three-globe
Version:
Globe data visualization as a ThreeJS reusable 3D object
2,055 lines (1,492 loc) • 606 kB
JavaScript
// Version 2.1.1 three-globe - https://github.com/vasturiano/three-globe
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory(require('three')) :
typeof define === 'function' && define.amd ? define(['three'], factory) :
(global = global || self, global.ThreeGlobe = factory(global.THREE));
}(this, function (three) { 'use strict';
function _classCallCheck(instance, Constructor) {
if (!(instance instanceof Constructor)) {
throw new TypeError("Cannot call a class as a function");
}
}
function _defineProperty(obj, key, value) {
if (key in obj) {
Object.defineProperty(obj, key, {
value: value,
enumerable: true,
configurable: true,
writable: true
});
} else {
obj[key] = value;
}
return obj;
}
function ownKeys(object, enumerableOnly) {
var keys = Object.keys(object);
if (Object.getOwnPropertySymbols) {
var symbols = Object.getOwnPropertySymbols(object);
if (enumerableOnly) symbols = symbols.filter(function (sym) {
return Object.getOwnPropertyDescriptor(object, sym).enumerable;
});
keys.push.apply(keys, symbols);
}
return keys;
}
function _objectSpread2(target) {
for (var i = 1; i < arguments.length; i++) {
var source = arguments[i] != null ? arguments[i] : {};
if (i % 2) {
ownKeys(source, true).forEach(function (key) {
_defineProperty(target, key, source[key]);
});
} else if (Object.getOwnPropertyDescriptors) {
Object.defineProperties(target, Object.getOwnPropertyDescriptors(source));
} else {
ownKeys(source).forEach(function (key) {
Object.defineProperty(target, key, Object.getOwnPropertyDescriptor(source, key));
});
}
}
return target;
}
function _inherits(subClass, superClass) {
if (typeof superClass !== "function" && superClass !== null) {
throw new TypeError("Super expression must either be null or a function");
}
subClass.prototype = Object.create(superClass && superClass.prototype, {
constructor: {
value: subClass,
writable: true,
configurable: true
}
});
if (superClass) _setPrototypeOf(subClass, superClass);
}
function _getPrototypeOf(o) {
_getPrototypeOf = Object.setPrototypeOf ? Object.getPrototypeOf : function _getPrototypeOf(o) {
return o.__proto__ || Object.getPrototypeOf(o);
};
return _getPrototypeOf(o);
}
function _setPrototypeOf(o, p) {
_setPrototypeOf = Object.setPrototypeOf || function _setPrototypeOf(o, p) {
o.__proto__ = p;
return o;
};
return _setPrototypeOf(o, p);
}
function isNativeReflectConstruct() {
if (typeof Reflect === "undefined" || !Reflect.construct) return false;
if (Reflect.construct.sham) return false;
if (typeof Proxy === "function") return true;
try {
Date.prototype.toString.call(Reflect.construct(Date, [], function () {}));
return true;
} catch (e) {
return false;
}
}
function _construct(Parent, args, Class) {
if (isNativeReflectConstruct()) {
_construct = Reflect.construct;
} else {
_construct = function _construct(Parent, args, Class) {
var a = [null];
a.push.apply(a, args);
var Constructor = Function.bind.apply(Parent, a);
var instance = new Constructor();
if (Class) _setPrototypeOf(instance, Class.prototype);
return instance;
};
}
return _construct.apply(null, arguments);
}
function _objectWithoutPropertiesLoose(source, excluded) {
if (source == null) return {};
var target = {};
var sourceKeys = Object.keys(source);
var key, i;
for (i = 0; i < sourceKeys.length; i++) {
key = sourceKeys[i];
if (excluded.indexOf(key) >= 0) continue;
target[key] = source[key];
}
return target;
}
function _objectWithoutProperties(source, excluded) {
if (source == null) return {};
var target = _objectWithoutPropertiesLoose(source, excluded);
var key, i;
if (Object.getOwnPropertySymbols) {
var sourceSymbolKeys = Object.getOwnPropertySymbols(source);
for (i = 0; i < sourceSymbolKeys.length; i++) {
key = sourceSymbolKeys[i];
if (excluded.indexOf(key) >= 0) continue;
if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue;
target[key] = source[key];
}
}
return target;
}
function _assertThisInitialized(self) {
if (self === void 0) {
throw new ReferenceError("this hasn't been initialised - super() hasn't been called");
}
return self;
}
