UNPKG

three-loaders

Version:

This is a wrapper around threejs loaders to import it from any threejs application

1,716 lines (1,404 loc) 96.1 kB
/** * @author Rich Tibbett / https://github.com/richtr * @author mrdoob / http://mrdoob.com/ * @author Tony Parisi / http://www.tonyparisi.com/ * @author Takahiro / https://github.com/takahirox * @author Don McCurdy / https://www.donmccurdy.com */ var THREE = require("three"); var DRACOLoader = require("./THREEDracoLoader"); var _GLTFLoader = (function() { function GLTFLoader(manager) { this.manager = manager !== undefined ? manager : THREE.DefaultLoadingManager; this.dracoLoader = null; } GLTFLoader.prototype = { constructor: GLTFLoader, crossOrigin: "anonymous", load: function(url, onLoad, onProgress, onError) { var scope = this; var resourcePath; if (this.resourcePath !== undefined) { resourcePath = this.resourcePath; } else if (this.path !== undefined) { resourcePath = this.path; } else { resourcePath = THREE.LoaderUtils.extractUrlBase(url); } // Tells the LoadingManager to track an extra item, which resolves after // the model is fully loaded. This means the count of items loaded will // be incorrect, but ensures manager.onLoad() does not fire early. scope.manager.itemStart(url); var _onError = function(e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); scope.manager.itemEnd(url); }; var loader = new THREE.FileLoader(scope.manager); loader.setPath(this.path); loader.setResponseType("arraybuffer"); loader.load( url, function(data) { try { scope.parse( data, resourcePath, function(gltf) { onLoad(gltf); scope.manager.itemEnd(url); }, _onError ); } catch (e) { _onError(e); } }, onProgress, _onError ); }, setCrossOrigin: function(value) { this.crossOrigin = value; return this; }, setPath: function(value) { this.path = value; return this; }, setResourcePath: function(value) { this.resourcePath = value; return this; }, setDRACOLoader: function(dracoLoader) { this.dracoLoader = dracoLoader; return this; }, parse: function(data, path, onLoad, onError) { var content; var extensions = {}; if (typeof data === "string") { content = data; } else { var magic = THREE.LoaderUtils.decodeText(new Uint8Array(data, 0, 4)); if (magic === BINARY_EXTENSION_HEADER_MAGIC) { try { extensions[EXTENSIONS.KHR_BINARY_GLTF] = new GLTFBinaryExtension( data ); } catch (error) { if (onError) onError(error); return; } content = extensions[EXTENSIONS.KHR_BINARY_GLTF].content; } else { content = THREE.LoaderUtils.decodeText(new Uint8Array(data)); } } var json = JSON.parse(content); if (json.asset === undefined || json.asset.version[0] < 2) { if (onError) onError( new Error( "THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported. Use LegacyGLTFLoader instead." ) ); return; } if (json.extensionsUsed) { for (var i = 0; i < json.extensionsUsed.length; ++i) { var extensionName = json.extensionsUsed[i]; var extensionsRequired = json.extensionsRequired || []; switch (extensionName) { case EXTENSIONS.KHR_LIGHTS_PUNCTUAL: extensions[extensionName] = new GLTFLightsExtension(json); break; case EXTENSIONS.KHR_MATERIALS_UNLIT: extensions[extensionName] = new GLTFMaterialsUnlitExtension(json); break; case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: extensions[ extensionName ] = new GLTFMaterialsPbrSpecularGlossinessExtension(json); break; case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION: extensions[extensionName] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader ); break; case EXTENSIONS.MSFT_TEXTURE_DDS: extensions[ EXTENSIONS.MSFT_TEXTURE_DDS ] = new GLTFTextureDDSExtension(json); break; case EXTENSIONS.KHR_TEXTURE_TRANSFORM: extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] = new GLTFTextureTransformExtension(json); break; default: if (extensionsRequired.indexOf(extensionName) >= 0) { console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' ); } } } } var parser = new GLTFParser(json, extensions, { path: path || this.resourcePath || "", crossOrigin: this.crossOrigin, manager: this.manager }); parser.parse(function(scene, scenes, cameras, animations, json) { var glTF = { scene: scene, scenes: scenes, cameras: cameras, animations: animations, asset: json.asset, parser: parser, userData: {} }; addUnknownExtensionsToUserData(extensions, glTF, json); onLoad(glTF); }, onError); } }; /* GLTFREGISTRY */ function GLTFRegistry() { var objects = {}; return { get: function(key) { return objects[key]; }, add: function(key, object) { objects[key] = object; }, remove: function(key) { delete objects[key]; }, removeAll: function() { objects = {}; } }; } /*********************************/ /********** EXTENSIONS ***********/ /*********************************/ var EXTENSIONS = { KHR_BINARY_GLTF: "KHR_binary_glTF", KHR_DRACO_MESH_COMPRESSION: "KHR_draco_mesh_compression", KHR_LIGHTS_PUNCTUAL: "KHR_lights_punctual", KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: "KHR_materials_pbrSpecularGlossiness", KHR_MATERIALS_UNLIT: "KHR_materials_unlit", KHR_TEXTURE_TRANSFORM: "KHR_texture_transform", MSFT_TEXTURE_DDS: "MSFT_texture_dds" }; /** * DDS Texture Extension * * Specification: * https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/MSFT_texture_dds * */ function GLTFTextureDDSExtension() { if (!THREE.DDSLoader) { throw new Error( "THREE.GLTFLoader: Attempting to load .dds texture without importing THREE.DDSLoader" ); } this.name = EXTENSIONS.MSFT_TEXTURE_DDS; this.ddsLoader = new THREE.DDSLoader(); } /** * Lights Extension * * Specification: PENDING */ function GLTFLightsExtension(json) { this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL; var extension = (json.extensions && json.extensions[EXTENSIONS.KHR_LIGHTS_PUNCTUAL]) || {}; this.lightDefs = extension.lights || []; } GLTFLightsExtension.prototype.loadLight = function(lightIndex) { var lightDef = this.lightDefs[lightIndex]; var lightNode; var color = new THREE.Color(0xffffff); if (lightDef.color !== undefined) color.fromArray(lightDef.color); var range = lightDef.range !== undefined ? lightDef.range : 0; switch (lightDef.type) { case "directional": lightNode = new THREE.DirectionalLight(color); lightNode.target.position.set(0, 0, -1); lightNode.add(lightNode.target); break; case "point": lightNode = new THREE.PointLight(color); lightNode.distance = range; break; case "spot": lightNode = new THREE.SpotLight(color); lightNode.distance = range; // Handle spotlight properties. lightDef.spot = lightDef.spot || {}; lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0; lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0; lightNode.angle = lightDef.spot.outerConeAngle; lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle; lightNode.target.position.set(0, 0, -1); lightNode.add(lightNode.target); break; default: throw new Error( 'THREE.GLTFLoader: Unexpected light type, "' + lightDef.type + '".' ); } lightNode.decay = 2; if (lightDef.intensity !== undefined) lightNode.intensity = lightDef.intensity; lightNode.name = lightDef.name || "light_" + lightIndex; return Promise.resolve(lightNode); }; /** * Unlit Materials Extension (pending) * * PR: https://github.com/KhronosGroup/glTF/pull/1163 */ function GLTFMaterialsUnlitExtension(json) { this.name = EXTENSIONS.KHR_MATERIALS_UNLIT; } GLTFMaterialsUnlitExtension.prototype.getMaterialType = function(material) { return THREE.MeshBasicMaterial; }; GLTFMaterialsUnlitExtension.prototype.extendParams = function( materialParams, material, parser ) { var pending = []; materialParams.color = new THREE.Color(1.0, 1.0, 1.0); materialParams.opacity = 1.0; var metallicRoughness = material.pbrMetallicRoughness; if (metallicRoughness) { if (Array.isArray(metallicRoughness.baseColorFactor)) { var array = metallicRoughness.baseColorFactor; materialParams.color.fromArray(array); materialParams.opacity = array[3]; } if (metallicRoughness.baseColorTexture !== undefined) { pending.push( parser.assignTexture( materialParams, "map", metallicRoughness.baseColorTexture ) ); } } return Promise.all(pending); }; /* BINARY EXTENSION */ var BINARY_EXTENSION_BUFFER_NAME = "binary_glTF"; var BINARY_EXTENSION_HEADER_MAGIC = "glTF"; var BINARY_EXTENSION_HEADER_LENGTH = 12; var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4e4f534a, BIN: 0x004e4942 }; function GLTFBinaryExtension(data) { this.name = EXTENSIONS.KHR_BINARY_GLTF; this.content = null; this.body = null; var headerView = new DataView(data, 0, BINARY_EXTENSION_HEADER_LENGTH); this.header = { magic: THREE.LoaderUtils.decodeText(new Uint8Array(data.slice(0, 4))), version: headerView.getUint32(4, true), length: headerView.getUint32(8, true) }; if (this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC) { throw new Error("THREE.GLTFLoader: Unsupported glTF-Binary header."); } else if (this.header.version < 2.0) { throw new Error( "THREE.GLTFLoader: Legacy binary file detected. Use LegacyGLTFLoader instead." ); } var chunkView = new DataView(data, BINARY_EXTENSION_HEADER_LENGTH); var chunkIndex = 0; while (chunkIndex < chunkView.byteLength) { var chunkLength = chunkView.getUint32(chunkIndex, true); chunkIndex += 4; var chunkType = chunkView.getUint32(chunkIndex, true); chunkIndex += 4; if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON) { var contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength ); this.content = THREE.LoaderUtils.decodeText(contentArray); } else if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN) { var byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex; this.body = data.slice(byteOffset, byteOffset + chunkLength); } // Clients must ignore chunks with unknown types. chunkIndex += chunkLength; } if (this.content === null) { throw new Error("THREE.GLTFLoader: JSON content not found."); } } /** * DRACO Mesh Compression Extension * * Specification: https://github.com/KhronosGroup/glTF/pull/874 */ function GLTFDracoMeshCompressionExtension(json, dracoLoader) { if (!dracoLoader) { throw new Error("THREE.GLTFLoader: No DRACOLoader instance provided."); } this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION; this.json = json; this.dracoLoader = dracoLoader; DRACOLoader.getDecoderModule(); } GLTFDracoMeshCompressionExtension.prototype.decodePrimitive = function( primitive, parser ) { var json = this.json; var dracoLoader = this.dracoLoader; var bufferViewIndex = primitive.extensions[this.name].bufferView; var gltfAttributeMap = primitive.extensions[this.name].attributes; var threeAttributeMap = {}; var attributeNormalizedMap = {}; var attributeTypeMap = {}; for (var attributeName in gltfAttributeMap) { if (!