three-loaders
Version:
This is a wrapper around threejs loaders to import it from any threejs application
1,716 lines (1,404 loc) • 96.1 kB
JavaScript
/**
* @author Rich Tibbett / https://github.com/richtr
* @author mrdoob / http://mrdoob.com/
* @author Tony Parisi / http://www.tonyparisi.com/
* @author Takahiro / https://github.com/takahirox
* @author Don McCurdy / https://www.donmccurdy.com
*/
var THREE = require("three");
var DRACOLoader = require("./THREEDracoLoader");
var _GLTFLoader = (function() {
function GLTFLoader(manager) {
this.manager =
manager !== undefined ? manager : THREE.DefaultLoadingManager;
this.dracoLoader = null;
}
GLTFLoader.prototype = {
constructor: GLTFLoader,
crossOrigin: "anonymous",
load: function(url, onLoad, onProgress, onError) {
var scope = this;
var resourcePath;
if (this.resourcePath !== undefined) {
resourcePath = this.resourcePath;
} else if (this.path !== undefined) {
resourcePath = this.path;
} else {
resourcePath = THREE.LoaderUtils.extractUrlBase(url);
}
// Tells the LoadingManager to track an extra item, which resolves after
// the model is fully loaded. This means the count of items loaded will
// be incorrect, but ensures manager.onLoad() does not fire early.
scope.manager.itemStart(url);
var _onError = function(e) {
if (onError) {
onError(e);
} else {
console.error(e);
}
scope.manager.itemError(url);
scope.manager.itemEnd(url);
};
var loader = new THREE.FileLoader(scope.manager);
loader.setPath(this.path);
loader.setResponseType("arraybuffer");
loader.load(
url,
function(data) {
try {
scope.parse(
data,
resourcePath,
function(gltf) {
onLoad(gltf);
scope.manager.itemEnd(url);
},
_onError
);
} catch (e) {
_onError(e);
}
},
onProgress,
_onError
);
},
setCrossOrigin: function(value) {
this.crossOrigin = value;
return this;
},
setPath: function(value) {
this.path = value;
return this;
},
setResourcePath: function(value) {
this.resourcePath = value;
return this;
},
setDRACOLoader: function(dracoLoader) {
this.dracoLoader = dracoLoader;
return this;
},
parse: function(data, path, onLoad, onError) {
var content;
var extensions = {};
if (typeof data === "string") {
content = data;
} else {
var magic = THREE.LoaderUtils.decodeText(new Uint8Array(data, 0, 4));
if (magic === BINARY_EXTENSION_HEADER_MAGIC) {
try {
extensions[EXTENSIONS.KHR_BINARY_GLTF] = new GLTFBinaryExtension(
data
);
} catch (error) {
if (onError) onError(error);
return;
}
content = extensions[EXTENSIONS.KHR_BINARY_GLTF].content;
} else {
content = THREE.LoaderUtils.decodeText(new Uint8Array(data));
}
}
var json = JSON.parse(content);
if (json.asset === undefined || json.asset.version[0] < 2) {
if (onError)
onError(
new Error(
"THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported. Use LegacyGLTFLoader instead."
)
);
return;
}
if (json.extensionsUsed) {
for (var i = 0; i < json.extensionsUsed.length; ++i) {
var extensionName = json.extensionsUsed[i];
var extensionsRequired = json.extensionsRequired || [];
switch (extensionName) {
case EXTENSIONS.KHR_LIGHTS_PUNCTUAL:
extensions[extensionName] = new GLTFLightsExtension(json);
break;
case EXTENSIONS.KHR_MATERIALS_UNLIT:
extensions[extensionName] = new GLTFMaterialsUnlitExtension(json);
break;
case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS:
extensions[
extensionName
] = new GLTFMaterialsPbrSpecularGlossinessExtension(json);
break;
case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
extensions[extensionName] = new GLTFDracoMeshCompressionExtension(
json,
this.dracoLoader
);
break;
case EXTENSIONS.MSFT_TEXTURE_DDS:
extensions[
EXTENSIONS.MSFT_TEXTURE_DDS
] = new GLTFTextureDDSExtension(json);
break;
case EXTENSIONS.KHR_TEXTURE_TRANSFORM:
extensions[
EXTENSIONS.KHR_TEXTURE_TRANSFORM
] = new GLTFTextureTransformExtension(json);
break;
default:
if (extensionsRequired.indexOf(extensionName) >= 0) {
console.warn(
'THREE.GLTFLoader: Unknown extension "' + extensionName + '".'
