three-stdlib
Version:
stand-alone library of threejs examples
804 lines (803 loc) • 28.7 kB
JavaScript
"use strict";
Object.defineProperty(exports, Symbol.toStringTag, { value: "Module" });
const THREE = require("three");
const _taskCache = /* @__PURE__ */ new WeakMap();
class Rhino3dmLoader extends THREE.Loader {
constructor(manager) {
super(manager);
this.libraryPath = "";
this.libraryPending = null;
this.libraryBinary = null;
this.libraryConfig = {};
this.url = "";
this.workerLimit = 4;
this.workerPool = [];
this.workerNextTaskID = 1;
this.workerSourceURL = "";
this.workerConfig = {};
this.materials = [];
}
setLibraryPath(path) {
this.libraryPath = path;
return this;
}
setWorkerLimit(workerLimit) {
this.workerLimit = workerLimit;
return this;
}
load(url, onLoad, onProgress, onError) {
const loader = new THREE.FileLoader(this.manager);
loader.setPath(this.path);
loader.setResponseType("arraybuffer");
loader.setRequestHeader(this.requestHeader);
this.url = url;
loader.load(
url,
(buffer) => {
if (_taskCache.has(buffer)) {
const cachedTask = _taskCache.get(buffer);
return cachedTask.promise.then(onLoad).catch(onError);
}
this.decodeObjects(buffer, url).then(onLoad).catch(onError);
},
onProgress,
onError
);
}
debug() {
console.log(
"Task load: ",
this.workerPool.map((worker) => worker._taskLoad)
);
}
decodeObjects(buffer, url) {
let worker;
let taskID;
const taskCost = buffer.byteLength;
const objectPending = this._getWorker(taskCost).then((_worker) => {
worker = _worker;
taskID = this.workerNextTaskID++;
return new Promise((resolve, reject) => {
worker._callbacks[taskID] = { resolve, reject };
worker.postMessage({ type: "decode", id: taskID, buffer }, [buffer]);
});
}).then((message) => this._createGeometry(message.data));
objectPending.catch(() => true).then(() => {
if (worker && taskID) {
this._releaseTask(worker, taskID);
}
});
_taskCache.set(buffer, {
url,
promise: objectPending
});
return objectPending;
}
parse(data, onLoad, onError) {
this.decodeObjects(data, "").then(onLoad).catch(onError);
}
_compareMaterials(material) {
const mat = {};
mat.name = material.name;
mat.color = {};
mat.color.r = material.color.r;
mat.color.g = material.color.g;
mat.color.b = material.color.b;
mat.type = material.type;
for (let i = 0; i < this.materials.length; i++) {
const m = this.materials[i];
const _mat = {};
_mat.name = m.name;
_mat.color = {};
_mat.color.r = m.color.r;
_mat.color.g = m.color.g;
_mat.color.b = m.color.b;
_mat.type = m.type;
if (JSON.stringify(mat) === JSON.stringify(_mat)) {
return m;
}
}
this.materials.push(material);
return material;
}
_createMaterial(material) {
if (material === void 0) {
return new THREE.MeshStandardMaterial({
color: new THREE.Color(1, 1, 1),
metalness: 0.8,
name: "default",
side: 2
});
}
const _diffuseColor = material.diffuseColor;
const diffusecolor = new THREE.Color(_diffuseColor.r / 255, _diffuseColor.g / 255, _diffuseColor.b / 255);
if (_diffuseColor.r === 0 && _diffuseColor.g === 0 && _diffuseColor.b === 0) {
diffusecolor.r = 1;
diffusecolor.g = 1;
diffusecolor.b = 1;
}
const mat = new THREE.MeshStandardMaterial({
color: diffusecolor,
name: material.name,
side: 2,
transparent: material.transparency > 0 ? true : false,
opacity: 1 - material.transparency
});
const textureLoader = new THREE.TextureLoader();
for (let i = 0; i < material.textures.length; i++) {
const texture = material.textures[i];
if (texture.image !== null) {
const map = textureLoader.load(texture.image);
switch (texture.type) {
case "Diffuse":
mat.map = map;
break;
case "Bump":
mat.bumpMap = map;
break;
case "Transparency":
mat.alphaMap = map;
mat.transparent = true;
break;
case "Emap":
mat.envMap = map;
break;
}
}
}
return mat;
}
_createGeometry(data) {
const object = new THREE.Object3D();
const instanceDefinitionObjects = [];
const instanceDefinitions = [];
const instanceReferences = [];