function _possibleConstructorReturn(self, call) {
if (call && (typeof call === "object" || typeof call === "function")) {
return call;
}
return _assertThisInitialized(self);
}
function _slicedToArray(arr, i) {
return _arrayWithHoles(arr) || _iterableToArrayLimit(arr, i) || _nonIterableRest();
}
function _toConsumableArray(arr) {
return _arrayWithoutHoles(arr) || _iterableToArray(arr) || _nonIterableSpread();
}
function _arrayWithoutHoles(arr) {
if (Array.isArray(arr)) {
for (var i = 0, arr2 = new Array(arr.length); i < arr.length; i++) arr2[i] = arr[i];
return arr2;
}
}
function _arrayWithHoles(arr) {
if (Array.isArray(arr)) return arr;
}
function _iterableToArray(iter) {
if (Symbol.iterator in Object(iter) || Object.prototype.toString.call(iter) === "[object Arguments]") return Array.from(iter);
}
function _iterableToArrayLimit(arr, i) {
if (!(Symbol.iterator in Object(arr) || Object.prototype.toString.call(arr) === "[object Arguments]")) {
return;
}
var _arr = [];
var _n = true;
var _d = false;
var _e = undefined;
try {
for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) {
_arr.push(_s.value);
if (i && _arr.length === i) break;
}
} catch (err) {
_d = true;
_e = err;
} finally {
try {
if (!_n && _i["return"] != null) _i["return"]();
} finally {
if (_d) throw _e;
}
}
return _arr;
}
function _nonIterableSpread() {
throw new TypeError("Invalid attempt to spread non-iterable instance");
}
function _nonIterableRest() {
throw new TypeError("Invalid attempt to destructure non-iterable instance");
}
/**
* Returns a function, that, as long as it continues to be invoked, will not
* be triggered. The function will be called after it stops being called for
* N milliseconds. If `immediate` is passed, trigger the function on the
* leading edge, instead of the trailing. The function also has a property 'clear'
* that is a function which will clear the timer to prevent previously scheduled executions.
*
* @source underscore.js
* @see http://unscriptable.com/2009/03/20/debouncing-javascript-methods/
* @param {Function} function to wrap
* @param {Number} timeout in ms (`100`)
* @param {Boolean} whether to execute at the beginning (`false`)
* @api public
*/
function debounce(func, wait, immediate){
var timeout, args, context, timestamp, result;
if (null == wait) wait = 100;
function later() {
var last = Date.now() - timestamp;
if (last < wait && last >= 0) {
timeout = setTimeout(later, wait - last);
} else {
timeout = null;
if (!immediate) {
result = func.apply(context, args);
context = args = null;
}
}
}
var debounced = function(){
context = this;
args = arguments;
timestamp = Date.now();
var callNow = immediate && !timeout;
if (!timeout) timeout = setTimeout(later, wait);
if (callNow) {
result = func.apply(context, args);
context = args = null;
}
return result;
};
debounced.clear = function() {
if (timeout) {
clearTimeout(timeout);
timeout = null;
}
};
debounced.flush = function() {
if (timeout) {
result = func.apply(context, args);
context = args = null;
clearTimeout(timeout);
timeout = null;
}
};
return debounced;
}
// Adds compatibility for ES modules
debounce.debounce = debounce;
var debounce_1 = debounce;
function _classCallCheck$1(instance, Constructor) {
if (!(instance instanceof Constructor)) {
throw new TypeError("Cannot call a class as a function");
}
}
function _slicedToArray$1(arr, i) {
return _arrayWithHoles$1(arr) || _iterableToArrayLimit$1(arr, i) || _nonIterableRest$1();
}
function _arrayWithHoles$1(arr) {
if (Array.isArray(arr)) return arr;
}
function _iterableToArrayLimit$1(arr, i) {
var _arr = [];
var _n = true;
var _d = false;
var _e = undefined;
try {
for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) {
_arr.push(_s.value);
if (i && _arr.length === i) break;
}
} catch (err) {
_d = true;
_e = err;
} finally {
try {
if (!_n && _i["return"] != null) _i["return"]();
} finally {
if (_d) throw _e;
}
}
return _arr;
}
function _nonIterableRest$1() {
throw new TypeError("Invalid attempt to destructure non-iterable instance");
}
var Prop = function Prop(name, _ref) {
var _ref$default = _ref["default"],
defaultVal = _ref$default === void 0 ? null : _ref$default,
_ref$triggerUpdate = _ref.triggerUpdate,