);
}
}
}
}
var parser = new GLTFParser(json, extensions, {
path: path || this.resourcePath || "",
crossOrigin: this.crossOrigin,
manager: this.manager
});
parser.parse(function(scene, scenes, cameras, animations, json) {
var glTF = {
scene: scene,
scenes: scenes,
cameras: cameras,
animations: animations,
asset: json.asset,
parser: parser,
userData: {}
};
addUnknownExtensionsToUserData(extensions, glTF, json);
onLoad(glTF);
}, onError);
}
};
/* GLTFREGISTRY */
function GLTFRegistry() {
var objects = {};
return {
get: function(key) {
return objects[key];
},
add: function(key, object) {
objects[key] = object;
},
remove: function(key) {
delete objects[key];
},
removeAll: function() {
objects = {};
}
};
}
/*********************************/
/********** EXTENSIONS ***********/
/*********************************/
var EXTENSIONS = {
KHR_BINARY_GLTF: "KHR_binary_glTF",
KHR_DRACO_MESH_COMPRESSION: "KHR_draco_mesh_compression",
KHR_LIGHTS_PUNCTUAL: "KHR_lights_punctual",
KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS:
"KHR_materials_pbrSpecularGlossiness",
KHR_MATERIALS_UNLIT: "KHR_materials_unlit",
KHR_TEXTURE_TRANSFORM: "KHR_texture_transform",
MSFT_TEXTURE_DDS: "MSFT_texture_dds"
};
/**
* DDS Texture Extension
*
* Specification:
* https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/MSFT_texture_dds
*
*/
function GLTFTextureDDSExtension() {
if (!THREE.DDSLoader) {
throw new Error(
"THREE.GLTFLoader: Attempting to load .dds texture without importing THREE.DDSLoader"
);
}
this.name = EXTENSIONS.MSFT_TEXTURE_DDS;
this.ddsLoader = new THREE.DDSLoader();
}
/**
* Lights Extension
*
* Specification: PENDING
*/
function GLTFLightsExtension(json) {
this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL;
var extension =
(json.extensions && json.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL]) ||
{};
this.lightDefs = extension.lights || [];
}
GLTFLightsExtension.prototype.loadLight = function(lightIndex) {
var lightDef = this.lightDefs[lightIndex];
var lightNode;
var color = new THREE.Color(0xffffff);
if (lightDef.color !== undefined) color.fromArray(lightDef.color);
var range = lightDef.range !== undefined ? lightDef.range : 0;
switch (lightDef.type) {
case "directional":
lightNode = new THREE.DirectionalLight(color);
lightNode.target.position.set(0, 0, -1);
lightNode.add(lightNode.target);
break;
case "point":
lightNode = new THREE.PointLight(color);
lightNode.distance = range;
break;
case "spot":
lightNode = new THREE.SpotLight(color);
lightNode.distance = range;
// Handle spotlight properties.
lightDef.spot = lightDef.spot || {};
lightDef.spot.innerConeAngle =
lightDef.spot.innerConeAngle !== undefined
? lightDef.spot.innerConeAngle
: 0;
lightDef.spot.outerConeAngle =
lightDef.spot.outerConeAngle !== undefined
? lightDef.spot.outerConeAngle
: Math.PI / 4.0;
lightNode.angle = lightDef.spot.outerConeAngle;
lightNode.penumbra =
1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle;
lightNode.target.position.set(0, 0, -1);
lightNode.add(lightNode.target);
break;
default:
throw new Error(
'THREE.GLTFLoader: Unexpected light type, "' + lightDef.type + '".'
);
}
lightNode.decay = 2;
if (lightDef.intensity !== undefined)
lightNode.intensity = lightDef.intensity;
lightNode.name = lightDef.name || "light_" + lightIndex;
return Promise.resolve(lightNode);
};
/**
* Unlit Materials Extension (pending)
*
* PR: https://github.com/KhronosGroup/glTF/pull/1163
*/
function GLTFMaterialsUnlitExtension(json) {
this.name = EXTENSIONS.KHR_MATERIALS_UNLIT;
}
GLTFMaterialsUnlitExtension.prototype.getMaterialType = function(material) {
return THREE.MeshBasicMaterial;
};
GLTFMaterialsUnlitExtension.prototype.extendParams = function(
materialParams,
material,
parser
) {
var pending = [];
materialParams.color = new THREE.Color(1.0, 1.0, 1.0);
materialParams.opacity = 1.0;
var metallicRoughness = material.pbrMetallicRoughness;
if (metallicRoughness) {
if (Array.isArray(metallicRoughness.baseColorFactor)) {
var array = metallicRoughness.baseColorFactor;
materialParams.color.fromArray(array);
materialParams.opacity = array[3];
}
if (metallicRoughness.baseColorTexture !== undefined) {
pending.push(
parser.assignTexture(
materialParams,
"map",
metallicRoughness.baseColorTexture
)
);
}
}
return Promise.all(pending);
};
/* BINARY EXTENSION */
var BINARY_EXTENSION_BUFFER_NAME = "binary_glTF";
var BINARY_EXTENSION_HEADER_MAGIC = "glTF";
var BINARY_EXTENSION_HEADER_LENGTH = 12;
var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4e4f534a, BIN: 0x004e4942 };
function GLTFBinaryExtension(data) {
this.name = EXTENSIONS.KHR_BINARY_GLTF;
this.content = null;
this.body = null;
var headerView = new DataView(data, 0, BINARY_EXTENSION_HEADER_LENGTH);
this.header = {
magic: THREE.LoaderUtils.decodeText(new Uint8Array(data.slice(0, 4))),
version: headerView.getUint32(4, true),
length: headerView.getUint32(8, true)
};
if (this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC) {
throw new Error("THREE.GLTFLoader: Unsupported glTF-Binary header.");
} else if (this.header.version < 2.0) {
throw new Error(
"THREE.GLTFLoader: Legacy binary file detected. Use LegacyGLTFLoader instead."
);
}
var chunkView = new DataView(data, BINARY_EXTENSION_HEADER_LENGTH);
var chunkIndex = 0;
while (chunkIndex < chunkView.byteLength) {
var chunkLength = chunkView.getUint32(chunkIndex, true);
chunkIndex += 4;
var chunkType = chunkView.getUint32(chunkIndex, true);
chunkIndex += 4;
if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON) {
var contentArray = new Uint8Array(
data,
BINARY_EXTENSION_HEADER_LENGTH + chunkIndex,
chunkLength
);
this.content = THREE.LoaderUtils.decodeText(contentArray);
} else if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN) {
var byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex;
this.body = data.slice(byteOffset, byteOffset + chunkLength);
}
// Clients must ignore chunks with unknown types.