object.userData["layers"] = data.layers;
object.userData["groups"] = data.groups;
object.userData["settings"] = data.settings;
object.userData["objectType"] = "File3dm";
object.userData["materials"] = null;
object.name = this.url;
let objects = data.objects;
const materials = data.materials;
for (let i = 0; i < objects.length; i++) {
const obj = objects[i];
const attributes = obj.attributes;
switch (obj.objectType) {
case "InstanceDefinition":
instanceDefinitions.push(obj);
break;
case "InstanceReference":
instanceReferences.push(obj);
break;
default:
let _object;
if (attributes.materialIndex >= 0) {
const rMaterial = materials[attributes.materialIndex];
let material = this._createMaterial(rMaterial);
material = this._compareMaterials(material);
_object = this._createObject(obj, material);
} else {
const material = this._createMaterial();
_object = this._createObject(obj, material);
}
if (_object === void 0) {
continue;
}
const layer = data.layers[attributes.layerIndex];
_object.visible = layer ? data.layers[attributes.layerIndex].visible : true;
if (attributes.isInstanceDefinitionObject) {
instanceDefinitionObjects.push(_object);
} else {
object.add(_object);
}
break;
}
}
for (let i = 0; i < instanceDefinitions.length; i++) {
const iDef = instanceDefinitions[i];
objects = [];
for (let j = 0; j < iDef.attributes.objectIds.length; j++) {
const objId = iDef.attributes.objectIds[j];
for (let p = 0; p < instanceDefinitionObjects.length; p++) {
const idoId = instanceDefinitionObjects[p].userData.attributes.id;
if (objId === idoId) {
objects.push(instanceDefinitionObjects[p]);
}
}
}
for (let j = 0; j < instanceReferences.length; j++) {
const iRef = instanceReferences[j];
if (iRef.geometry.parentIdefId === iDef.attributes.id) {
const iRefObject = new THREE.Object3D();
const xf = iRef.geometry.xform.array;
const matrix = new THREE.Matrix4();
matrix.set(
xf[0],
xf[1],
xf[2],
xf[3],
xf[4],
xf[5],
xf[6],
xf[7],
xf[8],
xf[9],
xf[10],
xf[11],
xf[12],
xf[13],
xf[14],
xf[15]
);
iRefObject.applyMatrix4(matrix);
for (let p = 0; p < objects.length; p++) {
iRefObject.add(objects[p].clone(true));
}
object.add(iRefObject);
}
}
}
object.userData["materials"] = this.materials;
return object;
}
_createObject(obj, mat) {
const loader = new THREE.BufferGeometryLoader();
const attributes = obj.attributes;
let geometry, material, _color, color;
switch (obj.objectType) {
case "Point":
case "PointSet":
geometry = loader.parse(obj.geometry);
if (geometry.attributes.hasOwnProperty("color")) {
material = new THREE.PointsMaterial({ vertexColors: true, sizeAttenuation: false, size: 2 });
} else {
_color = attributes.drawColor;
color = new THREE.Color(_color.r / 255, _color.g / 255, _color.b / 255);
material = new THREE.PointsMaterial({ color, sizeAttenuation: false, size: 2 });
}
material = this._compareMaterials(material);
const points = new THREE.Points(geometry, material);
points.userData["attributes"] = attributes;
points.userData["objectType"] = obj.objectType;
if (attributes.name) {
points.name = attributes.name;
}
return points;
case "Mesh":
case "Extrusion":
case "SubD":
case "Brep":
if (obj.geometry === null)
return;
geometry = loader.parse(obj.geometry);
if (geometry.attributes.hasOwnProperty("color")) {
mat.vertexColors = true;
}
if (mat === null) {
mat = this._createMaterial();
mat = this._compareMaterials(mat);
}
const mesh = new THREE.Mesh(geometry, mat);
mesh.castShadow = attributes.castsShadows;
mesh.receiveShadow = attributes.receivesShadows;
mesh.userData["attributes"] = attributes;
mesh.userData["objectType"] = obj.objectType;
if (attributes.name) {
mesh.name = attributes.name;
}
return mesh;
case "Curve":
geometry = loader.parse(obj.geometry);
_color = attributes.drawColor;
color = new THREE.Color(_color.r / 255, _color.g / 255, _color.b / 255);
material = new THREE.LineBasicMaterial({ color });
material = this._compareMaterials(material);