triggerUpdate = _ref$triggerUpdate === void 0 ? true : _ref$triggerUpdate,
_ref$onChange = _ref.onChange,
onChange = _ref$onChange === void 0 ? function (newVal, state) {} : _ref$onChange;
_classCallCheck$1(this, Prop);
this.name = name;
this.defaultVal = defaultVal;
this.triggerUpdate = triggerUpdate;
this.onChange = onChange;
};
function index (_ref2) {
var _ref2$stateInit = _ref2.stateInit,
stateInit = _ref2$stateInit === void 0 ? function () {
return {};
} : _ref2$stateInit,
_ref2$props = _ref2.props,
rawProps = _ref2$props === void 0 ? {} : _ref2$props,
_ref2$methods = _ref2.methods,
methods = _ref2$methods === void 0 ? {} : _ref2$methods,
_ref2$aliases = _ref2.aliases,
aliases = _ref2$aliases === void 0 ? {} : _ref2$aliases,
_ref2$init = _ref2.init,
initFn = _ref2$init === void 0 ? function () {} : _ref2$init,
_ref2$update = _ref2.update,
updateFn = _ref2$update === void 0 ? function () {} : _ref2$update;
// Parse props into Prop instances
var props = Object.keys(rawProps).map(function (propName) {
return new Prop(propName, rawProps[propName]);
});
return function () {
var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {};
// Holds component state
var state = Object.assign({}, stateInit instanceof Function ? stateInit(options) : stateInit, // Support plain objects for backwards compatibility
{
initialised: false
}); // Component constructor
function comp(nodeElement) {
initStatic(nodeElement, options);
digest();
return comp;
}
var initStatic = function initStatic(nodeElement, options) {
initFn.call(comp, nodeElement, state, options);
state.initialised = true;
};
var digest = debounce_1(function () {
if (!state.initialised) {
return;
}
updateFn.call(comp, state);
}, 1); // Getter/setter methods
props.forEach(function (prop) {
comp[prop.name] = getSetProp(prop.name, prop.triggerUpdate, prop.onChange);
function getSetProp(prop) {
var redigest = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : false;
var onChange = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : function (newVal, state) {};
return function (_) {
var curVal = state[prop];
if (!arguments.length) {
return curVal;
} // Getter mode
state[prop] = _;
onChange.call(comp, _, state, curVal);
if (redigest) {
digest();
}
return comp;
};
}
}); // Other methods
Object.keys(methods).forEach(function (methodName) {
comp[methodName] = function () {
var _methods$methodName;
for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) {
args[_key] = arguments[_key];
}
return (_methods$methodName = methods[methodName]).call.apply(_methods$methodName, [comp, state].concat(args));
};
}); // Link aliases
Object.entries(aliases).forEach(function (_ref3) {
var _ref4 = _slicedToArray$1(_ref3, 2),
alias = _ref4[0],
target = _ref4[1];
return comp[alias] = comp[target];
}); // Reset all component props to their default value
comp.resetProps = function () {
props.forEach(function (prop) {
comp[prop.name](prop.defaultVal);
});
return comp;
}; //
comp.resetProps(); // Apply all prop defaults
state._rerender = digest; // Expose digest method
return comp;
};
}
/**
* Tween.js - Licensed under the MIT license
* https://github.com/tweenjs/tween.js
* ----------------------------------------------
*
* See https://github.com/tweenjs/tween.js/graphs/contributors for the full list of contributors.
* Thank you all, you're awesome!
*/
var _Group = function () {
this._tweens = {};
this._tweensAddedDuringUpdate = {};
};
_Group.prototype = {
getAll: function () {
return Object.keys(this._tweens).map(function (tweenId) {
return this._tweens[tweenId];
}.bind(this));
},
removeAll: function () {
this._tweens = {};
},
add: function (tween) {
this._tweens[tween.getId()] = tween;
this._tweensAddedDuringUpdate[tween.getId()] = tween;
},
remove: function (tween) {
delete this._tweens[tween.getId()];
delete this._tweensAddedDuringUpdate[tween.getId()];
},
update: function (time, preserve) {
var tweenIds = Object.keys(this._tweens);
if (tweenIds.length === 0) {
return false;
}
time = time !== undefined ? time : TWEEN.now();
// Tweens are updated in "batches". If you add a new tween during an
// update, then the new tween will be updated in the next batch.