chunkIndex += chunkLength;
}
if (this.content === null) {
throw new Error("THREE.GLTFLoader: JSON content not found.");
}
}
/**
* DRACO Mesh Compression Extension
*
* Specification: https://github.com/KhronosGroup/glTF/pull/874
*/
function GLTFDracoMeshCompressionExtension(json, dracoLoader) {
if (!dracoLoader) {
throw new Error("THREE.GLTFLoader: No DRACOLoader instance provided.");
}
this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION;
this.json = json;
this.dracoLoader = dracoLoader;
DRACOLoader.getDecoderModule();
}
GLTFDracoMeshCompressionExtension.prototype.decodePrimitive = function(
primitive,
parser
) {
var json = this.json;
var dracoLoader = this.dracoLoader;
var bufferViewIndex = primitive.extensions[this.name].bufferView;
var gltfAttributeMap = primitive.extensions[this.name].attributes;
var threeAttributeMap = {};
var attributeNormalizedMap = {};
var attributeTypeMap = {};
for (var attributeName in gltfAttributeMap) {
if (!(attributeName in ATTRIBUTES)) continue;
threeAttributeMap[ATTRIBUTES[attributeName]] =
gltfAttributeMap[attributeName];
}
for (attributeName in primitive.attributes) {
if (
ATTRIBUTES[attributeName] !== undefined &&
gltfAttributeMap[attributeName] !== undefined
) {
var accessorDef = json.accessors[primitive.attributes[attributeName]];
var componentType = WEBGL_COMPONENT_TYPES[accessorDef.componentType];
attributeTypeMap[ATTRIBUTES[attributeName]] = componentType;
attributeNormalizedMap[ATTRIBUTES[attributeName]] =
accessorDef.normalized === true;
}
}
return parser
.getDependency("bufferView", bufferViewIndex)
.then(function(bufferView) {
return new Promise(function(resolve) {
dracoLoader.decodeDracoFile(
bufferView,
function(geometry) {
for (var attributeName in geometry.attributes) {
var attribute = geometry.attributes[attributeName];
var normalized = attributeNormalizedMap[attributeName];
if (normalized !== undefined) attribute.normalized = normalized;
}
resolve(geometry);
},
threeAttributeMap,
attributeTypeMap
);
});
});
};
/**
* Texture Transform Extension
*
* Specification:
*/
function GLTFTextureTransformExtension(json) {
this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM;
}
GLTFTextureTransformExtension.prototype.extendTexture = function(
texture,
transform
) {
texture = texture.clone();
if (transform.offset !== undefined) {
texture.offset.fromArray(transform.offset);
}
if (transform.rotation !== undefined) {
texture.rotation = transform.rotation;
}
if (transform.scale !== undefined) {
texture.repeat.fromArray(transform.scale);
}
if (transform.texCoord !== undefined) {
console.warn(
'THREE.GLTFLoader: Custom UV sets in "' +
this.name +
'" extension not yet supported.'
);
}
texture.needsUpdate = true;
return texture;
};
/**
* Specular-Glossiness Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness
*/
function GLTFMaterialsPbrSpecularGlossinessExtension() {
return {
name: EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS,
specularGlossinessParams: [
"color",
"map",
"lightMap",
"lightMapIntensity",
"aoMap",
"aoMapIntensity",
"emissive",
"emissiveIntensity",
"emissiveMap",
"bumpMap",
"bumpScale",
"normalMap",
"displacementMap",
"displacementScale",
"displacementBias",
"specularMap",
"specular",
"glossinessMap",
"glossiness",
"alphaMap",
"envMap",
"envMapIntensity",
"refractionRatio"
],
getMaterialType: function() {
return THREE.ShaderMaterial;
},
extendParams: function(params, material, parser) {
var pbrSpecularGlossiness = material.extensions[this.name];
var shader = THREE.ShaderLib["standard"];
var uniforms = THREE.UniformsUtils.clone(shader.uniforms);
var specularMapParsFragmentChunk = [
"#ifdef USE_SPECULARMAP",
" uniform sampler2D specularMap;",
"#endif"
].join("\n");
var glossinessMapParsFragmentChunk = [
"#ifdef USE_GLOSSINESSMAP",
" uniform sampler2D glossinessMap;",
"#endif"
].join("\n");
var specularMapFragmentChunk = [
"vec3 specularFactor = specular;",
"#ifdef USE_SPECULARMAP",
" vec4 texelSpecular = texture2D( specularMap, vUv );",
" texelSpecular = sRGBToLinear( texelSpecular );",
" // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture",
" specularFactor *= texelSpecular.rgb;",
"#endif"
].join("\n");
var glossinessMapFragmentChunk = [
"float glossinessFactor = glossiness;",
"#ifdef USE_GLOSSINESSMAP",
" vec4 texelGlossiness = texture2D( glossinessMap, vUv );",
" // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture",
" glossinessFactor *= texelGlossiness.a;",
"#endif"
].join("\n");
var lightPhysicalFragmentChunk = [
"PhysicalMaterial material;",
"material.diffuseColor = diffuseColor.rgb;",
"material.specularRoughness = clamp( 1.0 - glossinessFactor, 0.04, 1.0 );",
"material.specularColor = specularFactor.rgb;"
].join("\n");
var fragmentShader = shader.fragmentShader
.replace("uniform float roughness;", "uniform vec3 specular;")
.replace("uniform float metalness;", "uniform float glossiness;")
.replace(
"#include <roughnessmap_pars_fragment>",
specularMapParsFragmentChunk
)
.replace(
"#include <metalnessmap_pars_fragment>",
glossinessMapParsFragmentChunk
)
.replace("#include <roughnessmap_fragment>", specularMapFragmentChunk)
.replace(
"#include <metalnessmap_fragment>",
glossinessMapFragmentChunk
)
.replace(
"#include <lights_physical_fragment>",
lightPhysicalFragmentChunk
);
delete uniforms.roughness;
delete uniforms.metalness;
