = 0; blockx < numBlocksX; ++blockx) { if (blockx == numBlocksX - 1) maxX = leftoverX; for (let comp2 = 0; comp2 < numComp; ++comp2) { halfZigBlock[comp2].fill(0); halfZigBlock[comp2][0] = dcBuffer[currDcComp[comp2]++]; unRleAC(currAcComp, acBuffer, halfZigBlock[comp2]); unZigZag(halfZigBlock[comp2], dctData[comp2]); dctInverse(dctData[comp2]); } { csc709Inverse(dctData); } for (let comp2 = 0; comp2 < numComp; ++comp2) { convertToHalf(dctData[comp2], rowBlock[comp2], blockx * 64); } } let offset2 = 0; for (let comp2 = 0; comp2 < numComp; ++comp2) { const type2 = channelData[cscSet.idx[comp2]].type; for (let y2 = 8 * blocky; y2 < 8 * blocky + maxY; ++y2) { offset2 = rowOffsets[comp2][y2]; for (let blockx = 0; blockx < numFullBlocksX; ++blockx) { const src = blockx * 64 + (y2 & 7) * 8; dataView.setUint16(offset2 + 0 * INT16_SIZE * type2, rowBlock[comp2][src + 0], true); dataView.setUint16(offset2 + 1 * INT16_SIZE * type2, rowBlock[comp2][src + 1], true); dataView.setUint16(offset2 + 2 * INT16_SIZE * type2, rowBlock[comp2][src + 2], true); dataView.setUint16(offset2 + 3 * INT16_SIZE * type2, rowBlock[comp2][src + 3], true); dataView.setUint16(offset2 + 4 * INT16_SIZE * type2, rowBlock[comp2][src + 4], true); dataView.setUint16(offset2 + 5 * INT16_SIZE * type2, rowBlock[comp2][src + 5], true); dataView.setUint16(offset2 + 6 * INT16_SIZE * type2, rowBlock[comp2][src + 6], true); dataView.setUint16(offset2 + 7 * INT16_SIZE * type2, rowBlock[comp2][src + 7], true); offset2 += 8 * INT16_SIZE * type2; } } if (numFullBlocksX != numBlocksX) { for (let y2 = 8 * blocky; y2 < 8 * blocky + maxY; ++y2) { const offset3 = rowOffsets[comp2][y2] + 8 * numFullBlocksX * INT16_SIZE * type2; const src = numFullBlocksX * 64 + (y2 & 7) * 8; for (let x2 = 0; x2 < maxX; ++x2) { dataView.setUint16(offset3 + x2 * INT16_SIZE * type2, rowBlock[comp2][src + x2], true); } } } } } var halfRow = new Uint16Array(width); var dataView = new DataView(outBuffer.buffer); for (var comp = 0; comp < numComp; ++comp) { channelData[cscSet.idx[comp]].decoded = true; var type = channelData[cscSet.idx[comp]].type; if (channelData[comp].type != 2) continue; for (var y = 0; y < height; ++y) { const offset2 = rowOffsets[comp][y]; for (var x = 0; x < width; ++x) { halfRow[x] = dataView.getUint16(offset2 + x * INT16_SIZE * type, true); } for (var x = 0; x < width; ++x) { dataView.setFloat32(offset2 + x * INT16_SIZE * type, decodeFloat16(halfRow[x]), true); } } } } function unRleAC(currAcComp, acBuffer, halfZigBlock) { var acValue; var dctComp = 1; while (dctComp < 64) { acValue = acBuffer[currAcComp.value]; if (acValue == 65280) { dctComp = 64; } else if (acValue >> 8 == 255) { dctComp += acValue & 255; } else { halfZigBlock[dctComp] = acValue; dctComp++; } currAcComp.value++; } } function unZigZag(src, dst) { dst[0] = decodeFloat16(src[0]); dst[1] = decodeFloat16(src[1]); dst[2] = decodeFloat16(src[5]); dst[3] = decodeFloat16(src[6]); dst[4] = decodeFloat16(src[14]); dst[5] = decodeFloat16(src[15]); dst[6] = decodeFloat16(src[27]); dst[7] = decodeFloat16(src[28]); dst[8] = decodeFloat16(src[2]); dst[9] = decodeFloat16(src[4]); dst[10] = decodeFloat16(src[7]); dst[11] = decodeFloat16(src[13]); dst[12] = decodeFloat16(src[16]); dst[13] = decodeFloat16(src[26]); dst[14] = decodeFloat16(src[29]); dst[15] = decodeFloat16(src[42]); dst[16] = decodeFloat16(src[3]); dst[17] = decodeFloat16(src[8]); dst[18] = decodeFloat16(src[12]); dst[19] = decodeFloat16(src[17]); dst[20] = decodeFloat16(src[25]); dst[21] = decodeFloat16(src[30]); dst[22] = decodeFloat16(src[41]); dst[23] = decodeFloat16(src[43]); dst[24] = decodeFloat16(src[9]); dst[25] = decodeFloat16(src[11]); dst[26] = decodeFloat16(src[18]); dst[27] = decodeFloat16(src[24]); dst[28] = decodeFloat16(src[31]); dst[29] = decodeFloat16(src[40]); dst[30] = decodeFloat16(src[44]); dst[31] = decodeFloat16(src[53]); dst[32] = decodeFloat16(src[10]); dst[33] = decodeFloat16(src[19]); dst[34] = decodeFloat16(src[23]); dst[35] = decodeFloat16(src[32]); dst[36] = decodeFloat16(src[39]); dst[37] = decodeFloat16(src[45]); dst[38] = decodeFloat16(src[52]); dst[39] = decodeFloat16(src[54]); dst[40] = decodeFloat16(src[20]); dst[41] = decodeFloat16(src[22]); dst[42] = decodeFloat16(src[33]); dst[43] = decodeFloat16(src[38]); dst[44] = decodeFloat16(src[46]); dst[45] = decodeFloat16(src[51]); dst[46] = decodeFloat16(src[55]); dst[47] = decodeFloat16(src[60]); dst[48] = decodeFloat16(src[21]); dst[49] = decodeFloat16(src[34]); dst[50] = decodeFloat16(src[37]); dst[51] = decodeFloat16(src[47]); dst[52] = decodeFloat16(src[50]); dst[53] = decodeFloat16(src[56]); dst[54] = decodeFloat16(src[59]); dst[55] = decodeFloat16(src[61]); dst[56] = decodeFloat16(src[35]); dst[57] = decodeFloat16(src[36]); dst[58] = decodeFloat16(src[48]); dst[59] = decodeFloat16(src[49]); dst[60] = decodeFloat16(src[57]); dst[61] = decodeFloat16(src[58]); dst[62] = decodeFloat16(src[62]); dst[63] = decodeFloat16(src[63]); } function dctInverse(data) { const a = 0.5 * Math.cos(3.14159 / 4); const b = 0.5 * Math.cos(3.14159 / 16); const c = 0.5 * Math.cos(3.14159 / 8); const d = 0.5 * Math.cos(3 * 3.14159 / 16); const e = 0.5 * Math.cos(5 * 3.14159 / 16); const f = 0.5 * Math.cos(3 * 3.14159 / 8); const g = 0.5 * Math.cos(7 * 3.14159 / 16); var alpha = new Array(4); var beta = new Array(4); var theta = new Array(4); var gamma = new Array(4); for (var row = 0; row < 8; ++row) { var rowPtr = row * 8; alpha[0] = c * data[rowPtr + 2]; alpha[1] = f * data[rowPtr + 2]; alpha[2] = c * data[rowPtr + 6]; alpha[3] = f * data[rowPtr + 6]; beta[0] = b * data[rowPtr + 1] + d * data[rowPtr + 3] + e * data[rowPtr + 5] + g * data[rowPtr + 7]; beta[1] = d * data[rowPtr + 1] - g * data[rowPtr + 3] - b * data[rowPtr + 5] - e * data[rowPtr + 7]; beta[2] = e * data[rowPtr + 1] - b * data[rowPtr + 3] + g * data[rowPtr + 5] + d * data[rowPtr + 7]; beta[3] = g * data[rowPtr + 1] - e * data[rowPtr + 3] + d * data[rowPtr + 5] - b * data[rowPtr + 7]; theta[0] = a * (data[rowPtr + 0] + data[rowPtr + 4]); theta[3] = a * (data[rowPtr + 0] - data[rowPtr + 4]); theta[1] = alpha[0] + alpha[3]; theta[2] = alpha[1] - alpha[2]; gamma[0] = theta[0] + theta[1]; gamma[1] = theta[3] + theta[2]; gamma[2] = theta[3] - theta[2]; gamma[3] = theta[0] - theta[1]; data[rowPtr + 0] = gamma[0] + beta[0]; data[rowPtr + 1] = gamma[1] + beta[1]; data[rowPtr + 2] = gamma[2] + beta[2]; data[rowPtr + 3] = gamma[3] + beta[3]; data[rowPtr + 4] = gamma[3] - beta[3]; data[rowPtr + 5] = gamma[2] - beta[2]; data[rowPtr + 6] = gamma[1] - beta[1]; data[rowPtr + 7] = gamma[0] - beta[0]; } for (var column = 0; column < 8; ++column) { alpha[0] = c * data[16 + column]; alpha[1] = f * data[16 + column]; alpha[2] = c * data[48 + column]; alpha[3] = f * data[48 + column]; beta[0] = b * data[8 + column] + d * data[24 + column] + e * data[40 + column] + g * data[56 + column]; beta[1] = d * data[8 + column] - g * data[24 + column] - b * data[40 + column] - e * data[56 + column]; beta[2] = e * data[8 + column] - b * data[24 + column] + g * data[40 + column] + d * data[56 + column]; beta[3] = g * data[8 + column] - e * data[24 + column] + d * data[40 + column] - b * data[56 + column]; theta[0] = a * (data[column] + data[32 + column]); theta[3] = a * (data[column] - data[32 + column]); theta[1] = alpha[0] + alpha[3]; theta[2] = alpha[1] - alpha[2]; gamma[0] = theta[0] + theta[1]; gamma[1] = theta[3] + theta[2]; gamma[2] = theta[3] - theta[2]; gamma[3] = theta[0] - theta[1]; data[0 + column] = gamma[0] + beta[0]; data[8 + column] = gamma[1] + beta[1]; data[16 + column] = gamma[2] + beta[2]; data[24 + column] = gamma[3] + beta[3]; data[32 + column] = gamma[3] - beta[3]; data[40 + column] = gamma[2] - beta[2]; data[48 + column] = gamma[1] - beta[1]; data[56 + column] = gamma[0] - beta[0]; } } function csc709Inverse(data) { for (var i = 0; i < 64; ++i) { var y = data[0][i]; var cb = data[1][i]; var cr = data[2][i]; data[0][i] = y + 1.5747 * cr; data[1][i] = y - 0.1873 * cb - 0.4682 * cr; data[2][i] = y + 1.8556 * cb; } } function convertToHalf(src, dst, idx) { for (var i = 0; i < 64; ++i) { dst[idx + i] = THREE.DataUtils.toHalfFloat(toLinear(src[i])); } } function toLinear(float) { if (float <= 1) { return Math.sign(float) * Math.pow(Math.abs(float), 2.2); } else { return Math.sign(float) * Math.pow(logBase, Math.abs(float) - 1); } } function uncompressRAW(info) { return new DataView(info.array.buffer, info.offset.value, info.size); } function uncompressRLE(info) { var compressed = info.viewer.buffer.slice(info.offset.value, info.offset.value + info.size); var rawBuffer = new Uint8Array(decodeRunLength(compressed)); var tmpBuffer = new Uint8Array(rawBuffer.length); predictor(rawBuffer); interleaveScalar(rawBuffer, tmpBuffer); return new DataView(tmpBuffer.buffer); } function uncompressZIP(info) { var compressed = info.array.slice(info.offset.value, info.offset.value + info.size); var rawBuffer = fflate.unzlibSync(compressed); var tmpBuffer = new Uint8Array(rawBuffer.length); predictor(rawBuffer); interleaveScalar(rawBuffer, tmpBuffer); return new DataView(tmpBuffer.buffer); } function uncompressPIZ(info) { var inDataView = info.viewer; var inOffset = { value: info.offset.value }; var outBuffer = new Uint16Array(info.width * info.scanlineBlockSize * (info.channels * info.type)); var bitmap = new Uint8Array(BITMAP_SIZE); var outBufferEnd = 0; var pizChannelData = new Array(info.channels); for (var i = 0; i < info.channels; i++) { pizChannelData[i] = {}; pizChannelData[i]["start"] = outBufferEnd; pizChannelData[i]["end"] = pizChannelData[i]["start"]; pizChannelData[i]["nx"] = info.width; pizChannelData[i]["ny"] = info.lines; pizChannelData[i]["size"] = info.type; outBufferEnd += pizChannelData[i].nx * pizChannelData[i].ny * pizChannelData[i].size; } var minNonZero = parseUint16(inDataView, inOffset); var maxNonZero = parseUint16(inDataView, inOffset); if (maxNonZero >= BITMAP_SIZE) { throw "Something is wrong with PIZ_COMPRESSION BITMAP_SIZE"; } if (minNonZero <= maxNonZero) { for (var i = 0; i < maxNonZero - minNonZero + 1; i++) { bitmap[i + minNonZero] = parseUint8(inDataView, inOffset); } } var lut = new Uint16Array(USHORT_RANGE); var maxValue = reverseLutFromBitmap(bitmap, lut); var length = parseUint32(inDataView, inOffset); hufUncompress(info.array, inDataView, inOffset, length, outBuffer, outBufferEnd); for (var i = 0; i < info.channels; ++i) { var cd = pizChannelData[i]; for (var j = 