const lines = new THREE.Line(geometry, material);
lines.userData["attributes"] = attributes;
lines.userData["objectType"] = obj.objectType;
if (attributes.name) {
lines.name = attributes.name;
}
return lines;
case "TextDot":
geometry = obj.geometry;
const ctx = document.createElement("canvas").getContext("2d");
const font = `${geometry.fontHeight}px ${geometry.fontFace}`;
ctx.font = font;
const width = ctx.measureText(geometry.text).width + 10;
const height = geometry.fontHeight + 10;
const r = window.devicePixelRatio;
ctx.canvas.width = width * r;
ctx.canvas.height = height * r;
ctx.canvas.style.width = width + "px";
ctx.canvas.style.height = height + "px";
ctx.setTransform(r, 0, 0, r, 0, 0);
ctx.font = font;
ctx.textBaseline = "middle";
ctx.textAlign = "center";
color = attributes.drawColor;
ctx.fillStyle = `rgba(${color.r},${color.g},${color.b},${color.a})`;
ctx.fillRect(0, 0, width, height);
ctx.fillStyle = "white";
ctx.fillText(geometry.text, width / 2, height / 2);
const texture = new THREE.CanvasTexture(ctx.canvas);
texture.minFilter = THREE.LinearFilter;
texture.wrapS = THREE.ClampToEdgeWrapping;
texture.wrapT = THREE.ClampToEdgeWrapping;
material = new THREE.SpriteMaterial({ map: texture, depthTest: false });
const sprite = new THREE.Sprite(material);
sprite.position.set(geometry.point[0], geometry.point[1], geometry.point[2]);
sprite.scale.set(width / 10, height / 10, 1);
sprite.userData["attributes"] = attributes;
sprite.userData["objectType"] = obj.objectType;
if (attributes.name) {
sprite.name = attributes.name;
}
return sprite;
case "Light":
geometry = obj.geometry;
let light;
if (geometry.isDirectionalLight) {
light = new THREE.DirectionalLight();
light.castShadow = attributes.castsShadows;
light.position.set(geometry.location[0], geometry.location[1], geometry.location[2]);
light.target.position.set(geometry.direction[0], geometry.direction[1], geometry.direction[2]);
light.shadow.normalBias = 0.1;
} else if (geometry.isPointLight) {
light = new THREE.PointLight();
light.castShadow = attributes.castsShadows;
light.position.set(geometry.location[0], geometry.location[1], geometry.location[2]);
light.shadow.normalBias = 0.1;
} else if (geometry.isRectangularLight) {
light = new THREE.RectAreaLight();
const width2 = Math.abs(geometry.width[2]);
const height2 = Math.abs(geometry.length[0]);
light.position.set(geometry.location[0] - height2 / 2, geometry.location[1], geometry.location[2] - width2 / 2);
light.height = height2;
light.width = width2;
light.lookAt(new THREE.Vector3(geometry.direction[0], geometry.direction[1], geometry.direction[2]));
} else if (geometry.isSpotLight) {
light = new THREE.SpotLight();
light.castShadow = attributes.castsShadows;
light.position.set(geometry.location[0], geometry.location[1], geometry.location[2]);
light.target.position.set(geometry.direction[0], geometry.direction[1], geometry.direction[2]);
light.angle = geometry.spotAngleRadians;
light.shadow.normalBias = 0.1;
} else if (geometry.isLinearLight) {
console.warn("THREE.3DMLoader: No conversion exists for linear lights.");
return;
}
if (light) {
light.intensity = geometry.intensity;
_color = geometry.diffuse;
color = new THREE.Color(_color.r / 255, _color.g / 255, _color.b / 255);
light.color = color;
light.userData["attributes"] = attributes;
light.userData["objectType"] = obj.objectType;
}
return light;
}
}
_initLibrary() {
if (!this.libraryPending) {
const jsLoader = new THREE.FileLoader(this.manager);
jsLoader.setPath(this.libraryPath);
const jsContent = new Promise((resolve, reject) => {
jsLoader.load("rhino3dm.js", resolve, void 0, reject);
});
const binaryLoader = new THREE.FileLoader(this.manager);
binaryLoader.setPath(this.libraryPath);
binaryLoader.setResponseType("arraybuffer");
const binaryContent = new Promise((resolve, reject) => {
binaryLoader.load("rhino3dm.wasm", resolve, void 0, reject);
});