(attributeName in ATTRIBUTES)) continue; threeAttributeMap[ATTRIBUTES[attributeName]] = gltfAttributeMap[attributeName]; } for (attributeName in primitive.attributes) { if ( ATTRIBUTES[attributeName] !== undefined && gltfAttributeMap[attributeName] !== undefined ) { var accessorDef = json.accessors[primitive.attributes[attributeName]]; var componentType = WEBGL_COMPONENT_TYPES[accessorDef.componentType]; attributeTypeMap[ATTRIBUTES[attributeName]] = componentType; attributeNormalizedMap[ATTRIBUTES[attributeName]] = accessorDef.normalized === true; } } return parser .getDependency("bufferView", bufferViewIndex) .then(function(bufferView) { return new Promise(function(resolve) { dracoLoader.decodeDracoFile( bufferView, function(geometry) { for (var attributeName in geometry.attributes) { var attribute = geometry.attributes[attributeName]; var normalized = attributeNormalizedMap[attributeName]; if (normalized !== undefined) attribute.normalized = normalized; } resolve(geometry); }, threeAttributeMap, attributeTypeMap ); }); }); }; /** * Texture Transform Extension * * Specification: */ function GLTFTextureTransformExtension(json) { this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM; } GLTFTextureTransformExtension.prototype.extendTexture = function( texture, transform ) { texture = texture.clone(); if (transform.offset !== undefined) { texture.offset.fromArray(transform.offset); } if (transform.rotation !== undefined) { texture.rotation = transform.rotation; } if (transform.scale !== undefined) { texture.repeat.fromArray(transform.scale); } if (transform.texCoord !== undefined) { console.warn( 'THREE.GLTFLoader: Custom UV sets in "' + this.name + '" extension not yet supported.' ); } texture.needsUpdate = true; return texture; }; /** * Specular-Glossiness Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness */ function GLTFMaterialsPbrSpecularGlossinessExtension() { return { name: EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS, specularGlossinessParams: [ "color", "map", "lightMap", "lightMapIntensity", "aoMap", "aoMapIntensity", "emissive", "emissiveIntensity", "emissiveMap", "bumpMap", "bumpScale", "normalMap", "displacementMap", "displacementScale", "displacementBias", "specularMap", "specular", "glossinessMap", "glossiness", "alphaMap", "envMap", "envMapIntensity", "refractionRatio" ], getMaterialType: function() { return THREE.ShaderMaterial; }, extendParams: function(params, material, parser) { var pbrSpecularGlossiness = material.extensions[this.name]; var shader = THREE.ShaderLib["standard"]; var uniforms = THREE.UniformsUtils.clone(shader.uniforms); var specularMapParsFragmentChunk = [ "#ifdef USE_SPECULARMAP", " uniform sampler2D specularMap;", "#endif" ].join("\n"); var glossinessMapParsFragmentChunk = [ "#ifdef USE_GLOSSINESSMAP", " uniform sampler2D glossinessMap;", "#endif" ].join("\n"); var specularMapFragmentChunk = [ "vec3 specularFactor = specular;", "#ifdef USE_SPECULARMAP", " vec4 texelSpecular = texture2D( specularMap, vUv );", " texelSpecular = sRGBToLinear( texelSpecular );", " // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture", " specularFactor *= texelSpecular.rgb;", "#endif" ].join("\n"); var glossinessMapFragmentChunk = [ "float glossinessFactor = glossiness;", "#ifdef USE_GLOSSINESSMAP", " vec4 texelGlossiness = texture2D( glossinessMap, vUv );", " // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture", " glossinessFactor *= texelGlossiness.a;", "#endif" ].join("\n"); var lightPhysicalFragmentChunk = [ "PhysicalMaterial material;", "material.diffuseColor = diffuseColor.rgb;", "material.specularRoughness = clamp( 1.0 - glossinessFactor, 0.04, 1.0 );", "material.specularColor = specularFactor.rgb;" ].join("\n"); var fragmentShader = shader.fragmentShader .replace("uniform float roughness;", "uniform vec3 specular;") .replace("uniform float metalness;", "uniform float glossiness;") .replace( "#include <roughnessmap_pars_fragment>", specularMapParsFragmentChunk ) .replace( "#include <metalnessmap_pars_fragment>", glossinessMapParsFragmentChunk ) .replace("#include <roughnessmap_fragment>", specularMapFragmentChunk) .replace( "#include <metalnessmap_fragment>", glossinessMapFragmentChunk ) .replace( "#include <lights_physical_fragment>", lightPhysicalFragmentChunk ); delete uniforms.roughness; delete uniforms.metalness; delete uniforms.roughnessMap; delete uniforms.metalnessMap; uniforms.specular = { value: new THREE.Color().setHex(0x111111) }; uniforms.glossiness = { value: 0.5 }; uniforms.specularMap = { value: null }; uniforms.glossinessMap = { value: null }; params.vertexShader = shader.vertexShader; params.fragmentShader = fragmentShader; params.uniforms = uniforms; params.defines = { STANDARD: "" }; params.color = new THREE.Color(1.0, 1.0, 1.0); params.opacity = 1.0; var pending = []; if (Array.isArray(pbrSpecularGlossiness.diffuseFactor)) { var array = pbrSpecularGlossiness.diffuseFactor; params.color.fromArray(array); params.opacity = array[3]; } if (pbrSpecularGlossiness.diffuseTexture !