// If you remove a tween during an update, it may or may not be updated.
// However, if the removed tween was added during the current batch,
// then it will not be updated.
while (tweenIds.length > 0) {
this._tweensAddedDuringUpdate = {};
for (var i = 0; i < tweenIds.length; i++) {
var tween = this._tweens[tweenIds[i]];
if (tween && tween.update(time) === false) {
tween._isPlaying = false;
if (!preserve) {
delete this._tweens[tweenIds[i]];
}
}
}
tweenIds = Object.keys(this._tweensAddedDuringUpdate);
}
return true;
}
};
var TWEEN = new _Group();
TWEEN.Group = _Group;
TWEEN._nextId = 0;
TWEEN.nextId = function () {
return TWEEN._nextId++;
};
// Include a performance.now polyfill.
// In node.js, use process.hrtime.
if (typeof (self) === 'undefined' && typeof (process) !== 'undefined' && process.hrtime) {
TWEEN.now = function () {
var time = process.hrtime();
// Convert [seconds, nanoseconds] to milliseconds.
return time[0] * 1000 + time[1] / 1000000;
};
}
// In a browser, use self.performance.now if it is available.
else if (typeof (self) !== 'undefined' &&
self.performance !== undefined &&
self.performance.now !== undefined) {
// This must be bound, because directly assigning this function
// leads to an invocation exception in Chrome.
TWEEN.now = self.performance.now.bind(self.performance);
}
// Use Date.now if it is available.
else if (Date.now !== undefined) {
TWEEN.now = Date.now;
}
// Otherwise, use 'new Date().getTime()'.
else {
TWEEN.now = function () {
return new Date().getTime();
};
}
TWEEN.Tween = function (object, group) {
this._isPaused = false;
this._pauseStart = null;
this._object = object;
this._valuesStart = {};
this._valuesEnd = {};
this._valuesStartRepeat = {};
this._duration = 1000;
this._repeat = 0;
this._repeatDelayTime = undefined;
this._yoyo = false;
this._isPlaying = false;
this._reversed = false;
this._delayTime = 0;
this._startTime = null;
this._easingFunction = TWEEN.Easing.Linear.None;
this._interpolationFunction = TWEEN.Interpolation.Linear;
this._chainedTweens = [];
this._onStartCallback = null;
this._onStartCallbackFired = false;
this._onUpdateCallback = null;
this._onRepeatCallback = null;
this._onCompleteCallback = null;
this._onStopCallback = null;
this._group = group || TWEEN;
this._id = TWEEN.nextId();
};
TWEEN.Tween.prototype = {
getId: function () {
return this._id;
},
isPlaying: function () {
return this._isPlaying;
},
isPaused: function () {
return this._isPaused;
},
to: function (properties, duration) {
this._valuesEnd = Object.create(properties);
if (duration !== undefined) {
this._duration = duration;
}
return this;
},
duration: function duration(d) {
this._duration = d;
return this;
},
start: function (time) {
this._group.add(this);
this._isPlaying = true;
this._isPaused = false;
this._onStartCallbackFired = false;
this._startTime = time !== undefined ? typeof time === 'string' ? TWEEN.now() + parseFloat(time) : time : TWEEN.now();
this._startTime += this._delayTime;
for (var property in this._valuesEnd) {
// Check if an Array was provided as property value
if (this._valuesEnd[property] instanceof Array) {
if (this._valuesEnd[property].length === 0) {
continue;
}
// Create a local copy of the Array with the start value at the front
this._valuesEnd[property] = [this._object[property]].concat(this._valuesEnd[property]);
}
// If `to()` specifies a property that doesn't exist in the source object,
// we should not set that property in the object
if (this._object[property] === undefined) {
continue;
}
// Save the starting value, but only once.