this.libraryPending = Promise.all([jsContent, binaryContent]).then(([jsContent2, binaryContent2]) => {
this.libraryConfig.wasmBinary = binaryContent2;
const fn = Rhino3dmWorker.toString();
const body = [
"/* rhino3dm.js */",
jsContent2,
"/* worker */",
fn.substring(fn.indexOf("{") + 1, fn.lastIndexOf("}"))
].join("\n");
this.workerSourceURL = URL.createObjectURL(new Blob([body]));
});
}
return this.libraryPending;
}
_getWorker(taskCost) {
return this._initLibrary().then(() => {
if (this.workerPool.length < this.workerLimit) {
const worker2 = new Worker(this.workerSourceURL);
worker2._callbacks = {};
worker2._taskCosts = {};
worker2._taskLoad = 0;
worker2.postMessage({
type: "init",
libraryConfig: this.libraryConfig
});
worker2.onmessage = function(e) {
const message = e.data;
switch (message.type) {
case "decode":
worker2._callbacks[message.id].resolve(message);
break;
case "error":
worker2._callbacks[message.id].reject(message);
break;
default:
console.error('THREE.Rhino3dmLoader: Unexpected message, "' + message.type + '"');
}
};
this.workerPool.push(worker2);
} else {
this.workerPool.sort(function(a, b) {
return a._taskLoad > b._taskLoad ? -1 : 1;
});
}
const worker = this.workerPool[this.workerPool.length - 1];
worker._taskLoad += taskCost;
return worker;
});
}
_releaseTask(worker, taskID) {
worker._taskLoad -= worker._taskCosts[taskID];
delete worker._callbacks[taskID];
delete worker._taskCosts[taskID];
}
dispose() {
for (let i = 0; i < this.workerPool.length; ++i) {
this.workerPool[i].terminate();
}
this.workerPool.length = 0;
return this;
}
}
function Rhino3dmWorker() {
let libraryPending;
let libraryConfig;
let rhino;
onmessage = function(e) {
const message = e.data;
switch (message.type) {
case "init":
libraryConfig = message.libraryConfig;
const wasmBinary = libraryConfig.wasmBinary;
let RhinoModule;
libraryPending = new Promise(function(resolve) {
RhinoModule = { wasmBinary, onRuntimeInitialized: resolve };
rhino3dm(RhinoModule);
}).then(() => {
rhino = RhinoModule;
});
break;
case "decode":
const buffer = message.buffer;
libraryPending.then(() => {
const data = decodeObjects(rhino, buffer);
self.postMessage({ type: "decode", id: message.id, data });
});
break;
}
};
function decodeObjects(rhino2, buffer) {
const arr = new Uint8Array(buffer);
const doc = rhino2.File3dm.fromByteArray(arr);
const objects = [];
const materials = [];
const layers = [];
const views = [];
const namedViews = [];
const groups = [];
const objs = doc.objects();
const cnt = objs.count;
for (let i = 0; i < cnt; i++) {
const _object = objs.get(i);
const object = extractObjectData(_object, doc);
_object.delete();
if (object) {
objects.push(object);
}
}
for (let i = 0; i < doc.instanceDefinitions().count(); i++) {
const idef = doc.instanceDefinitions().get(i);
const idefAttributes = extractProperties(idef);
idefAttributes.objectIds = idef.getObjectIds();
objects.push({ geometry: null, attributes: idefAttributes, objectType: "InstanceDefinition" });
}
const textureTypes = [
// rhino.TextureType.Bitmap,
rhino2.TextureType.Diffuse,
rhino2.TextureType.Bump,
rhino2.TextureType.Transparency,
rhino2.TextureType.Opacity,
rhino2.TextureType.Emap
];
const pbrTextureTypes = [
rhino2.TextureType.PBR_BaseColor,
rhino2.TextureType.PBR_Subsurface,
rhino2.TextureType.PBR_SubsurfaceScattering,
rhino2.TextureType.PBR_SubsurfaceScatteringRadius,
rhino2.TextureType.PBR_Metallic,
rhino2.TextureType.PBR_Specular,
rhino2.TextureType.PBR_SpecularTint,
rhino2.TextureType.PBR_Roughness,
rhino2.TextureType.PBR_Anisotropic,
rhino2.TextureType.PBR_Anisotropic_Rotation,
rhino2.TextureType.PBR_Sheen,
rhino2.TextureType.PBR_SheenTint,
rhino2.TextureType.PBR_Clearcoat,
rhino2.TextureType.PBR_ClearcoatBump,
rhino2.TextureType.PBR_ClearcoatRoughness,
rhino2.TextureType.PBR_OpacityIor,
rhino2.TextureType.PBR_OpacityRoughness,
rhino2.TextureType.PBR_Emission,