delete uniforms.roughnessMap;
delete uniforms.metalnessMap;
uniforms.specular = { value: new THREE.Color().setHex(0x111111) };
uniforms.glossiness = { value: 0.5 };
uniforms.specularMap = { value: null };
uniforms.glossinessMap = { value: null };
params.vertexShader = shader.vertexShader;
params.fragmentShader = fragmentShader;
params.uniforms = uniforms;
params.defines = { STANDARD: "" };
params.color = new THREE.Color(1.0, 1.0, 1.0);
params.opacity = 1.0;
var pending = [];
if (Array.isArray(pbrSpecularGlossiness.diffuseFactor)) {
var array = pbrSpecularGlossiness.diffuseFactor;
params.color.fromArray(array);
params.opacity = array[3];
}
if (pbrSpecularGlossiness.diffuseTexture !== undefined) {
pending.push(
parser.assignTexture(
params,
"map",
pbrSpecularGlossiness.diffuseTexture
)
);
}
params.emissive = new THREE.Color(0.0, 0.0, 0.0);
params.glossiness =
pbrSpecularGlossiness.glossinessFactor !== undefined
? pbrSpecularGlossiness.glossinessFactor
: 1.0;
params.specular = new THREE.Color(1.0, 1.0, 1.0);
if (Array.isArray(pbrSpecularGlossiness.specularFactor)) {
params.specular.fromArray(pbrSpecularGlossiness.specularFactor);
}
if (pbrSpecularGlossiness.specularGlossinessTexture !== undefined) {
var specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture;
pending.push(
parser.assignTexture(params, "glossinessMap", specGlossMapDef)
);
pending.push(
parser.assignTexture(params, "specularMap", specGlossMapDef)
);
}
return Promise.all(pending);
},
createMaterial: function(params) {
// setup material properties based on MeshStandardMaterial for Specular-Glossiness
var material = new THREE.ShaderMaterial({
defines: params.defines,
vertexShader: params.vertexShader,
fragmentShader: params.fragmentShader,
uniforms: params.uniforms,
fog: true,
lights: true,
opacity: params.opacity,
transparent: params.transparent
});
material.isGLTFSpecularGlossinessMaterial = true;
material.color = params.color;
material.map = params.map === undefined ? null : params.map;
material.lightMap = null;
material.lightMapIntensity = 1.0;
material.aoMap = params.aoMap === undefined ? null : params.aoMap;
material.aoMapIntensity = 1.0;
material.emissive = params.emissive;
material.emissiveIntensity = 1.0;
material.emissiveMap =
params.emissiveMap === undefined ? null : params.emissiveMap;
material.bumpMap = params.bumpMap === undefined ? null : params.bumpMap;
material.bumpScale = 1;
material.normalMap =
params.normalMap === undefined ? null : params.normalMap;
if (params.normalScale) material.normalScale = params.normalScale;
material.displacementMap = null;
material.displacementScale = 1;
material.displacementBias = 0;
material.specularMap =
params.specularMap === undefined ? null : params.specularMap;
material.specular = params.specular;
material.glossinessMap =
params.glossinessMap === undefined ? null : params.glossinessMap;
material.glossiness = params.glossiness;
material.alphaMap = null;
material.envMap = params.envMap === undefined ? null : params.envMap;
material.envMapIntensity = 1.0;
material.refractionRatio = 0.98;
material.extensions.derivatives = true;
return material;
},
/**
* Clones a GLTFSpecularGlossinessMaterial instance. The ShaderMaterial.copy() method can
* copy only properties it knows about or inherits, and misses many properties that would
* normally be defined by MeshStandardMaterial.
*
* This method allows GLTFSpecularGlossinessMaterials to be cloned in the process of
* loading a glTF model, but cloning later (e.g. by the user) would require these changes
* AND also updating `.onBeforeRender` on the parent mesh.
*
* @param {THREE.ShaderMaterial} source
* @return {THREE.ShaderMaterial}
*/
cloneMaterial: function(source) {
var target = source.clone();
target.isGLTFSpecularGlossinessMaterial = true;
var params = this.specularGlossinessParams;
for (var i = 0, il = params.length; i < il; i++) {
target[params[i]] = source[params[i]];
}
return target;
},
// Here's based on refreshUniformsCommon() and refreshUniformsStandard() in WebGLRenderer.
refreshUniforms: function(
renderer,
scene,
camera,
geometry,
material,
group
) {
if (material.isGLTFSpecularGlossinessMaterial !== true) {
return;
}
var uniforms = material.uniforms;
var defines = material.defines;
uniforms.opacity.value = material.opacity;
uniforms.diffuse.value.copy(material.color);
uniforms.emissive.value
.copy(material.emissive)
.multiplyScalar(material.emissiveIntensity);
uniforms.map.value = material.map;
uniforms.specularMap.value = material.specularMap;
uniforms.alphaMap.value = material.alphaMap;
uniforms.lightMap.value = material.lightMap;
uniforms.lightMapIntensity.value = material.lightMapIntensity;
uniforms.aoMap.value = material.aoMap;
uniforms.aoMapIntensity.value = material.aoMapIntensity;
// uv repeat and offset setting priorities
// 1. color map
// 2. specular map
// 3. normal map
// 4. bump map
// 5. alpha map
// 6. emissive map
var uvScaleMap;
if (material.map) {
uvScaleMap = material.map;
} else if (material.specularMap) {
uvScaleMap = material.specularMap;
} else if (material.displacementMap) {
uvScaleMap = material.displacementMap;
} else if (material.normalMap) {
uvScaleMap = material.normalMap;
} else if (material.bumpMap) {
uvScaleMap = material.bumpMap;
} else if (material.glossinessMap) {
uvScaleMap = material.glossinessMap;