if (typeof(this._valuesStart[property]) === 'undefined') {
this._valuesStart[property] = this._object[property];
}
if ((this._valuesStart[property] instanceof Array) === false) {
this._valuesStart[property] *= 1.0; // Ensures we're using numbers, not strings
}
this._valuesStartRepeat[property] = this._valuesStart[property] || 0;
}
return this;
},
stop: function () {
if (!this._isPlaying) {
return this;
}
this._group.remove(this);
this._isPlaying = false;
this._isPaused = false;
if (this._onStopCallback !== null) {
this._onStopCallback(this._object);
}
this.stopChainedTweens();
return this;
},
end: function () {
this.update(Infinity);
return this;
},
pause: function(time) {
if (this._isPaused || !this._isPlaying) {
return this;
}
this._isPaused = true;
this._pauseStart = time === undefined ? TWEEN.now() : time;
this._group.remove(this);
return this;
},
resume: function(time) {
if (!this._isPaused || !this._isPlaying) {
return this;
}
this._isPaused = false;
this._startTime += (time === undefined ? TWEEN.now() : time)
- this._pauseStart;
this._pauseStart = 0;
this._group.add(this);
return this;
},
stopChainedTweens: function () {
for (var i = 0, numChainedTweens = this._chainedTweens.length; i < numChainedTweens; i++) {
this._chainedTweens[i].stop();
}
},
group: function (group) {
this._group = group;
return this;
},
delay: function (amount) {
this._delayTime = amount;
return this;
},
repeat: function (times) {
this._repeat = times;
return this;
},
repeatDelay: function (amount) {
this._repeatDelayTime = amount;
return this;
},
yoyo: function (yoyo) {
this._yoyo = yoyo;
return this;
},
easing: function (easingFunction) {
this._easingFunction = easingFunction;
return this;
},
interpolation: function (interpolationFunction) {
this._interpolationFunction = interpolationFunction;
return this;
},
chain: function () {
this._chainedTweens = arguments;
return this;
},
onStart: function (callback) {
this._onStartCallback = callback;
return this;
},
onUpdate: function (callback) {
this._onUpdateCallback = callback;
return this;
},
onRepeat: function onRepeat(callback) {
this._onRepeatCallback = callback;
return this;
},
onComplete: function (callback) {
this._onCompleteCallback = callback;
return this;
},
onStop: function (callback) {
this._onStopCallback = callback;
return this;
},
update: function (time) {
var property;
var elapsed;
var value;
if (time < this._startTime) {
return true;
}
if (this._onStartCallbackFired === false) {
if (this._onStartCallback !== null) {
this._onStartCallback(this._object);
}
this._onStartCallbackFired = true;
}
elapsed = (time - this._startTime) / this._duration;
elapsed = (this._duration === 0 || elapsed > 1) ? 1 : elapsed;
value = this._easingFunction(elapsed);
for (property in this._valuesEnd) {
// Don't update properties that do not exist in the source object
if (this._valuesStart[property] === undefined) {
continue;
}
var start = this._valuesStart[property] || 0;
var end = this._valuesEnd[property];
if (end instanceof Array) {
this._object[property] = this._interpolationFunction(end, value);
} else {
// Parses relative end values with start as base (e.g.: +10, -3)
if (typeof (end) === 'string') {
if (end.charAt(0) === '+' || end.charAt(0) === '-') {
end = start + parseFloat(end);
} else {
end = parseFloat(end);
}
}
// Protect against non numeric properties.