rhino2.TextureType.PBR_AmbientOcclusion,
rhino2.TextureType.PBR_Displacement
];
for (let i = 0; i < doc.materials().count(); i++) {
const _material = doc.materials().get(i);
const _pbrMaterial = _material.physicallyBased();
let material = extractProperties(_material);
const textures = [];
for (let j = 0; j < textureTypes.length; j++) {
const _texture = _material.getTexture(textureTypes[j]);
if (_texture) {
let textureType = textureTypes[j].constructor.name;
textureType = textureType.substring(12, textureType.length);
const texture = { type: textureType };
const image = doc.getEmbeddedFileAsBase64(_texture.fileName);
if (image) {
texture.image = "data:image/png;base64," + image;
} else {
console.warn(`THREE.3DMLoader: Image for ${textureType} texture not embedded in file.`);
texture.image = null;
}
textures.push(texture);
_texture.delete();
}
}
material.textures = textures;
if (_pbrMaterial.supported) {
console.log("pbr true");
for (let j = 0; j < pbrTextureTypes.length; j++) {
const _texture = _material.getTexture(textureTypes[j]);
if (_texture) {
const image = doc.getEmbeddedFileAsBase64(_texture.fileName);
let textureType = textureTypes[j].constructor.name;
textureType = textureType.substring(12, textureType.length);
const texture = { type: textureType, image: "data:image/png;base64," + image };
textures.push(texture);
_texture.delete();
}
}
const pbMaterialProperties = extractProperties(_material.physicallyBased());
material = Object.assign(pbMaterialProperties, material);
}
materials.push(material);
_material.delete();
_pbrMaterial.delete();
}
for (let i = 0; i < doc.layers().count(); i++) {
const _layer = doc.layers().get(i);
const layer = extractProperties(_layer);
layers.push(layer);
_layer.delete();
}
for (let i = 0; i < doc.views().count(); i++) {
const _view = doc.views().get(i);
const view = extractProperties(_view);
views.push(view);
_view.delete();
}
for (let i = 0; i < doc.namedViews().count(); i++) {
const _namedView = doc.namedViews().get(i);
const namedView = extractProperties(_namedView);
namedViews.push(namedView);
_namedView.delete();
}
for (let i = 0; i < doc.groups().count(); i++) {
const _group = doc.groups().get(i);
const group = extractProperties(_group);
groups.push(group);
_group.delete();
}
const settings = extractProperties(doc.settings());
doc.delete();
return { objects, materials, layers, views, namedViews, groups, settings };
}
function extractObjectData(object, doc) {
const _geometry = object.geometry();
const _attributes = object.attributes();
let objectType = _geometry.objectType;
let geometry, attributes, position, data, mesh;
switch (objectType) {
case rhino.ObjectType.Curve:
const pts = curveToPoints(_geometry, 100);
position = {};
attributes = {};
data = {};
position.itemSize = 3;
position.type = "Float32Array";
position.array = [];
for (let j = 0; j < pts.length; j++) {
position.array.push(pts[j][0]);
position.array.push(pts[j][1]);
position.array.push(pts[j][2]);
}
attributes.position = position;
data.attributes = attributes;
geometry = { data };
break;
case rhino.ObjectType.Point:
const pt = _geometry.location;
position = {};
const color = {};
attributes = {};
data = {};
position.itemSize = 3;
position.type = "Float32Array";
position.array = [pt[0], pt[1], pt[2]];
const _color = _attributes.drawColor(doc);
color.itemSize = 3;
color.type = "Float32Array";
color.array = [_color.r / 255, _color.g / 255, _color.b / 255];
attributes.position = position;
attributes.color = color;
data.attributes = attributes;
geometry = { data };
break;
case rhino.ObjectType.PointSet:
case rhino.ObjectType.Mesh:
geometry = _geometry.toThreejsJSON();
break;
case rhino.ObjectType.Brep:
const faces = _geometry.faces();
mesh = new rhino.Mesh();
for (let faceIndex = 0; faceIndex < faces.count; faceIndex++) {
const face = faces.get(faceIndex);
const _mesh = face.getMesh(rhino.MeshType.Any);
if (_mesh) {