} else if (material.alphaMap) {
uvScaleMap = material.alphaMap;
} else if (material.emissiveMap) {
uvScaleMap = material.emissiveMap;
}
if (uvScaleMap !== undefined) {
// backwards compatibility
if (uvScaleMap.isWebGLRenderTarget) {
uvScaleMap = uvScaleMap.texture;
}
if (uvScaleMap.matrixAutoUpdate === true) {
uvScaleMap.updateMatrix();
}
uniforms.uvTransform.value.copy(uvScaleMap.matrix);
}
if (material.envMap) {
uniforms.envMap.value = material.envMap;
uniforms.envMapIntensity.value = material.envMapIntensity;
// don't flip CubeTexture envMaps, flip everything else:
// WebGLRenderTargetCube will be flipped for backwards compatibility
// WebGLRenderTargetCube.texture will be flipped because it's a Texture and NOT a CubeTexture
// this check must be handled differently, or removed entirely, if WebGLRenderTargetCube uses a CubeTexture in the future
uniforms.flipEnvMap.value = material.envMap.isCubeTexture ? -1 : 1;
uniforms.reflectivity.value = material.reflectivity;
uniforms.refractionRatio.value = material.refractionRatio;
uniforms.maxMipLevel.value = renderer.properties.get(
material.envMap
).__maxMipLevel;
}
uniforms.specular.value.copy(material.specular);
uniforms.glossiness.value = material.glossiness;
uniforms.glossinessMap.value = material.glossinessMap;
uniforms.emissiveMap.value = material.emissiveMap;
uniforms.bumpMap.value = material.bumpMap;
uniforms.normalMap.value = material.normalMap;
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
if (
uniforms.glossinessMap.value !== null &&
defines.USE_GLOSSINESSMAP === undefined
) {
defines.USE_GLOSSINESSMAP = "";
// set USE_ROUGHNESSMAP to enable vUv
defines.USE_ROUGHNESSMAP = "";
}
if (
uniforms.glossinessMap.value === null &&
defines.USE_GLOSSINESSMAP !== undefined
) {
delete defines.USE_GLOSSINESSMAP;
delete defines.USE_ROUGHNESSMAP;
}
}
};
}
/*********************************/
/********** INTERPOLATION ********/
/*********************************/
// Spline Interpolation
// Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation
function GLTFCubicSplineInterpolant(
parameterPositions,
sampleValues,
sampleSize,
resultBuffer
) {
THREE.Interpolant.call(
this,
parameterPositions,
sampleValues,
sampleSize,
resultBuffer
);
}
GLTFCubicSplineInterpolant.prototype = Object.create(
THREE.Interpolant.prototype
);
GLTFCubicSplineInterpolant.prototype.constructor = GLTFCubicSplineInterpolant;
GLTFCubicSplineInterpolant.prototype.copySampleValue_ = function(index) {
// Copies a sample value to the result buffer. See description of glTF
// CUBICSPLINE values layout in interpolate_() function below.
var result = this.resultBuffer,
values = this.sampleValues,
valueSize = this.valueSize,
offset = index * valueSize * 3 + valueSize;
for (var i = 0; i !== valueSize; i++) {
result[i] = values[offset + i];
}
return result;
};
GLTFCubicSplineInterpolant.prototype.beforeStart_ =
GLTFCubicSplineInterpolant.prototype.copySampleValue_;
GLTFCubicSplineInterpolant.prototype.afterEnd_ =
GLTFCubicSplineInterpolant.prototype.copySampleValue_;
GLTFCubicSplineInterpolant.prototype.interpolate_ = function(i1, t0, t, t1) {
var result = this.resultBuffer;
var values = this.sampleValues;
var stride = this.valueSize;
var stride2 = stride * 2;
var stride3 = stride * 3;
var td = t1 - t0;
var p = (t - t0) / td;
var pp = p * p;
var ppp = pp * p;
var offset1 = i1 * stride3;
var offset0 = offset1 - stride3;
var s2 = -2 * ppp + 3 * pp;
var s3 = ppp - pp;
var s0 = 1 - s2;
var s1 = s3 - pp + p;
// Layout of keyframe output values for CUBICSPLINE animations:
// [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
for (var i = 0; i !== stride; i++) {
var p0 = values[offset0 + i + stride]; // splineVertex_k
var m0 = values[offset0 + i + stride2] * td; // outTangent_k * (t_k+1 - t_k)
var p1 = values[offset1 + i + stride]; // splineVertex_k+1
var m1 = values[offset1 + i] * td; // inTangent_k+1 * (t_k+1 - t_k)
result[i] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;
}
return result;
};
/*********************************/
/********** INTERNALS ************/
/*********************************/
/* CONSTANTS */
var WEBGL_CONSTANTS = {
FLOAT: 5126,
//FLOAT_MAT2: 35674,
FLOAT_MAT3: 35675,
FLOAT_MAT4: 35676,
FLOAT_VEC2: 35664,
FLOAT_VEC3: 35665,
FLOAT_VEC4: 35666,
LINEAR: 9729,
REPEAT: 10497,
SAMPLER_2D: 35678,
POINTS: 0,
LINES: 1,
LINE_LOOP: 2,
LINE_STRIP: 3,
TRIANGLES: 4,
TRIANGLE_STRIP: 5,
TRIANGLE_FAN: 6,
UNSIGNED_BYTE: 5121,
UNSIGNED_SHORT: 5123
};
var WEBGL_TYPE = {
5126: Number,
//35674: THREE.Matrix2,
35675: THREE.Matrix3,
35676: THREE.Matrix4,
35664: THREE.Vector2,
35665: THREE.Vector3,
35666: THREE.Vector4,
35678: THREE.Texture
};
var WEBGL_COMPONENT_TYPES = {
5120: Int8Array,
5121: Uint8Array,
5122: Int16Array,
5123: Uint16Array,
5125: Uint32Array,
5126: Float32Array
};
var WEBGL_FILTERS = {
9728: THREE.NearestFilter,
9729: THREE.LinearFilter,
9984: THREE.NearestMipMapNearestFilter,
9985: THREE.LinearMipMapNearestFilter,
9986: THREE.NearestMipMapLinearFilter,
9987: THREE.LinearMipMapLinearFilter
};
var WEBGL_WRAPPINGS = {
33071: THREE.ClampToEdgeWrapping,
33648: THREE.MirroredRepeatWrapping,
10497: THREE.RepeatWrapping
};
var WEBGL_SIDES = {
1028: THREE.BackSide, // Culling front
1029: THREE.FrontSide // Culling back
//1032: THREE.NoSide // Culling front and back, what to do?