== undefined) { pending.push( parser.assignTexture( params, "map", pbrSpecularGlossiness.diffuseTexture ) ); } params.emissive = new THREE.Color(0.0, 0.0, 0.0); params.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0; params.specular = new THREE.Color(1.0, 1.0, 1.0); if (Array.isArray(pbrSpecularGlossiness.specularFactor)) { params.specular.fromArray(pbrSpecularGlossiness.specularFactor); } if (pbrSpecularGlossiness.specularGlossinessTexture !== undefined) { var specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture; pending.push( parser.assignTexture(params, "glossinessMap", specGlossMapDef) ); pending.push( parser.assignTexture(params, "specularMap", specGlossMapDef) ); } return Promise.all(pending); }, createMaterial: function(params) { // setup material properties based on MeshStandardMaterial for Specular-Glossiness var material = new THREE.ShaderMaterial({ defines: params.defines, vertexShader: params.vertexShader, fragmentShader: params.fragmentShader, uniforms: params.uniforms, fog: true, lights: true, opacity: params.opacity, transparent: params.transparent }); material.isGLTFSpecularGlossinessMaterial = true; material.color = params.color; material.map = params.map === undefined ? null : params.map; material.lightMap = null; material.lightMapIntensity = 1.0; material.aoMap = params.aoMap === undefined ? null : params.aoMap; material.aoMapIntensity = 1.0; material.emissive = params.emissive; material.emissiveIntensity = 1.0; material.emissiveMap = params.emissiveMap === undefined ? null : params.emissiveMap; material.bumpMap = params.bumpMap === undefined ? null : params.bumpMap; material.bumpScale = 1; material.normalMap = params.normalMap === undefined ? null : params.normalMap; if (params.normalScale) material.normalScale = params.normalScale; material.displacementMap = null; material.displacementScale = 1; material.displacementBias = 0; material.specularMap = params.specularMap === undefined ? null : params.specularMap; material.specular = params.specular; material.glossinessMap = params.glossinessMap === undefined ? null : params.glossinessMap; material.glossiness = params.glossiness; material.alphaMap = null; material.envMap = params.envMap === undefined ? null : params.envMap; material.envMapIntensity = 1.0; material.refractionRatio = 0.98; material.extensions.derivatives = true; return material; }, /** * Clones a GLTFSpecularGlossinessMaterial instance. The ShaderMaterial.copy() method can * copy only properties it knows about or inherits, and misses many properties that would * normally be defined by MeshStandardMaterial. * * This method allows GLTFSpecularGlossinessMaterials to be cloned in the process of * loading a glTF model, but cloning later (e.g. by the user) would require these changes * AND also updating `.onBeforeRender` on the parent mesh. * * @param {THREE.ShaderMaterial} source * @return {THREE.ShaderMaterial} */ cloneMaterial: function(source) { var target = source.clone(); target.isGLTFSpecularGlossinessMaterial = true; var params = this.specularGlossinessParams; for (var i = 0, il = params.length; i < il; i++) { target[params[i]] = source[params[i]]; } return target; }, // Here's based on refreshUniformsCommon() and refreshUniformsStandard() in WebGLRenderer. refreshUniforms: function( renderer, scene, camera, geometry, material, group ) { if (material.isGLTFSpecularGlossinessMaterial !== true) { return; } var uniforms = material.uniforms; var defines = material.defines; uniforms.opacity.value = material.opacity; uniforms.diffuse.value.copy(material.color); uniforms.emissive.value .copy(material.emissive) .multiplyScalar(material.emissiveIntensity); uniforms.map.value = material.map; uniforms.specularMap.value = material.specularMap; uniforms.alphaMap.value = material.alphaMap; uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. normal map // 4. bump map // 5. alpha map // 6. emissive map var uvScaleMap; if (material.map) { uvScaleMap = material.map; } else if (material.specularMap) { uvScaleMap = material.specularMap; } else if (material.displacementMap) { uvScaleMap = material.displacementMap; } else if (material.normalMap) { uvScaleMap = material.normalMap; } else if (material.bumpMap) { uvScaleMap = material.bumpMap; } else if (material.glossinessMap) { uvScaleMap = material.glossinessMap; } else if (material.alphaMap) { uvScaleMap = material.alphaMap; } else if (material.emissiveMap) { uvScaleMap = material.emissiveMap; } if (uvScaleMap !