mesh.append(_mesh);
_mesh.delete();
}
face.delete();
}
if (mesh.faces().count > 0) {
mesh.compact();
geometry = mesh.toThreejsJSON();
faces.delete();
}
mesh.delete();
break;
case rhino.ObjectType.Extrusion:
mesh = _geometry.getMesh(rhino.MeshType.Any);
if (mesh) {
geometry = mesh.toThreejsJSON();
mesh.delete();
}
break;
case rhino.ObjectType.TextDot:
geometry = extractProperties(_geometry);
break;
case rhino.ObjectType.Light:
geometry = extractProperties(_geometry);
break;
case rhino.ObjectType.InstanceReference:
geometry = extractProperties(_geometry);
geometry.xform = extractProperties(_geometry.xform);
geometry.xform.array = _geometry.xform.toFloatArray(true);
break;
case rhino.ObjectType.SubD:
_geometry.subdivide(3);
mesh = rhino.Mesh.createFromSubDControlNet(_geometry);
if (mesh) {
geometry = mesh.toThreejsJSON();
mesh.delete();
}
break;
default:
console.warn(`THREE.3DMLoader: TODO: Implement ${objectType.constructor.name}`);
break;
}
if (geometry) {
attributes = extractProperties(_attributes);
attributes.geometry = extractProperties(_geometry);
if (_attributes.groupCount > 0) {
attributes.groupIds = _attributes.getGroupList();
}
if (_attributes.userStringCount > 0) {
attributes.userStrings = _attributes.getUserStrings();
}
if (_geometry.userStringCount > 0) {
attributes.geometry.userStrings = _geometry.getUserStrings();
}
attributes.drawColor = _attributes.drawColor(doc);
objectType = objectType.constructor.name;
objectType = objectType.substring(11, objectType.length);
return { geometry, attributes, objectType };
} else {
console.warn(`THREE.3DMLoader: ${objectType.constructor.name} has no associated mesh geometry.`);
}
}
function extractProperties(object) {
const result = {};
for (const property in object) {
const value = object[property];
if (typeof value !== "function") {
if (typeof value === "object" && value !== null && value.hasOwnProperty("constructor")) {
result[property] = { name: value.constructor.name, value: value.value };
} else {
result[property] = value;
}
}
}
return result;
}
function curveToPoints(curve, pointLimit) {
let pointCount = pointLimit;
let rc = [];
const ts = [];
if (curve instanceof rhino.LineCurve) {
return [curve.pointAtStart, curve.pointAtEnd];
}
if (curve instanceof rhino.PolylineCurve) {
pointCount = curve.pointCount;
for (let i = 0; i < pointCount; i++) {
rc.push(curve.point(i));
}
return rc;
}
if (curve instanceof rhino.PolyCurve) {
const segmentCount = curve.segmentCount;
for (let i = 0; i < segmentCount; i++) {
const segment = curve.segmentCurve(i);
const segmentArray = curveToPoints(segment, pointCount);
rc = rc.concat(segmentArray);
segment.delete();
}
return rc;
}
if (curve instanceof rhino.ArcCurve) {
pointCount = Math.floor(curve.angleDegrees / 5);
pointCount = pointCount < 2 ? 2 : pointCount;
}
if (curve instanceof rhino.NurbsCurve && curve.degree === 1) {
const pLine = curve.tryGetPolyline();
for (let i = 0; i < pLine.count; i++) {
rc.push(pLine.get(i));
}
pLine.delete();
return rc;
}
const domain = curve.domain;
const divisions = pointCount - 1;
for (let j = 0; j < pointCount; j++) {
const t = domain[0] + j / divisions * (domain[1] - domain[0]);
if (t === domain[0] || t === domain[1]) {
ts.push(t);
continue;
}
const tan = curve.tangentAt(t);
const prevTan = curve.tangentAt(ts.slice(-1)[0]);
const tS = tan[0] * tan[0] + tan[1] * tan[1] + tan[2] * tan[2];
const ptS = prevTan[0] * prevTan[0] + prevTan[1] * prevTan[1] + prevTan[2] * prevTan[2];
const denominator = Math.sqrt(tS * ptS);
let angle;
if (denominator === 0) {
angle = Math.PI / 2;
} else {
const theta = (tan.x * prevTan.x + tan.y * prevTan.y + tan.z * prevTan.z) / denominator;
angle = Math.acos(Math.max(-1, Math.min(1, theta)));
}
if (angle < 0.1)
continue;
ts.push(t);
}
rc = ts.map((t) => curve.pointAt(t));
return rc;
}
}
exports.Rhino3dmLoader = Rhino3dmLoader;
//# sourceMappingURL=3DMLoader.cjs.map