three-stdlib
Version:
stand-alone library of threejs examples
228 lines (227 loc) • 6.07 kB
JavaScript
"use strict";
Object.defineProperty(exports, Symbol.toStringTag, { value: "Module" });
const THREE = require("three");
function findSpan(p, u, U) {
const n = U.length - p - 1;
if (u >= U[n]) {
return n - 1;
}
if (u <= U[p]) {
return p;
}
let low = p;
let high = n;
let mid = Math.floor((low + high) / 2);
while (u < U[mid] || u >= U[mid + 1]) {
if (u < U[mid]) {
high = mid;
} else {
low = mid;
}
mid = Math.floor((low + high) / 2);
}
return mid;
}
function calcBasisFunctions(span, u, p, U) {
const N = [];
const left = [];
const right = [];
N[0] = 1;
for (let j = 1; j <= p; ++j) {
left[j] = u - U[span + 1 - j];
right[j] = U[span + j] - u;
let saved = 0;
for (let r = 0; r < j; ++r) {
const rv = right[r + 1];
const lv = left[j - r];
const temp = N[r] / (rv + lv);
N[r] = saved + rv * temp;
saved = lv * temp;
}
N[j] = saved;
}
return N;
}
function calcBSplinePoint(p, U, P, u) {
const span = findSpan(p, u, U);
const N = calcBasisFunctions(span, u, p, U);
const C = new THREE.Vector4(0, 0, 0, 0);
for (let j = 0; j <= p; ++j) {
const point = P[span - p + j];
const Nj = N[j];
const wNj = point.w * Nj;
C.x += point.x * wNj;
C.y += point.y * wNj;
C.z += point.z * wNj;
C.w += point.w * Nj;
}
return C;
}
function calcBasisFunctionDerivatives(span, u, p, n, U) {
const zeroArr = [];
for (let i = 0; i <= p; ++i)
zeroArr[i] = 0;
const ders = [];
for (let i = 0; i <= n; ++i)
ders[i] = zeroArr.slice(0);
const ndu = [];
for (let i = 0; i <= p; ++i)
ndu[i] = zeroArr.slice(0);
ndu[0][0] = 1;
const left = zeroArr.slice(0);
const right = zeroArr.slice(0);
for (let j = 1; j <= p; ++j) {
left[j] = u - U[span + 1 - j];
right[j] = U[span + j] - u;
let saved = 0;
for (let r2 = 0; r2 < j; ++r2) {
const rv = right[r2 + 1];
const lv = left[j - r2];
ndu[j][r2] = rv + lv;
const temp = ndu[r2][j - 1] / ndu[j][r2];
ndu[r2][j] = saved + rv * temp;
saved = lv * temp;
}
ndu[j][j] = saved;
}
for (let j = 0; j <= p; ++j) {
ders[0][j] = ndu[j][p];
}
for (let r2 = 0; r2 <= p; ++r2) {
let s1 = 0;
let s2 = 1;
const a = [];
for (let i = 0; i <= p; ++i) {
a[i] = zeroArr.slice(0);
}
a[0][0] = 1;
for (let k = 1; k <= n; ++k) {
let d = 0;
const rk = r2 - k;
const pk = p - k;
if (r2 >= k) {
a[s2][0] = a[s1][0] / ndu[pk + 1][rk];
d = a[s2][0] * ndu[rk][pk];
}
const j1 = rk >= -1 ? 1 : -rk;
const j2 = r2 - 1 <= pk ? k - 1 : p - r2;
for (let j3 = j1; j3 <= j2; ++j3) {
a[s2][j3] = (a[s1][j3] - a[s1][j3 - 1]) / ndu[pk + 1][rk + j3];
d += a[s2][j3] * ndu[rk + j3][pk];
}
if (r2 <= pk) {
a[s2][k] = -a[s1][k - 1] / ndu[pk + 1][r2];
d += a[s2][k] * ndu[r2][pk];
}
ders[k][r2] = d;
const j = s1;
s1 = s2;
s2 = j;
}
}
let r = p;
for (let k = 1; k <= n; ++k) {