if (typeof (end) === 'number') {
this._object[property] = start + (end - start) * value;
}
}
}
if (this._onUpdateCallback !== null) {
this._onUpdateCallback(this._object, elapsed);
}
if (elapsed === 1) {
if (this._repeat > 0) {
if (isFinite(this._repeat)) {
this._repeat--;
}
// Reassign starting values, restart by making startTime = now
for (property in this._valuesStartRepeat) {
if (typeof (this._valuesEnd[property]) === 'string') {
this._valuesStartRepeat[property] = this._valuesStartRepeat[property] + parseFloat(this._valuesEnd[property]);
}
if (this._yoyo) {
var tmp = this._valuesStartRepeat[property];
this._valuesStartRepeat[property] = this._valuesEnd[property];
this._valuesEnd[property] = tmp;
}
this._valuesStart[property] = this._valuesStartRepeat[property];
}
if (this._yoyo) {
this._reversed = !this._reversed;
}
if (this._repeatDelayTime !== undefined) {
this._startTime = time + this._repeatDelayTime;
} else {
this._startTime = time + this._delayTime;
}
if (this._onRepeatCallback !== null) {
this._onRepeatCallback(this._object);
}
return true;
} else {
if (this._onCompleteCallback !== null) {
this._onCompleteCallback(this._object);
}
for (var i = 0, numChainedTweens = this._chainedTweens.length; i < numChainedTweens; i++) {
// Make the chained tweens start exactly at the time they should,
// even if the `update()` method was called way past the duration of the tween
this._chainedTweens[i].start(this._startTime + this._duration);
}
return false;
}
}
return true;
}
};
TWEEN.Easing = {
Linear: {
None: function (k) {
return k;
}
},
Quadratic: {
In: function (k) {
return k * k;
},
Out: function (k) {
return k * (2 - k);
},
InOut: function (k) {
if ((k *= 2) < 1) {
return 0.5 * k * k;
}
return - 0.5 * (--k * (k - 2) - 1);
}
},
Cubic: {
In: function (k) {
return k * k * k;
},
Out: function (k) {
return --k * k * k + 1;
},
InOut: function (k) {
if ((k *= 2) < 1) {
return 0.5 * k * k * k;
}
return 0.5 * ((k -= 2) * k * k + 2);
}
},
Quartic: {
In: function (k) {
return k * k * k * k;
},
Out: function (k) {
return 1 - (--k * k * k * k);
},
InOut: function (k) {
if ((k *= 2) < 1) {
return 0.5 * k * k * k * k;
}
return - 0.5 * ((k -= 2) * k * k * k - 2);
}
},
Quintic: {
In: function (k) {
return k * k * k * k * k;
},
Out: function (k) {
return --k * k * k * k * k + 1;
},
InOut: function (k) {
if ((k *= 2) < 1) {
return 0.5 * k * k * k * k * k;
}
return 0.5 * ((k -= 2) * k * k * k * k + 2);
}
},
Sinusoidal: {
In: function (k) {
return 1 - Math.cos(k * Math.PI / 2);
},
Out: function (k) {
return Math.sin(k * Math.PI / 2);
},
InOut: function (k) {
return 0.5 * (1 - Math.cos(Math.PI * k));
}
},
Exponential: {
In: function (k) {
return k === 0 ? 0 : Math.pow(1024, k - 1);
},
Out: function (k) {
return k === 1 ? 1 : 1 - Math.pow(2, - 10 * k);
},
InOut: function (k) {
if (k === 0) {
return 0;
}
if (k === 1) {
return 1;
}
if ((k *= 2) < 1) {
return 0.5 * Math.pow(1024, k - 1);
}
return 0.5 * (- Math.pow(2, - 10 * (k - 1)) + 2);
}
},
Circular: {
In: function (k) {
return 1 - Math.sqrt(1 - k * k);
},
Out: function (k) {
return Math.sqrt(1 - (--k * k));
},
InOut: function (k) {
if ((k *= 2) < 1) {
return - 0.5 * (Math.sqrt(1 - k * k) - 1);
}
return 0.5 * (Math.sqrt(1 - (k -= 2) * k) + 1);
}
},
Elastic: {
In: function (k) {
if (k === 0) {
return 0;
}
if (k === 1) {
return 1;
}
return -Math.pow(2, 10 * (k - 1)) * Math.sin((k - 1.1) * 5 * Math.PI);
},
Out: function (k) {
if (k === 0) {
return 0;
}
if (k === 1) {
return 1;
}
return Math.pow(2, -10 * k) * Math.sin((k - 0.1) * 5 * Math.PI) + 1;
},
InOut: function (k) {
if (k === 0) {
return 0;
}
if (k === 1) {
return 1;
}
k *= 2;
if (k < 1) {
return -0.5 * Math.pow(2, 10 * (k - 1)) * Math.sin((k - 1.1) * 5 * Math.PI);
}
