UNPKG

three-stdlib

Version:

stand-alone library of threejs examples

228 lines (227 loc) 6.07 kB
"use strict"; Object.defineProperty(exports, Symbol.toStringTag, { value: "Module" }); const THREE = require("three"); function findSpan(p, u, U) { const n = U.length - p - 1; if (u >= U[n]) { return n - 1; } if (u <= U[p]) { return p; } let low = p; let high = n; let mid = Math.floor((low + high) / 2); while (u < U[mid] || u >= U[mid + 1]) { if (u < U[mid]) { high = mid; } else { low = mid; } mid = Math.floor((low + high) / 2); } return mid; } function calcBasisFunctions(span, u, p, U) { const N = []; const left = []; const right = []; N[0] = 1; for (let j = 1; j <= p; ++j) { left[j] = u - U[span + 1 - j]; right[j] = U[span + j] - u; let saved = 0; for (let r = 0; r < j; ++r) { const rv = right[r + 1]; const lv = left[j - r]; const temp = N[r] / (rv + lv); N[r] = saved + rv * temp; saved = lv * temp; } N[j] = saved; } return N; } function calcBSplinePoint(p, U, P, u) { const span = findSpan(p, u, U); const N = calcBasisFunctions(span, u, p, U); const C = new THREE.Vector4(0, 0, 0, 0); for (let j = 0; j <= p; ++j) { const point = P[span - p + j]; const Nj = N[j]; const wNj = point.w * Nj; C.x += point.x * wNj; C.y += point.y * wNj; C.z += point.z * wNj; C.w += point.w * Nj; } return C; } function calcBasisFunctionDerivatives(span, u, p, n, U) { const zeroArr = []; for (let i = 0; i <= p; ++i) zeroArr[i] = 0; const ders = []; for (let i = 0; i <= n; ++i) ders[i] = zeroArr.slice(0); const ndu = []; for (let i = 0; i <= p; ++i) ndu[i] = zeroArr.slice(0); ndu[0][0] = 1; const left = zeroArr.slice(0); const right = zeroArr.slice(0); for (let j = 1; j <= p; ++j) { left[j] = u - U[span + 1 - j]; right[j] = U[span + j] - u; let saved = 0; for (let r2 = 0; r2 < j; ++r2) { const rv = right[r2 + 1]; const lv = left[j - r2]; ndu[j][r2] = rv + lv; const temp = ndu[r2][j - 1] / ndu[j][r2]; ndu[r2][j] = saved + rv * temp; saved = lv * temp; } ndu[j][j] = saved; } for (let j = 0; j <= p; ++j) { ders[0][j] = ndu[j][p]; } for (let r2 = 0; r2 <= p; ++r2) { let s1 = 0; let s2 = 1; const a = []; for (let i = 0; i <= p; ++i) { a[i] = zeroArr.slice(0); } a[0][0] = 1; for (let k = 1; k <= n; ++k) { let d = 0; const rk = r2 - k; const pk = p - k; if (r2 >= k) { a[s2][0] = a[s1][0] / ndu[pk + 1][rk]; d = a[s2][0] * ndu[rk][pk]; } const j1 = rk >= -1 ? 1 : -rk; const j2 = r2 - 1 <= pk ? k - 1 : p - r2; for (let j3 = j1; j3 <= j2; ++j3) { a[s2][j3] = (a[s1][j3] - a[s1][j3 - 1]) / ndu[pk + 1][rk + j3]; d += a[s2][j3] * ndu[rk + j3][pk]; } if (r2 <= pk) { a[s2][k] = -a[s1][k - 1] / ndu[pk + 1][r2]; d += a[s2][k] * ndu[r2][pk]; } ders[k][r2] = d; const j = s1; s1 = s2; s2 = j; } } let r = p; for (let k = 1; k <= n; ++k) { for (let j = 0; j <= p; ++j) { ders[k][j] *= r; } r *= p - k; } return ders; } function calcBSplineDerivatives(p, U, P, u, nd) { const du = nd < p ? nd : p; const CK = []; const span = findSpan(p, u, U); const nders = calcBasisFunctionDerivatives(span, u, p, du, U); const Pw = []; for (let i = 0; i < P.length; ++i) { const point = P[i].clone(); const w = point.w; point.x *= w; point.y *= w; point.z *= w; Pw[i] = point; } for (let k = 0; k <= du; ++k) { const point = Pw[span - p].clone().multiplyScalar(nders[k][0]); for (let j = 1; j <= p; ++j) { point.add(Pw[span - p + j].clone().multiplyScalar(nders[k][j])); } CK[k] = point; } for (let k = du + 1; k <= nd + 1; ++k) { CK[k] = new THREE.Vector4(0, 0, 0); } return CK; } function calcKoverI(k, i) { let nom = 1; for (let j = 2; j <= k; ++j) { nom *= j; } let denom = 1; for (let j = 2; j <= i; ++j) { denom *= j; } for (let j = 2; j <= k - i; ++j) { denom *= j; } return nom / denom; } function calcRationalCurveDerivatives(Pders) { const nd = Pders.length; const Aders = []; const wders = []; for (let i = 0; i < nd; ++i) { const point = Pders[i]; Aders[i] = new THREE.Vector3(point.x, point.y, point.z); wders[i] = point.w; } const CK = []; for (let k = 0; k < nd; ++k) { const v = Aders[k].clone(); for (let i = 1; i <= k; ++i) { v.sub(CK[k - i].clone().multiplyScalar(calcKoverI(k, i) * wders[i])); } CK[k] = v.divideScalar(wders[0]); } return CK; } function calcNURBSDerivatives(p, U, P, u, nd) { const Pders = calcBSplineDerivatives(p, U, P, u, nd); return calcRationalCurveDerivatives(Pders); } function calcSurfacePoint(p, q, U, V, P, u, v, target) { const uspan = findSpan(p, u, U); const vspan = findSpan(q, v, V); const Nu = calcBasisFunctions(uspan, u, p, U); const Nv = calcBasisFunctions(vspan, v, q, V); const temp = []; for (let l = 0; l <= q; ++l) { temp[l] = new THREE.Vector4(0, 0, 0, 0); for (let k = 0; k <= p; ++k) { const point = P[uspan - p + k][vspan - q + l].clone(); const w = point.w; point.x *= w; point.y *= w; point.z *= w; temp[l].add(point.multiplyScalar(Nu[k])); } } const Sw = new THREE.Vector4(0, 0, 0, 0); for (let l = 0; l <= q; ++l) { Sw.add(temp[l].multiplyScalar(Nv[l])); } Sw.divideScalar(Sw.w); target.set(Sw.x, Sw.y, Sw.z); } exports.calcBSplineDerivatives = calcBSplineDerivatives; exports.calcBSplinePoint = calcBSplinePoint; exports.calcBasisFunctionDerivatives = calcBasisFunctionDerivatives; exports.calcBasisFunctions = calcBasisFunctions; exports.calcKoverI = calcKoverI; exports.calcNURBSDerivatives = calcNURBSDerivatives; exports.calcRationalCurveDerivatives = calcRationalCurveDerivatives; exports.calcSurfacePoint = calcSurfacePoint; exports.findSpan = findSpan; //# sourceMappingURL=NURBSUtils.cjs.map