};
var WEBGL_DEPTH_FUNCS = {
512: THREE.NeverDepth,
513: THREE.LessDepth,
514: THREE.EqualDepth,
515: THREE.LessEqualDepth,
516: THREE.GreaterEqualDepth,
517: THREE.NotEqualDepth,
518: THREE.GreaterEqualDepth,
519: THREE.AlwaysDepth
};
var WEBGL_BLEND_EQUATIONS = {
32774: THREE.AddEquation,
32778: THREE.SubtractEquation,
32779: THREE.ReverseSubtractEquation
};
var WEBGL_BLEND_FUNCS = {
0: THREE.ZeroFactor,
1: THREE.OneFactor,
768: THREE.SrcColorFactor,
769: THREE.OneMinusSrcColorFactor,
770: THREE.SrcAlphaFactor,
771: THREE.OneMinusSrcAlphaFactor,
772: THREE.DstAlphaFactor,
773: THREE.OneMinusDstAlphaFactor,
774: THREE.DstColorFactor,
775: THREE.OneMinusDstColorFactor,
776: THREE.SrcAlphaSaturateFactor
// The followings are not supported by Three.js yet
//32769: CONSTANT_COLOR,
//32770: ONE_MINUS_CONSTANT_COLOR,
//32771: CONSTANT_ALPHA,
//32772: ONE_MINUS_CONSTANT_COLOR
};
var WEBGL_TYPE_SIZES = {
SCALAR: 1,
VEC2: 2,
VEC3: 3,
VEC4: 4,
MAT2: 4,
MAT3: 9,
MAT4: 16
};
var ATTRIBUTES = {
POSITION: "position",
NORMAL: "normal",
TEXCOORD_0: "uv",
TEXCOORD_1: "uv2",
COLOR_0: "color",
WEIGHTS_0: "skinWeight",
JOINTS_0: "skinIndex"
};
var PATH_PROPERTIES = {
scale: "scale",
translation: "position",
rotation: "quaternion",
weights: "morphTargetInfluences"
};
var INTERPOLATION = {
CUBICSPLINE: THREE.InterpolateSmooth, // We use custom interpolation GLTFCubicSplineInterpolation for CUBICSPLINE.
// KeyframeTrack.optimize() can't handle glTF Cubic Spline output values layout,
// using THREE.InterpolateSmooth for KeyframeTrack instantiation to prevent optimization.
// See KeyframeTrack.optimize() for the detail.
LINEAR: THREE.InterpolateLinear,
STEP: THREE.InterpolateDiscrete
};
var STATES_ENABLES = {
2884: "CULL_FACE",
2929: "DEPTH_TEST",
3042: "BLEND",
3089: "SCISSOR_TEST",
32823: "POLYGON_OFFSET_FILL",
32926: "SAMPLE_ALPHA_TO_COVERAGE"
};
var ALPHA_MODES = {
OPAQUE: "OPAQUE",
MASK: "MASK",
BLEND: "BLEND"
};
var MIME_TYPE_FORMATS = {
"image/png": THREE.RGBAFormat,
"image/jpeg": THREE.RGBFormat
};
/* UTILITY FUNCTIONS */
function resolveURL(url, path) {
// Invalid URL
if (typeof url !== "string" || url === "") return "";
// Absolute URL http://,https://,//
if (/^(https?:)?\/\//i.test(url)) return url;
// Data URI
if (/^data:.*,.*$/i.test(url)) return url;
// Blob URL
if (/^blob:.*$/i.test(url)) return url;
// Relative URL
return path + url;
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material
*/
function createDefaultMaterial() {
return new THREE.MeshStandardMaterial({
color: 0xffffff,
emissive: 0x000000,
metalness: 1,
roughness: 1,
transparent: false,
depthTest: true,
side: THREE.FrontSide
});
}
function addUnknownExtensionsToUserData(knownExtensions, object, objectDef) {
// Add unknown glTF extensions to an object's userData.
for (var name in objectDef.extensions) {
if (knownExtensions[name] === undefined) {
object.userData.gltfExtensions = object.userData.gltfExtensions || {};
object.userData.gltfExtensions[name] = objectDef.extensions[name];
}
}
}
/**
* @param {THREE.Object3D|THREE.Material|THREE.BufferGeometry} object
* @param {GLTF.definition} gltfDef
*/
function assignExtrasToUserData(object, gltfDef) {
if (gltfDef.extras !== undefined) {
if (typeof gltfDef.extras === "object") {
object.userData = gltfDef.extras;
} else {
console.warn(
"THREE.GLTFLoader: Ignoring primitive type .extras, " + gltfDef.extras
);
}
}
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets
*
* @param {THREE.BufferGeometry} geometry
* @param {Array<GLTF.Target>} targets
* @param {GLTFParser} parser
* @return {Promise<THREE.BufferGeometry>}
*/
function addMorphTargets(geometry, targets, parser) {
var hasMorphPosition = false;
var hasMorphNormal = false;
for (var i = 0, il = targets.length; i < il; i++) {
var target = targets[i];
if (target.POSITION !== undefined) hasMorphPosition = true;
if (target.NORMAL !== undefined) hasMorphNormal = true;
if (hasMorphPosition && hasMorphNormal) break;
}
if (!hasMorphPosition && !hasMorphNormal) return Promise.resolve(geometry);
var pendingPositionAccessors = [];
var pendingNormalAccessors = [];
for (var i = 0, il = targets.length; i < il; i++) {
var target = targets[i];
if (hasMorphPosition) {
// TODO: Error-prone use of a callback inside a loop.