== undefined) { // backwards compatibility if (uvScaleMap.isWebGLRenderTarget) { uvScaleMap = uvScaleMap.texture; } if (uvScaleMap.matrixAutoUpdate === true) { uvScaleMap.updateMatrix(); } uniforms.uvTransform.value.copy(uvScaleMap.matrix); } if (material.envMap) { uniforms.envMap.value = material.envMap; uniforms.envMapIntensity.value = material.envMapIntensity; // don't flip CubeTexture envMaps, flip everything else: // WebGLRenderTargetCube will be flipped for backwards compatibility // WebGLRenderTargetCube.texture will be flipped because it's a Texture and NOT a CubeTexture // this check must be handled differently, or removed entirely, if WebGLRenderTargetCube uses a CubeTexture in the future uniforms.flipEnvMap.value = material.envMap.isCubeTexture ? -1 : 1; uniforms.reflectivity.value = material.reflectivity; uniforms.refractionRatio.value = material.refractionRatio; uniforms.maxMipLevel.value = renderer.properties.get( material.envMap ).__maxMipLevel; } uniforms.specular.value.copy(material.specular); uniforms.glossiness.value = material.glossiness; uniforms.glossinessMap.value = material.glossinessMap; uniforms.emissiveMap.value = material.emissiveMap; uniforms.bumpMap.value = material.bumpMap; uniforms.normalMap.value = material.normalMap; uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; if ( uniforms.glossinessMap.value !== null && defines.USE_GLOSSINESSMAP === undefined ) { defines.USE_GLOSSINESSMAP = ""; // set USE_ROUGHNESSMAP to enable vUv defines.USE_ROUGHNESSMAP = ""; } if ( uniforms.glossinessMap.value === null && defines.USE_GLOSSINESSMAP !== undefined ) { delete defines.USE_GLOSSINESSMAP; delete defines.USE_ROUGHNESSMAP; } } }; } /*********************************/ /********** INTERPOLATION ********/ /*********************************/ // Spline Interpolation // Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation function GLTFCubicSplineInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { THREE.Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); } GLTFCubicSplineInterpolant.prototype = Object.create( THREE.Interpolant.prototype ); GLTFCubicSplineInterpolant.prototype.constructor = GLTFCubicSplineInterpolant; GLTFCubicSplineInterpolant.prototype.copySampleValue_ = function(index) { // Copies a sample value to the result buffer. See description of glTF // CUBICSPLINE values layout in interpolate_() function below. var result = this.resultBuffer, values = this.sampleValues, valueSize = this.valueSize, offset = index * valueSize * 3 + valueSize; for (var i = 0; i !== valueSize; i++) { result[i] = values[offset + i]; } return result; }; GLTFCubicSplineInterpolant.prototype.beforeStart_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_; GLTFCubicSplineInterpolant.prototype.afterEnd_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_; GLTFCubicSplineInterpolant.prototype.interpolate_ = function(i1, t0, t, t1) { var result = this.resultBuffer; var values = this.sampleValues; var stride = this.valueSize; var stride2 = stride * 2; var stride3 = stride * 3; var td = t1 - t0; var p = (t - t0) / td; var pp = p * p; var ppp = pp * p; var offset1 = i1 * stride3; var offset0 = offset1 - stride3; var s2 = -2 * ppp + 3 * pp; var s3 = ppp - pp; var s0 = 1 - s2; var s1 = s3 - pp + p; // Layout of keyframe output values for CUBICSPLINE animations: // [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ] for (var i = 0; i !== stride; i++) { var p0 = values[offset0 + i + stride]; // splineVertex_k var m0 = values[offset0 + i + stride2] * td; // outTangent_k * (t_k+1 - t_k) var p1 = values[offset1 + i + stride]; // splineVertex_k+1 var m1 = values[offset1 + i] * td; // inTangent_k+1 * (t_k+1 - t_k) result[i] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1; } return result; }; /*********************************/ /********** INTERNALS ************/ /*********************************/ /* CONSTANTS */ var WEBGL_CONSTANTS = { FLOAT: 5126, //FLOAT_MAT2: 35674, FLOAT_MAT3: 35675, FLOAT_MAT4: 35676, FLOAT_VEC2: 35664, FLOAT_VEC3: 35665, FLOAT_VEC4: 35666, LINEAR: 9729, REPEAT: 10497, SAMPLER_2D: 35678, POINTS: 0, LINES: 1, LINE_LOOP: 2, LINE_STRIP: 3, TRIANGLES: 4, TRIANGLE_STRIP: 5, TRIANGLE_FAN: 6, UNSIGNED_BYTE: 5121, UNSIGNED_SHORT: 5123 }; var WEBGL_TYPE = { 5126: Number, //35674: THREE.Matrix2, 35675: THREE.Matrix3, 35676: THREE.Matrix4, 35664: THREE.Vector2, 35665: THREE.Vector3, 35666: THREE.Vector4, 35678: THREE.Texture }; var WEBGL_COMPONENT_TYPES = { 5120: Int8Array, 5121: Uint8Array, 5122: Int16Array, 5123: Uint16Array, 5125: Uint32Array, 5126: Float32Array }; var WEBGL_FILTERS = { 9728: THREE.NearestFilter, 9729: THREE.LinearFilter, 9984: THREE.NearestMipMapNearestFilter, 9985: THREE.LinearMipMapNearestFilter, 9986: THREE.NearestMipMapLinearFilter, 