return 0.5 * Math.pow(2, -10 * (k - 1)) * Math.sin((k - 1.1) * 5 * Math.PI) + 1;
}
},
Back: {
In: function (k) {
var s = 1.70158;
return k * k * ((s + 1) * k - s);
},
Out: function (k) {
var s = 1.70158;
return --k * k * ((s + 1) * k + s) + 1;
},
InOut: function (k) {
var s = 1.70158 * 1.525;
if ((k *= 2) < 1) {
return 0.5 * (k * k * ((s + 1) * k - s));
}
return 0.5 * ((k -= 2) * k * ((s + 1) * k + s) + 2);
}
},
Bounce: {
In: function (k) {
return 1 - TWEEN.Easing.Bounce.Out(1 - k);
},
Out: function (k) {
if (k < (1 / 2.75)) {
return 7.5625 * k * k;
} else if (k < (2 / 2.75)) {
return 7.5625 * (k -= (1.5 / 2.75)) * k + 0.75;
} else if (k < (2.5 / 2.75)) {
return 7.5625 * (k -= (2.25 / 2.75)) * k + 0.9375;
} else {
return 7.5625 * (k -= (2.625 / 2.75)) * k + 0.984375;
}
},
InOut: function (k) {
if (k < 0.5) {
return TWEEN.Easing.Bounce.In(k * 2) * 0.5;
}
return TWEEN.Easing.Bounce.Out(k * 2 - 1) * 0.5 + 0.5;
}
}
};
TWEEN.Interpolation = {
Linear: function (v, k) {
var m = v.length - 1;
var f = m * k;
var i = Math.floor(f);
var fn = TWEEN.Interpolation.Utils.Linear;
if (k < 0) {
return fn(v[0], v[1], f);
}
if (k > 1) {
return fn(v[m], v[m - 1], m - f);
}
return fn(v[i], v[i + 1 > m ? m : i + 1], f - i);
},
Bezier: function (v, k) {
var b = 0;
var n = v.length - 1;
var pw = Math.pow;
var bn = TWEEN.Interpolation.Utils.Bernstein;
for (var i = 0; i <= n; i++) {
b += pw(1 - k, n - i) * pw(k, i) * v[i] * bn(n, i);
}
return b;
},
CatmullRom: function (v, k) {
var m = v.length - 1;
var f = m * k;
var i = Math.floor(f);
var fn = TWEEN.Interpolation.Utils.CatmullRom;
if (v[0] === v[m]) {
if (k < 0) {
i = Math.floor(f = m * (1 + k));
}
return fn(v[(i - 1 + m) % m], v[i], v[(i + 1) % m], v[(i + 2) % m], f - i);
} else {
if (k < 0) {
return v[0] - (fn(v[0], v[0], v[1], v[1], -f) - v[0]);
}
if (k > 1) {
return v[m] - (fn(v[m], v[m], v[m - 1], v[m - 1], f - m) - v[m]);
}
return fn(v[i ? i - 1 : 0], v[i], v[m < i + 1 ? m : i + 1], v[m < i + 2 ? m : i + 2], f - i);
}
},
Utils: {
Linear: function (p0, p1, t) {
return (p1 - p0) * t + p0;
},
Bernstein: function (n, i) {
var fc = TWEEN.Interpolation.Utils.Factorial;
return fc(n) / fc(i) / fc(n - i);
},
Factorial: (function () {
var a = [1];
return function (n) {
var s = 1;
if (a[n]) {
return a[n];
}
for (var i = n; i > 1; i--) {
s *= i;
}
a[n] = s;
return s;
};
})(),
CatmullRom: function (p0, p1, p2, p3, t) {
var v0 = (p2 - p0) * 0.5;
var v1 = (p3 - p1) * 0.5;
var t2 = t * t;
var t3 = t * t2;
return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (- 3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1;
}
}
};
var materialDispose = function materialDispose(material) {
if (material instanceof Array) {
material.forEach(materialDispose);
} else {
if (material.map) {
material.map.dispose();
}
material.dispose();
}
};
var deallocate = function deallocate(obj) {
if (obj.geometry) {
obj.geometry.dispose();
}
if (obj.material) {
materialDispose(obj.material);
}
if (obj.texture) {
obj.texture.dispose();
}
if (obj.children) {
obj.children.forEach(deallocate);
}
};
var emptyObject = function emptyObject(obj) {
while (obj.children.length) {
var childObj = obj.children[0];
obj.remove(childObj);
deallocate(childObj);
}
};
function linkKapsule (kapsulePropName, kapsuleType) {
var dummyK = new kapsuleType(); // To extract defaults
return {
linkProp: function linkProp(prop) {
// link property config
return {
"default": dummyK[prop](),
onChange: function onChange(v, state) {
state[kapsulePropName][prop](v);
},
triggerUpdate: false
};
},
linkMethod: function linkMethod(method) {
// link method pass-through
return function (state) {
var kapsuleInstance = state[kapsulePropName];
for (var _len = arguments.length, args = new Array(_len > 1 ? _len - 1 : 0), _key = 1; _key < _len; _key++) {