var accessor =
target.POSITION !== undefined
? parser
.getDependency("accessor", target.POSITION)
.then(function(accessor) {
// Cloning not to pollute original accessor below
return cloneBufferAttribute(accessor);
})
: geometry.attributes.position;
pendingPositionAccessors.push(accessor);
}
if (hasMorphNormal) {
// TODO: Error-prone use of a callback inside a loop.
var accessor =
target.NORMAL !== undefined
? parser
.getDependency("accessor", target.NORMAL)
.then(function(accessor) {
return cloneBufferAttribute(accessor);
})
: geometry.attributes.normal;
pendingNormalAccessors.push(accessor);
}
}
return Promise.all([
Promise.all(pendingPositionAccessors),
Promise.all(pendingNormalAccessors)
]).then(function(accessors) {
var morphPositions = accessors[0];
var morphNormals = accessors[1];
for (var i = 0, il = targets.length; i < il; i++) {
var target = targets[i];
var attributeName = "morphTarget" + i;
if (hasMorphPosition) {
// Three.js morph position is absolute value. The formula is
// basePosition
// + weight0 * ( morphPosition0 - basePosition )
// + weight1 * ( morphPosition1 - basePosition )
// ...
// while the glTF one is relative
// basePosition
// + weight0 * glTFmorphPosition0
// + weight1 * glTFmorphPosition1
// ...
// then we need to convert from relative to absolute here.
if (target.POSITION !== undefined) {
var positionAttribute = morphPositions[i];
positionAttribute.name = attributeName;
var position = geometry.attributes.position;
for (var j = 0, jl = positionAttribute.count; j < jl; j++) {
positionAttribute.setXYZ(
j,
positionAttribute.getX(j) + position.getX(j),
positionAttribute.getY(j) + position.getY(j),
positionAttribute.getZ(j) + position.getZ(j)
);
}
}
}
if (hasMorphNormal) {
// see target.POSITION's comment
if (target.NORMAL !== undefined) {
var normalAttribute = morphNormals[i];
normalAttribute.name = attributeName;
var normal = geometry.attributes.normal;
for (var j = 0, jl = normalAttribute.count; j < jl; j++) {
normalAttribute.setXYZ(
j,
normalAttribute.getX(j) + normal.getX(j),
normalAttribute.getY(j) + normal.getY(j),
normalAttribute.getZ(j) + normal.getZ(j)
);
}
}
}
}
if (hasMorphPosition) geometry.morphAttributes.position = morphPositions;
if (hasMorphNormal) geometry.morphAttributes.normal = morphNormals;
return geometry;
});
}
/**
* @param {THREE.Mesh} mesh
* @param {GLTF.Mesh} meshDef
*/
function updateMorphTargets(mesh, meshDef) {
mesh.updateMorphTargets();
if (meshDef.weights !== undefined) {
for (var i = 0, il = meshDef.weights.length; i < il; i++) {
mesh.morphTargetInfluences[i] = meshDef.weights[i];
}
}
// .extras has user-defined data, so check that .extras.targetNames is an array.
if (meshDef.extras && Array.isArray(meshDef.extras.targetNames)) {
var targetNames = meshDef.extras.targetNames;
if (mesh.morphTargetInfluences.length === targetNames.length) {
mesh.morphTargetDictionary = {};
for (var i = 0, il = targetNames.length; i < il; i++) {
mesh.morphTargetDictionary[targetNames[i]] = i;
}
} else {
console.warn(
"THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names."
);
}
}
}
function isPrimitiveEqual(a, b) {
var dracoExtA = a.extensions
? a.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]
: undefined;
var dracoExtB = b.extensions
? b.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]
: undefined;
if (dracoExtA && dracoExtB) {
if (dracoExtA.bufferView !== dracoExtB.bufferView) return false;
return isObjectEqual(dracoExtA.attributes, dracoExtB.attributes);
}
if (a.indices !== b.indices) {
return false;
}
return isObjectEqual(a.attributes, b.attributes);
}
function isObjectEqual(a, b) {
if (Object.keys(a).length !== Object.keys(b).length) return false;
for (var key in a) {
if (a[key] !== b[key]) return false;
}
return true;
}
function isArrayEqual(a, b) {
if (a.length !== b.length) return false;
for (var i = 0, il = a.length; i < il; i++) {
if (a[i] !== b[i]) return false;
}
return true;
}
function getCachedGeometry(cache, newPrimitive) {
for (var i = 0, il = cache.length; i < il; i++) {
var cached = cache[i];
if (isPrimitiveEqual(cached.primitive, newPrimitive))
return cached.promise;
}
return null;
}
function getCachedCombinedGeometry(cache, geometries) {
for (var i = 0, il = cache.length; i < il; i++) {
var cached = cache[i];
if (isArrayEqual(geometries, cached.baseGeometries))
return cached.geometry;
}
return null;
}
function getCachedMultiPassGeometry(cache, geometry, primitives) {
for (var i = 0, il = cache.length; i < il; i++) {
var cached = cache[i];
if (
geometry === cached.baseGeometry &&
isArrayEqual(primitives, cached.primitives)
)
return cached.geometry;
}
return null;
}
function cloneBufferAttribute(attribute) {
if (attribute.isInterleavedBufferAttribute) {
var count = attribute.count;
var itemSize = attribute.itemSize;
var array = attribute.array.slice(0, count * itemSize);
for (var i = 0, j = 0; i < count; ++i) {
array[j++] = attribute.getX(i);
if (itemSize >= 2) array[j++] = attribute.getY(i);
if (itemSize >= 3) array[j++] = attribute.getZ(i);
if (itemSize >= 4) array[j++] = attribute.getW(i);
}
return new THREE.BufferAttribute(array, itemSize, attribute.normalized);
}
return attribute.clone();
}
/**
* Checks if we can build a single Mesh with MultiMaterial from multiple primitives.