9987: THREE.LinearMipMapLinearFilter }; var WEBGL_WRAPPINGS = { 33071: THREE.ClampToEdgeWrapping, 33648: THREE.MirroredRepeatWrapping, 10497: THREE.RepeatWrapping }; var WEBGL_SIDES = { 1028: THREE.BackSide, // Culling front 1029: THREE.FrontSide // Culling back //1032: THREE.NoSide // Culling front and back, what to do? }; var WEBGL_DEPTH_FUNCS = { 512: THREE.NeverDepth, 513: THREE.LessDepth, 514: THREE.EqualDepth, 515: THREE.LessEqualDepth, 516: THREE.GreaterEqualDepth, 517: THREE.NotEqualDepth, 518: THREE.GreaterEqualDepth, 519: THREE.AlwaysDepth }; var WEBGL_BLEND_EQUATIONS = { 32774: THREE.AddEquation, 32778: THREE.SubtractEquation, 32779: THREE.ReverseSubtractEquation }; var WEBGL_BLEND_FUNCS = { 0: THREE.ZeroFactor, 1: THREE.OneFactor, 768: THREE.SrcColorFactor, 769: THREE.OneMinusSrcColorFactor, 770: THREE.SrcAlphaFactor, 771: THREE.OneMinusSrcAlphaFactor, 772: THREE.DstAlphaFactor, 773: THREE.OneMinusDstAlphaFactor, 774: THREE.DstColorFactor, 775: THREE.OneMinusDstColorFactor, 776: THREE.SrcAlphaSaturateFactor // The followings are not supported by Three.js yet //32769: CONSTANT_COLOR, //32770: ONE_MINUS_CONSTANT_COLOR, //32771: CONSTANT_ALPHA, //32772: ONE_MINUS_CONSTANT_COLOR }; var WEBGL_TYPE_SIZES = { SCALAR: 1, VEC2: 2, VEC3: 3, VEC4: 4, MAT2: 4, MAT3: 9, MAT4: 16 }; var ATTRIBUTES = { POSITION: "position", NORMAL: "normal", TEXCOORD_0: "uv", TEXCOORD_1: "uv2", COLOR_0: "color", WEIGHTS_0: "skinWeight", JOINTS_0: "skinIndex" }; var PATH_PROPERTIES = { scale: "scale", translation: "position", rotation: "quaternion", weights: "morphTargetInfluences" }; var INTERPOLATION = { CUBICSPLINE: THREE.InterpolateSmooth, // We use custom interpolation GLTFCubicSplineInterpolation for CUBICSPLINE. // KeyframeTrack.optimize() can't handle glTF Cubic Spline output values layout, // using THREE.InterpolateSmooth for KeyframeTrack instantiation to prevent optimization. // See KeyframeTrack.optimize() for the detail. LINEAR: THREE.InterpolateLinear, STEP: THREE.InterpolateDiscrete }; var STATES_ENABLES = { 2884: "CULL_FACE", 2929: "DEPTH_TEST", 3042: "BLEND", 3089: "SCISSOR_TEST", 32823: "POLYGON_OFFSET_FILL", 32926: "SAMPLE_ALPHA_TO_COVERAGE" }; var ALPHA_MODES = { OPAQUE: "OPAQUE", MASK: "MASK", BLEND: "BLEND" }; var MIME_TYPE_FORMATS = { "image/png": THREE.RGBAFormat, "image/jpeg": THREE.RGBFormat }; /* UTILITY FUNCTIONS */ function resolveURL(url, path) { // Invalid URL if (typeof url !== "string" || url === "") return ""; // Absolute URL http://,https://,// if (/^(https?:)?\/\//i.test(url)) return url; // Data URI if (/^data:.*,.*$/i.test(url)) return url; // Blob URL if (/^blob:.*$/i.test(url)) return url; // Relative URL return path + url; } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material */ function createDefaultMaterial() { return new THREE.MeshStandardMaterial({ color: 0xffffff, emissive: 0x000000, metalness: 1, roughness: 1, transparent: false, depthTest: true, side: THREE.FrontSide }); } function addUnknownExtensionsToUserData(knownExtensions, object, objectDef) { // Add unknown glTF extensions to an object's userData. for (var name in objectDef.extensions) { if (knownExtensions[name] === undefined) { object.userData.gltfExtensions = object.userData.gltfExtensions || {}; object.userData.gltfExtensions[name] = objectDef.extensions[name]; } } } /** * @param {THREE.Object3D|THREE.Material|THREE.BufferGeometry} object * @param {GLTF.definition} gltfDef */ function assignExtrasToUserData(object, gltfDef) { if (gltfDef.extras !== undefined) { if (typeof gltfDef.extras === "object") { object.userData = gltfDef.extras; } else { console.warn( "THREE.GLTFLoader: Ignoring primitive type .extras, " + gltfDef.extras ); } } } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets * * @param {THREE.BufferGeometry} geometry * @param {Array<GLTF.Target>} targets * @param {GLTFParser} parser * @return {Promise<THREE.BufferGeometry>} */ function addMorphTargets(geometry, targets, parser) { var hasMorphPosition = false; var hasMorphNormal = false; for (var i = 0, il = targets.length; i < il; i++) { var target = targets[i]; if (target.POSITION !== undefined) hasMorphPosition = true; if (target.NORMAL !== undefined) hasMorphNormal = true; if (hasMorphPosition && hasMorphNormal) break; } if (!hasMorphPosition && !hasMorphNormal) return Promise.resolve(geometry); var pendingPositionAccessors = []; var pendingNormalAccessors = []; for (var i = 0, il = targets.length; i < il; i++) { var target = targets[i]; if (hasMorphPosition) { // TODO: Error-prone use of a callback inside a loop. var accessor = target.POSITION !== undefined ? parser .getDependency("accessor", target.POSITION) .then(function(accessor) { // Cloning not to pollute original accessor below return cloneBufferAttribute(accessor); }) : geometry.attributes.position; pendingPositionAccessors.push(accessor); } if (hasMorphNormal) { // TODO: Error-prone use of a callback inside a loop. var accessor = target.NORMAL !