for (let j = 0; j <= p; ++j) {
ders[k][j] *= r;
}
r *= p - k;
}
return ders;
}
function calcBSplineDerivatives(p, U, P, u, nd) {
const du = nd < p ? nd : p;
const CK = [];
const span = findSpan(p, u, U);
const nders = calcBasisFunctionDerivatives(span, u, p, du, U);
const Pw = [];
for (let i = 0; i < P.length; ++i) {
const point = P[i].clone();
const w = point.w;
point.x *= w;
point.y *= w;
point.z *= w;
Pw[i] = point;
}
for (let k = 0; k <= du; ++k) {
const point = Pw[span - p].clone().multiplyScalar(nders[k][0]);
for (let j = 1; j <= p; ++j) {
point.add(Pw[span - p + j].clone().multiplyScalar(nders[k][j]));
}
CK[k] = point;
}
for (let k = du + 1; k <= nd + 1; ++k) {
CK[k] = new THREE.Vector4(0, 0, 0);
}
return CK;
}
function calcKoverI(k, i) {
let nom = 1;
for (let j = 2; j <= k; ++j) {
nom *= j;
}
let denom = 1;
for (let j = 2; j <= i; ++j) {
denom *= j;
}
for (let j = 2; j <= k - i; ++j) {
denom *= j;
}
return nom / denom;
}
function calcRationalCurveDerivatives(Pders) {
const nd = Pders.length;
const Aders = [];
const wders = [];
for (let i = 0; i < nd; ++i) {
const point = Pders[i];
Aders[i] = new THREE.Vector3(point.x, point.y, point.z);
wders[i] = point.w;
}
const CK = [];
for (let k = 0; k < nd; ++k) {
const v = Aders[k].clone();
for (let i = 1; i <= k; ++i) {
v.sub(CK[k - i].clone().multiplyScalar(calcKoverI(k, i) * wders[i]));
}
CK[k] = v.divideScalar(wders[0]);
}
return CK;
}
function calcNURBSDerivatives(p, U, P, u, nd) {
const Pders = calcBSplineDerivatives(p, U, P, u, nd);
return calcRationalCurveDerivatives(Pders);
}
function calcSurfacePoint(p, q, U, V, P, u, v, target) {
const uspan = findSpan(p, u, U);
const vspan = findSpan(q, v, V);
const Nu = calcBasisFunctions(uspan, u, p, U);
const Nv = calcBasisFunctions(vspan, v, q, V);
const temp = [];
for (let l = 0; l <= q; ++l) {
temp[l] = new THREE.Vector4(0, 0, 0, 0);
for (let k = 0; k <= p; ++k) {
const point = P[uspan - p + k][vspan - q + l].clone();
const w = point.w;
point.x *= w;
point.y *= w;
point.z *= w;
temp[l].add(point.multiplyScalar(Nu[k]));
}
}
const Sw = new THREE.Vector4(0, 0, 0, 0);
for (let l = 0; l <= q; ++l) {
Sw.add(temp[l].multiplyScalar(Nv[l]));
}
Sw.divideScalar(Sw.w);
target.set(Sw.x, Sw.y, Sw.z);
}
exports.calcBSplineDerivatives = calcBSplineDerivatives;
exports.calcBSplinePoint = calcBSplinePoint;
exports.calcBasisFunctionDerivatives = calcBasisFunctionDerivatives;
exports.calcBasisFunctions = calcBasisFunctions;
exports.calcKoverI = calcKoverI;
exports.calcNURBSDerivatives = calcNURBSDerivatives;
exports.calcRationalCurveDerivatives = calcRationalCurveDerivatives;
exports.calcSurfacePoint = calcSurfacePoint;
exports.findSpan = findSpan;
//# sourceMappingURL=NURBSUtils.cjs.map