* Returns true if all primitives use the same attributes/morphAttributes/mode
* and also have index. Otherwise returns false.
*
* @param {Array<GLTF.Primitive>} primitives
* @return {Boolean}
*/
function isMultiPassGeometry(primitives) {
if (primitives.length < 2) return false;
var primitive0 = primitives[0];
var targets0 = primitive0.targets || [];
if (primitive0.indices === undefined) return false;
for (var i = 1, il = primitives.length; i < il; i++) {
var primitive = primitives[i];
if (primitive0.mode !== primitive.mode) return false;
if (primitive.indices === undefined) return false;
if (
primitive.extensions &&
primitive.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]
)
return false;
if (!isObjectEqual(primitive0.attributes, primitive.attributes))
return false;
var targets = primitive.targets || [];
if (targets0.length !== targets.length) return false;
for (var j = 0, jl = targets0.length; j < jl; j++) {
if (!isObjectEqual(targets0[j], targets[j])) return false;
}
}
return true;
}
/* GLTF PARSER */
function GLTFParser(json, extensions, options) {
this.json = json || {};
this.extensions = extensions || {};
this.options = options || {};
// loader object cache
this.cache = new GLTFRegistry();
// BufferGeometry caching
this.primitiveCache = [];
this.multiplePrimitivesCache = [];
this.multiPassGeometryCache = [];
this.textureLoader = new THREE.TextureLoader(this.options.manager);
this.textureLoader.setCrossOrigin(this.options.crossOrigin);
this.fileLoader = new THREE.FileLoader(this.options.manager);
this.fileLoader.setResponseType("arraybuffer");
}
GLTFParser.prototype.parse = function(onLoad, onError) {
var json = this.json;
// Clear the loader cache
this.cache.removeAll();
// Mark the special nodes/meshes in json for efficient parse
this.markDefs();
// Fire the callback on complete
this.getMultiDependencies(["scene", "animation", "camera"])
.then(function(dependencies) {
var scenes = dependencies.scenes || [];
var scene = scenes[json.scene || 0];
var animations = dependencies.animations || [];
var cameras = dependencies.cameras || [];
onLoad(scene, scenes, cameras, animations, json);
})
.catch(onError);
};
/**
* Marks the special nodes/meshes in json for efficient parse.
*/
GLTFParser.prototype.markDefs = function() {
var nodeDefs = this.json.nodes || [];
var skinDefs = this.json.skins || [];
var meshDefs = this.json.meshes || [];
var meshReferences = {};
var meshUses = {};
// Nothing in the node definition indicates whether it is a Bone or an
// Object3D. Use the skins' joint references to mark bones.
for (
var skinIndex = 0, skinLength = skinDefs.length;
skinIndex < skinLength;
skinIndex++
) {
var joints = skinDefs[skinIndex].joints;
for (var i = 0, il = joints.length; i < il; i++) {
nodeDefs[joints[i]].isBone = true;
}
}
// Meshes can (and should) be reused by multiple nodes in a glTF asset. To
// avoid having more than one THREE.Mesh with the same name, count
// references and rename instances below.
//
// Example: CesiumMilkTruck sample model reuses "Wheel" meshes.
for (
var nodeIndex = 0, nodeLength = nodeDefs.length;
nodeIndex < nodeLength;
nodeIndex++
) {
var nodeDef = nodeDefs[nodeIndex];
if (nodeDef.mesh !== undefined) {
if (meshReferences[nodeDef.mesh] === undefined) {
meshReferences[nodeDef.mesh] = meshUses[nodeDef.mesh] = 0;
}
meshReferences[nodeDef.mesh]++;
// Nothing in the mesh definition indicates whether it is
// a SkinnedMesh or Mesh. Use the node's mesh reference
// to mark SkinnedMesh if node has skin.
if (nodeDef.skin !== undefined) {
meshDefs[nodeDef.mesh].isSkinnedMesh = true;
}
}
}
this.json.meshReferences = meshReferences;
this.json.meshUses = meshUses;
};
/**
* Requests the specified dependency asynchronously, with caching.
* @param {string} type
* @param {number} index
* @return {Promise<THREE.Object3D|THREE.Material|THREE.Texture|THREE.AnimationClip|ArrayBuffer|Object>}
*/
GLTFParser.prototype.getDependency = function(type, index) {
var cacheKey = type + ":" + index;
var dependency = this.cache.get(cacheKey);
if (!dependency) {
switch (type) {
case "scene":
dependency = this.loadScene(index);
break;
case "node":
dependency = this.loadNode(index);
break;
case "mesh":
dependency = this.loadMesh(index);
break;
case "accessor":
dependency = this.loadAccessor(index);
break;
case "bufferView":
dependency = this.loadBufferView(index);
break;
case "buffer":
dependency = this.loadBuffer(index);
break;
case "material":
dependency = this.loadMaterial(index);
break;
case "texture":
dependency = this.loadTexture(index);
break;
case "skin":
dependency = this.loadSkin(index);
break;
case "animation":
dependency = this.loadAnimation(index);
break;
case "camera":
dependency = this.loadCamera(index);
break;
case "light":
dependency = this.extensions[
EXTENSIONS.KHR_LIGHTS_PUNCTUAL
].loadLight(index);
break;
default:
throw new Error("Unknown type: " + type);
}
this.cache.add(cacheKey, dependency);
}
return dependency;
};
/**
* Requests all dependencies of the specified type asynchronously, with caching.
* @param {string} type
* @return {Promise<Array<Object>>}
*/
GLTFParser.prototype.