== undefined ? parser .getDependency("accessor", target.NORMAL) .then(function(accessor) { return cloneBufferAttribute(accessor); }) : geometry.attributes.normal; pendingNormalAccessors.push(accessor); } } return Promise.all([ Promise.all(pendingPositionAccessors), Promise.all(pendingNormalAccessors) ]).then(function(accessors) { var morphPositions = accessors[0]; var morphNormals = accessors[1]; for (var i = 0, il = targets.length; i < il; i++) { var target = targets[i]; var attributeName = "morphTarget" + i; if (hasMorphPosition) { // Three.js morph position is absolute value. The formula is // basePosition // + weight0 * ( morphPosition0 - basePosition ) // + weight1 * ( morphPosition1 - basePosition ) // ... // while the glTF one is relative // basePosition // + weight0 * glTFmorphPosition0 // + weight1 * glTFmorphPosition1 // ... // then we need to convert from relative to absolute here. if (target.POSITION !== undefined) { var positionAttribute = morphPositions[i]; positionAttribute.name = attributeName; var position = geometry.attributes.position; for (var j = 0, jl = positionAttribute.count; j < jl; j++) { positionAttribute.setXYZ( j, positionAttribute.getX(j) + position.getX(j), positionAttribute.getY(j) + position.getY(j), positionAttribute.getZ(j) + position.getZ(j) ); } } } if (hasMorphNormal) { // see target.POSITION's comment if (target.NORMAL !== undefined) { var normalAttribute = morphNormals[i]; normalAttribute.name = attributeName; var normal = geometry.attributes.normal; for (var j = 0, jl = normalAttribute.count; j < jl; j++) { normalAttribute.setXYZ( j, normalAttribute.getX(j) + normal.getX(j), normalAttribute.getY(j) + normal.getY(j), normalAttribute.getZ(j) + normal.getZ(j) ); } } } } if (hasMorphPosition) geometry.morphAttributes.position = morphPositions; if (hasMorphNormal) geometry.morphAttributes.normal = morphNormals; return geometry; }); } /** * @param {THREE.Mesh} mesh * @param {GLTF.Mesh} meshDef */ function updateMorphTargets(mesh, meshDef) { mesh.updateMorphTargets(); if (meshDef.weights !== undefined) { for (var i = 0, il = meshDef.weights.length; i < il; i++) { mesh.morphTargetInfluences[i] = meshDef.weights[i]; } } // .extras has user-defined data, so check that .extras.targetNames is an array. if (meshDef.extras && Array.isArray(meshDef.extras.targetNames)) { var targetNames = meshDef.extras.targetNames; if (mesh.morphTargetInfluences.length === targetNames.length) { mesh.morphTargetDictionary = {}; for (var i = 0, il = targetNames.length; i < il; i++) { mesh.morphTargetDictionary[targetNames[i]] = i; } } else { console.warn( "THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names." ); } } } function isPrimitiveEqual(a, b) { var dracoExtA = a.extensions ? a.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION] : undefined; var dracoExtB = b.extensions ? b.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION] : undefined; if (dracoExtA && dracoExtB) { if (dracoExtA.bufferView !== dracoExtB.bufferView) return false; return isObjectEqual(dracoExtA.attributes, dracoExtB.attributes); } if (a.indices !== b.indices) { return false; } return isObjectEqual(a.attributes, b.attributes); } function isObjectEqual(a, b) { if (Object.keys(a).length !== Object.keys(b).length) return false; for (var key in a) { if (a[key] !== b[key]) return false; } return true; } function isArrayEqual(a, b) { if (a.length !== b.length) return false; for (var i = 0, il = a.length; i < il; i++) { if (a[i] !== b[i]) return false; } return true; } function getCachedGeometry(cache, newPrimitive) { for (var i = 0, il = cache.length; i < il; i++) { var cached = cache[i]; if (isPrimitiveEqual(cached.primitive, newPrimitive)) return cached.promise; } return null; } function getCachedCombinedGeometry(cache, geometries) { for (var i = 0, il = cache.length; i < il; i++) { var cached = cache[i]; if (isArrayEqual(geometries, cached.baseGeometries)) return cached.geometry; } return null; } function getCachedMultiPassGeometry(cache, geometry, primitives) { for (var i = 0, il = cache.length; i < il; i++) { var cached = cache[i]; if ( geometry === cached.baseGeometry && isArrayEqual(primitives, cached.primitives) ) return cached.geometry; } return null; } function cloneBufferAttribute(attribute) { if (attribute.isInterleavedBufferAttribute) { var count = attribute.count; var itemSize = attribute.itemSize; var array = attribute.array.slice(0, count * itemSize); for (var i = 0, j = 0; i < count; ++i) { array[j++] = attribute.getX(i); if (itemSize >= 2) array[j++] = attribute.getY(i); if (itemSize >= 3) array[j++] = attribute.getZ(i); if (itemSize >= 4) array[j++] = attribute.getW(i); } return new THREE.BufferAttribute(array, itemSize, attribute.normalized); } return attribute.clone(); } /** * Checks if we can build a single Mesh with MultiMaterial from multiple primitives. * Returns true if all primitives use the same attributes/morphAttributes/mode * and also have index. Otherwise returns false. * * @param {Array<GLTF.Primitive>} primitives * @return {Boolean} */ function isMultiPassGeometry(primitives) { if (primitives.length < 2) return false; var primitive0 = primitives[0]; var targets0 = primitive0.targets || []; if (primitive0.indices === undefined) return false; for (var i = 1, il = primitives.length; i < il; i++) { var primitive = primitives[i]; if (primitive0.mode !