0; j < pizChannelData[i].size; ++j) { wav2Decode(outBuffer, cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size, maxValue); } } applyLut(lut, outBuffer, outBufferEnd); var tmpOffset2 = 0; var tmpBuffer = new Uint8Array(outBuffer.buffer.byteLength); for (var y = 0; y < info.lines; y++) { for (var c = 0; c < info.channels; c++) { var cd = pizChannelData[c]; var n = cd.nx * cd.size; var cp = new Uint8Array(outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE); tmpBuffer.set(cp, tmpOffset2); tmpOffset2 += n * INT16_SIZE; cd.end += n; } } return new DataView(tmpBuffer.buffer); } function uncompressPXR(info) { var compressed = info.array.slice(info.offset.value, info.offset.value + info.size); var rawBuffer = fflate.unzlibSync(compressed); const sz = info.lines * info.channels * info.width; const tmpBuffer = info.type == 1 ? new Uint16Array(sz) : new Uint32Array(sz); let tmpBufferEnd = 0; let writePtr = 0; const ptr = new Array(4); for (let y = 0; y < info.lines; y++) { for (let c = 0; c < info.channels; c++) { let pixel = 0; switch (info.type) { case 1: ptr[0] = tmpBufferEnd; ptr[1] = ptr[0] + info.width; tmpBufferEnd = ptr[1] + info.width; for (let j = 0; j < info.width; ++j) { const diff = rawBuffer[ptr[0]++] << 8 | rawBuffer[ptr[1]++]; pixel += diff; tmpBuffer[writePtr] = pixel; writePtr++; } break; case 2: ptr[0] = tmpBufferEnd; ptr[1] = ptr[0] + info.width; ptr[2] = ptr[1] + info.width; tmpBufferEnd = ptr[2] + info.width; for (let j = 0; j < info.width; ++j) { const diff = rawBuffer[ptr[0]++] << 24 | rawBuffer[ptr[1]++] << 16 | rawBuffer[ptr[2]++] << 8; pixel += diff; tmpBuffer[writePtr] = pixel; writePtr++; } break; } } } return new DataView(tmpBuffer.buffer); } function uncompressDWA(info) { var inDataView = info.viewer; var inOffset = { value: info.offset.value }; var outBuffer = new Uint8Array(info.width * info.lines * (info.channels * info.type * INT16_SIZE)); var dwaHeader = { version: parseInt64(inDataView, inOffset), unknownUncompressedSize: parseInt64(inDataView, inOffset), unknownCompressedSize: parseInt64(inDataView, inOffset), acCompressedSize: parseInt64(inDataView, inOffset), dcCompressedSize: parseInt64(inDataView, inOffset), rleCompressedSize: parseInt64(inDataView, inOffset), rleUncompressedSize: parseInt64(inDataView, inOffset), rleRawSize: parseInt64(inDataView, inOffset), totalAcUncompressedCount: parseInt64(inDataView, inOffset), totalDcUncompressedCount: parseInt64(inDataView, inOffset), acCompression: parseInt64(inDataView, inOffset) }; if (dwaHeader.version < 2) { throw "EXRLoader.parse: " + EXRHeader.compression + " version " + dwaHeader.version + " is unsupported"; } var channelRules = new Array(); var ruleSize = parseUint16(inDataView, inOffset) - INT16_SIZE; while (ruleSize > 0) { var name = parseNullTerminatedString(inDataView.buffer, inOffset); var value = parseUint8(inDataView, inOffset); var compression = value >> 2 & 3; var csc = (value >> 4) - 1; var index = new Int8Array([csc])[0]; var type = parseUint8(inDataView, inOffset); channelRules.push({ name, index, type, compression }); ruleSize -= name.length + 3; } var channels = EXRHeader.channels; var channelData = new Array(info.channels); for (var i = 0; i < info.channels; ++i) { var cd = channelData[i] = {}; var channel = channels[i]; cd.name = channel.name; cd.compression = UNKNOWN; cd.decoded = false; cd.type = channel.pixelType; cd.pLinear = channel.pLinear; cd.width = info.width; cd.height = info.lines; } var cscSet = { idx: new Array(3) }; for (var offset2 = 0; offset2 < info.channels; ++offset2) { var cd = channelData[offset2]; for (var i = 0; i < channelRules.length; ++i) { var rule = channelRules[i]; if (cd.name == rule.name) { cd.compression = rule.compression; if (rule.index >= 0) { cscSet.idx[rule.index] = offset2; } cd.offset = offset2; } } } if (dwaHeader.acCompressedSize > 0) { switch (dwaHeader.acCompression) { case STATIC_HUFFMAN: var acBuffer = new Uint16Array(dwaHeader.totalAcUncompressedCount); hufUncompress( info.array, inDataView, inOffset, dwaHeader.acCompressedSize, acBuffer, dwaHeader.totalAcUncompressedCount ); break; case DEFLATE: var compressed = info.array.slice(inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount); var data = fflate.unzlibSync(compressed); var acBuffer = new Uint16Array(data.buffer); inOffset.value += dwaHeader.totalAcUncompressedCount; break; } } if (dwaHeader.dcCompressedSize > 0) { var zlibInfo = { array: info.array, offset: inOffset, size: dwaHeader.dcCompressedSize }; var dcBuffer = new Uint16Array(uncompressZIP(zlibInfo).buffer); inOffset.value += dwaHeader.dcCompressedSize; } if (dwaHeader.rleRawSize > 0) { var compressed = info.array.slice(inOffset.value, inOffset.value + dwaHeader.rleCompressedSize); var data = fflate.unzlibSync(compressed); var rleBuffer = decodeRunLength(data.buffer); inOffset.value += dwaHeader.rleCompressedSize; } var outBufferEnd = 0; var rowOffsets = new Array(channelData.length); for (var i = 0; i < rowOffsets.length; ++i) { rowOffsets[i] = new Array(); } for (var y = 0; y < info.lines; ++y) { for (var chan = 0; chan < channelData.length; ++chan) { rowOffsets[chan].push(outBufferEnd); outBufferEnd += channelData[chan].width * info.type * INT16_SIZE; } } lossyDctDecode(cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer); for (var i = 0; i < channelData.length; ++i) { var cd = channelData[i]; if (cd.decoded) continue; switch (cd.compression) { case RLE: var row = 0; var rleOffset = 0; for (var y = 0; y < info.lines; ++y) { var rowOffsetBytes = rowOffsets[i][row]; for (var x = 0; x < cd.width; ++x) { for (var byte = 0; byte < INT16_SIZE * cd.type; ++byte) { outBuffer[rowOffsetBytes++] = rleBuffer[rleOffset + byte * cd.width * cd.height]; } rleOffset++; } row++; } break; case LOSSY_DCT: default: throw "EXRLoader.parse: unsupported channel compression"; } } return new DataView(outBuffer.buffer); } function parseNullTerminatedString(buffer2, offset2) { var uintBuffer = new Uint8Array(buffer2); var endOffset = 0; while (uintBuffer[offset2.value + endOffset] != 0) { endOffset += 1; } var stringValue = new TextDecoder().decode(uintBuffer.slice(offset2.value, offset2.value + endOffset)); offset2.value = offset2.value + endOffset + 1; return stringValue; } function parseFixedLengthString(buffer2, offset2, size) { var stringValue = new TextDecoder().decode(new Uint8Array(buffer2).slice(offset2.value, offset2.value + size)); offset2.value = offset2.value + size; return stringValue; } function parseRational(dataView, offset2) { var x = parseInt32(dataView, offset2); var y = parseUint32(dataView, offset2); return [x, y]; } function parseTimecode(dataView, offset2) { var x = parseUint32(dataView, offset2); var y = parseUint32(dataView, offset2); return [x, y]; } function parseInt32(dataView, offset2) { var Int32 = dataView.getInt32(offset2.value, true); offset2.value = offset2.value + INT32_SIZE; return Int32; } function parseUint32(dataView, offset2) { var Uint32 = dataView.getUint32(offset2.value, true); offset2.value = offset2.value + INT32_SIZE; return Uint32; } function parseUint8Array(uInt8Array2, offset2) { var Uint8 = uInt8Array2[offset2.value]; offset2.value = offset2.value + INT8_SIZE; return Uint8; } function parseUint8(dataView, offset2) { var Uint8 = dataView.getUint8(offset2.value); offset2.value = offset2.value + INT8_SIZE; return Uint8; } const parseInt64 = function(dataView, offset2) { let int; if ("getBigInt64" in DataView.prototype) { int = Number(dataView.getBigInt64(offset2.value, true)); } else { int = dataView.getUint32(offset2.value + 4, true) + Number(dataView.getUint32(offset2.value, true) << 32); } offset2.value += ULONG_SIZE; return int; }; function parseFloat32(dataView, offset2) { var float = dataView.getFloat32(offset2.value, true); offset2.value += FLOAT32_SIZE; return float; } function decodeFloat32(dataView, offset2) { return THREE.DataUtils.toHalfFloat(parseFloat32(dataView, offset2)); } function decodeFloat16(binary) { var exponent = (binary & 31744) >> 10, fraction = binary & 1023; return (binary >> 15 ? -1 : 1) * (exponent ? exponent === 31 ? fraction ? NaN : Infinity : Math.pow(2, exponent - 15) * (1 + fraction / 1024) : 6103515625e-14 * (fraction / 1024)); } function parseUint16(dataView, offset2) { var Uint16 = dataView.getUint16(offset2.value, true); offset2.value += INT16_SIZE; return Uint16; } function parseFloat16(buffer2, offset2) { return decodeFloat16(parseUint16(buffer2, offset2)); } function parseChlist(dataView, buffer2, offset2, size) { var startOffset = offset2.value; var channels = []; while (offset2.value < startOffset + size - 1) { var name = parseNullTerminatedString(buffer2, offset2); var pixelType = parseInt32(dataView, offset2); var pLinear = parseUint8(dataView, offset2); offset2.value += 3; var xSampling = parseInt32(dataView, offset2); var ySampling = parseInt32(dataView, offset2); channels.push({ name, pixelType, pLinear, xSampling, ySampling }); } offset2.value += 1; return channels; } function parseChromaticities(dataView, offset2) { var redX = parseFloat32(dataView, offset2); var redY = parseFloat32(dataView, offset2); var greenX = parseFloat32(dataView, offset2); var greenY = parseFloat32(dataView, offset2); var blueX = parseFloat32(dataView, offset2); var blueY = parseFloat32(dataView, offset2); var whiteX = parseFloat32(dataView, offset2); var whiteY = parseFloat32(dataView, offset2); return { redX, redY, greenX, greenY, blueX, blueY, whiteX, whiteY }; } function parseCompression(dataView, offset2) { var compressionCodes = [ "NO_COMPRESSION", "RLE_COMPRESSION", "ZIPS_COMPRESSION", "ZIP_COMPRESSION", "PIZ_COMPRESSION", "PXR24_COMPRESSION", "B44_COMPRESSION", "B44A_COMPRESSION", "DWAA_COMPRESSION", "DWAB_COMPRESSION" ]; var compression = parseUint8(dataView, offset2); return compressionCodes[compression]; } function parseBox2i(dataView, offset2) { var xMin = parseUint32(dataView, offset2); var yMin = parseUint32(dataView, offset2); var xMax = parseUint32(dataView, offset2); var yMax = parseUint32(dataView, offset2); return { xMin, yMin, xMax, yMax }; } function parseLineOrder(dataView, offset2) { var lineOrders = ["INCREASING_Y"]; var lineOrder = parseUint8(dataView, offset2); return lineOrders[lineOrder]; } function parseV2f(dataView, offset2) { var x = parseFloat32(dataView, offset2); var y = parseFloat32(dataView, offset2); return [x, y]; } function parseV3f(dataView, offset2) { var x = parseFloat32(dataView, offset2); var