== primitive.mode) return false; if (primitive.indices === undefined) return false; if ( primitive.extensions && primitive.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION] ) return false; if (!isObjectEqual(primitive0.attributes, primitive.attributes)) return false; var targets = primitive.targets || []; if (targets0.length !== targets.length) return false; for (var j = 0, jl = targets0.length; j < jl; j++) { if (!isObjectEqual(targets0[j], targets[j])) return false; } } return true; } /* GLTF PARSER */ function GLTFParser(json, extensions, options) { this.json = json || {}; this.extensions = extensions || {}; this.options = options || {}; // loader object cache this.cache = new GLTFRegistry(); // BufferGeometry caching this.primitiveCache = []; this.multiplePrimitivesCache = []; this.multiPassGeometryCache = []; this.textureLoader = new THREE.TextureLoader(this.options.manager); this.textureLoader.setCrossOrigin(this.options.crossOrigin); this.fileLoader = new THREE.FileLoader(this.options.manager); this.fileLoader.setResponseType("arraybuffer"); } GLTFParser.prototype.parse = function(onLoad, onError) { var json = this.json; // Clear the loader cache this.cache.removeAll(); // Mark the special nodes/meshes in json for efficient parse this.markDefs(); // Fire the callback on complete this.getMultiDependencies(["scene", "animation", "camera"]) .then(function(dependencies) { var scenes = dependencies.scenes || []; var scene = scenes[json.scene || 0]; var animations = dependencies.animations || []; var cameras = dependencies.cameras || []; onLoad(scene, scenes, cameras, animations, json); }) .catch(onError); }; /** * Marks the special nodes/meshes in json for efficient parse. */ GLTFParser.prototype.markDefs = function() { var nodeDefs = this.json.nodes || []; var skinDefs = this.json.skins || []; var meshDefs = this.json.meshes || []; var meshReferences = {}; var meshUses = {}; // Nothing in the node definition indicates whether it is a Bone or an // Object3D. Use the skins' joint references to mark bones. for ( var skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex++ ) { var joints = skinDefs[skinIndex].joints; for (var i = 0, il = joints.length; i < il; i++) { nodeDefs[joints[i]].isBone = true; } } // Meshes can (and should) be reused by multiple nodes in a glTF asset. To // avoid having more than one THREE.Mesh with the same name, count // references and rename instances below. // // Example: CesiumMilkTruck sample model reuses "Wheel" meshes. for ( var nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex++ ) { var nodeDef = nodeDefs[nodeIndex]; if (nodeDef.mesh !== undefined) { if (meshReferences[nodeDef.mesh] === undefined) { meshReferences[nodeDef.mesh] = meshUses[nodeDef.mesh] = 0; } meshReferences[nodeDef.mesh]++; // Nothing in the mesh definition indicates whether it is // a SkinnedMesh or Mesh. Use the node's mesh reference // to mark SkinnedMesh if node has skin. if (nodeDef.skin !== undefined) { meshDefs[nodeDef.mesh].isSkinnedMesh = true; } } } this.json.meshReferences = meshReferences; this.json.meshUses = meshUses; }; /** * Requests the specified dependency asynchronously, with caching. * @param {string} type * @param {number} index * @return {Promise<THREE.Object3D|THREE.Material|THREE.Texture|THREE.AnimationClip|ArrayBuffer|Object>} */ GLTFParser.prototype.getDependency = function(type, index) { var cacheKey = type + ":" + index; var dependency = this.cache.get(cacheKey); if (!dependency) { switch (type) { case "scene": dependency = this.loadScene(index); break; case "node": dependency = this.loadNode(index); break; case "mesh": dependency = this.loadMesh(index); break; case "accessor": dependency = this.loadAccessor(index); break; case "bufferView": dependency = this.loadBufferView(index); break; case "buffer": dependency = this.loadBuffer(index); break; case "material": dependency = this.loadMaterial(index); break; case "texture": dependency = this.loadTexture(index); break; case "skin": dependency = this.loadSkin(index); break; case "animation": dependency = this.loadAnimation(index); break; case "camera": dependency = this.loadCamera(index); break; case "light": dependency = this.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].loadLight(index); break; default: throw new Error("Unknown type: " + type); } this.cache.add(cacheKey, dependency); } return dependency; }; /** * Requests all dependencies of the specified type asynchronously, with caching. * @param {string} type * @return {Promise<Array<Object>>} */ GLTFParser.prototype.