y = parseFloat32(dataView, offset2); var z = parseFloat32(dataView, offset2); return [x, y, z]; } function parseValue(dataView, buffer2, offset2, type, size) { if (type === "string" || type === "stringvector" || type === "iccProfile") { return parseFixedLengthString(buffer2, offset2, size); } else if (type === "chlist") { return parseChlist(dataView, buffer2, offset2, size); } else if (type === "chromaticities") { return parseChromaticities(dataView, offset2); } else if (type === "compression") { return parseCompression(dataView, offset2); } else if (type === "box2i") { return parseBox2i(dataView, offset2); } else if (type === "lineOrder") { return parseLineOrder(dataView, offset2); } else if (type === "float") { return parseFloat32(dataView, offset2); } else if (type === "v2f") { return parseV2f(dataView, offset2); } else if (type === "v3f") { return parseV3f(dataView, offset2); } else if (type === "int") { return parseInt32(dataView, offset2); } else if (type === "rational") { return parseRational(dataView, offset2); } else if (type === "timecode") { return parseTimecode(dataView, offset2); } else if (type === "preview") { offset2.value += size; return "skipped"; } else { offset2.value += size; return void 0; } } function parseHeader(dataView, buffer2, offset2) { const EXRHeader2 = {}; if (dataView.getUint32(0, true) != 20000630) { throw "THREE.EXRLoader: provided file doesn't appear to be in OpenEXR format."; } EXRHeader2.version = dataView.getUint8(4); const spec = dataView.getUint8(5); EXRHeader2.spec = { singleTile: !!(spec & 2), longName: !!(spec & 4), deepFormat: !!(spec & 8), multiPart: !!(spec & 16) }; offset2.value = 8; var keepReading = true; while (keepReading) { var attributeName = parseNullTerminatedString(buffer2, offset2); if (attributeName == 0) { keepReading = false; } else { var attributeType = parseNullTerminatedString(buffer2, offset2); var attributeSize = parseUint32(dataView, offset2); var attributeValue = parseValue(dataView, buffer2, offset2, attributeType, attributeSize); if (attributeValue === void 0) { console.warn(`EXRLoader.parse: skipped unknown header attribute type '${attributeType}'.`); } else { EXRHeader2[attributeName] = attributeValue; } } } if ((spec & ~4) != 0) { console.error("EXRHeader:", EXRHeader2); throw "THREE.EXRLoader: provided file is currently unsupported."; } return EXRHeader2; } function setupDecoder(EXRHeader2, dataView, uInt8Array2, offset2, outputType) { const EXRDecoder2 = { size: 0, viewer: dataView, array: uInt8Array2, offset: offset2, width: EXRHeader2.dataWindow.xMax - EXRHeader2.dataWindow.xMin + 1, height: EXRHeader2.dataWindow.yMax - EXRHeader2.dataWindow.yMin + 1, channels: EXRHeader2.channels.length, bytesPerLine: null, lines: null, inputSize: null, type: EXRHeader2.channels[0].pixelType, uncompress: null, getter: null, format: null, [hasColorSpace ? "colorSpace" : "encoding"]: null }; switch (EXRHeader2.compression) { case "NO_COMPRESSION": EXRDecoder2.lines = 1; EXRDecoder2.uncompress = uncompressRAW; break; case "RLE_COMPRESSION": EXRDecoder2.lines = 1; EXRDecoder2.uncompress = uncompressRLE; break; case "ZIPS_COMPRESSION": EXRDecoder2.lines = 1; EXRDecoder2.uncompress = uncompressZIP; break; case "ZIP_COMPRESSION": EXRDecoder2.lines = 16; EXRDecoder2.uncompress = uncompressZIP; break; case "PIZ_COMPRESSION": EXRDecoder2.lines = 32; EXRDecoder2.uncompress = uncompressPIZ; break; case "PXR24_COMPRESSION": EXRDecoder2.lines = 16; EXRDecoder2.uncompress = uncompressPXR; break; case "DWAA_COMPRESSION": EXRDecoder2.lines = 32; EXRDecoder2.uncompress = uncompressDWA; break; case "DWAB_COMPRESSION": EXRDecoder2.lines = 256; EXRDecoder2.uncompress = uncompressDWA; break; default: throw "EXRLoader.parse: " + EXRHeader2.compression + " is unsupported"; } EXRDecoder2.scanlineBlockSize = EXRDecoder2.lines; if (EXRDecoder2.type == 1) { switch (outputType) { case THREE.FloatType: EXRDecoder2.getter = parseFloat16; EXRDecoder2.inputSize = INT16_SIZE; break; case THREE.HalfFloatType: EXRDecoder2.getter = parseUint16; EXRDecoder2.inputSize = INT16_SIZE; break; } } else if (EXRDecoder2.type == 2) { switch (outputType) { case THREE.FloatType: EXRDecoder2.getter = parseFloat32; EXRDecoder2.inputSize = FLOAT32_SIZE; break; case THREE.HalfFloatType: EXRDecoder2.getter = decodeFloat32; EXRDecoder2.inputSize = FLOAT32_SIZE; } } else { throw "EXRLoader.parse: unsupported pixelType " + EXRDecoder2.type + " for " + EXRHeader2.compression + "."; } EXRDecoder2.blockCount = (EXRHeader2.dataWindow.yMax + 1) / EXRDecoder2.scanlineBlockSize; for (var i = 0; i < EXRDecoder2.blockCount; i++) parseInt64(dataView, offset2); EXRDecoder2.outputChannels = EXRDecoder2.channels == 3 ? 4 : EXRDecoder2.channels; const size = EXRDecoder2.width * EXRDecoder2.height * EXRDecoder2.outputChannels; switch (outputType) { case THREE.FloatType: EXRDecoder2.byteArray = new Float32Array(size); if (EXRDecoder2.channels < EXRDecoder2.outputChannels) EXRDecoder2.byteArray.fill(1, 0, size); break; case THREE.HalfFloatType: EXRDecoder2.byteArray = new Uint16Array(size); if (EXRDecoder2.channels < EXRDecoder2.outputChannels) EXRDecoder2.byteArray.fill(15360, 0, size); break; default: console.error("THREE.EXRLoader: unsupported type: ", outputType); break; } EXRDecoder2.bytesPerLine = EXRDecoder2.width * EXRDecoder2.inputSize * EXRDecoder2.channels; if (EXRDecoder2.outputChannels == 4) EXRDecoder2.format = THREE.RGBAFormat; else EXRDecoder2.format = THREE.RedFormat; if (hasColorSpace) EXRDecoder2.colorSpace = "srgb-linear"; else EXRDecoder2.encoding = 3e3; return EXRDecoder2; } const bufferDataView = new DataView(buffer); const uInt8Array = new Uint8Array(buffer); const offset = { value: 0 }; const EXRHeader = parseHeader(bufferDataView, buffer, offset); const EXRDecoder = setupDecoder(EXRHeader, bufferDataView, uInt8Array, offset, this.type); const tmpOffset = { value: 0 }; const channelOffsets = { R: 0, G: 1, B: 2, A: 3, Y: 0 }; for (let scanlineBlockIdx = 0; scanlineBlockIdx < EXRDecoder.height / EXRDecoder.scanlineBlockSize; scanlineBlockIdx++) { const line = parseUint32(bufferDataView, offset); EXRDecoder.size = parseUint32(bufferDataView, offset); EXRDecoder.lines = line + EXRDecoder.scanlineBlockSize > EXRDecoder.height ? EXRDecoder.height - line : EXRDecoder.scanlineBlockSize; const isCompressed = EXRDecoder.size < EXRDecoder.lines * EXRDecoder.bytesPerLine; const viewer = isCompressed ? EXRDecoder.uncompress(EXRDecoder) : uncompressRAW(EXRDecoder); offset.value += EXRDecoder.size; for (let line_y = 0; line_y < EXRDecoder.scanlineBlockSize; line_y++) { const true_y = line_y + scanlineBlockIdx * EXRDecoder.scanlineBlockSize; if (true_y >= EXRDecoder.height) break; for (let channelID = 0; channelID < EXRDecoder.channels; channelID++) { const cOff = channelOffsets[EXRHeader.channels[channelID].name]; for (let x = 0; x < EXRDecoder.width; x++) { tmpOffset.value = (line_y * (EXRDecoder.channels * EXRDecoder.width) + channe