args[_key - 1] = arguments[_key];
}
var returnVal = kapsuleInstance[method].apply(kapsuleInstance, args);
return returnVal === kapsuleInstance ? this // chain based on the parent object, not the inner kapsule
: returnVal;
};
}
};
}
var GLOBE_RADIUS = 100;
function polar2Cartesian(lat, lng) {
var relAltitude = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 0;
var phi = (90 - lat) * Math.PI / 180;
var theta = (90 - lng) * Math.PI / 180;
var r = GLOBE_RADIUS * (1 + relAltitude);
return {
x: r * Math.sin(phi) * Math.cos(theta),
y: r * Math.cos(phi),
z: r * Math.sin(phi) * Math.sin(theta)
};
}
function cartesian2Polar(_ref) {
var x = _ref.x,
y = _ref.y,
z = _ref.z;
var r = Math.sqrt(x * x + y * y + z * z);
var phi = Math.acos(y / r);
var theta = Math.atan2(z, x);
return {
lat: 90 - phi * 180 / Math.PI,
lng: 90 - theta * 180 / Math.PI,
altitude: r / GLOBE_RADIUS - 1
};
}
var earcut_1 = earcut;
var default_1 = earcut;
function earcut(data, holeIndices, dim) {
dim = dim || 2;
var hasHoles = holeIndices && holeIndices.length,
outerLen = hasHoles ? holeIndices[0] * dim : data.length,
outerNode = linkedList(data, 0, outerLen, dim, true),
triangles = [];
if (!outerNode || outerNode.next === outerNode.prev) return triangles;
var minX, minY, maxX, maxY, x, y, invSize;
if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim);
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
if (data.length > 80 * dim) {
minX = maxX = data[0];
minY = maxY = data[1];
for (var i = dim; i < outerLen; i += dim) {
x = data[i];
y = data[i + 1];
if (x < minX) minX = x;
if (y < minY) minY = y;
if (x > maxX) maxX = x;
if (y > maxY) maxY = y;
}
// minX, minY and invSize are later used to transform coords into integers for z-order calculation
invSize = Math.max(maxX - minX, maxY - minY);
invSize = invSize !== 0 ? 1 / invSize : 0;
}
earcutLinked(outerNode, triangles, dim, minX, minY, invSize);
return triangles;
}
// create a circular doubly linked list from polygon points in the specified winding order
function linkedList(data, start, end, dim, clockwise) {
var i, last;
if (clockwise === (signedArea(data, start, end, dim) > 0)) {
for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last);
} else {
for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last);
}
if (last && equals(last, last.next)) {
removeNode(last);
last = last.next;
}
return last;
}
// eliminate colinear or duplicate points
function filterPoints(start, end) {
if (!start) return start;
if (!end) end = start;
var p = start,
again;
do {
again = false;
if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) {
removeNode(p);
p = end = p.prev;
if (p === p.next) break;
again = true;
} else {
p = p.next;
}
} while (again || p !== end);
return end;
}
// main ear slicing loop which triangulates a polygon (given as a linked list)
function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) {
if (!ear) return;
// interlink polygon nodes in z-order
if (!pass && invSize) indexCurve(ear, minX, minY, invSize);
var stop = ear,
prev, next;
// iterate through ears, slicing them one by one
while (ear.prev !== ear.next) {
prev = ear.prev;
next = ear.next;
if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) {
// cut off the triangle
triangles.push(prev.i / dim);
triangles.push(ear.i / dim);
triangles.push(next.i / dim);
removeNode(ear);
// skipping the next vertex leads to less sliver triangles
ear = next.next;
stop = next.next;
continue;
}
ear = next;
// if we looped through the whole remaining polygon and can't find any more ears
if (ear === stop) {
// try filtering points and slicing again
if (!pass) {
earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1);
// if this didn't work, try curing all small self-intersections locally
} else if (pass === 1) {
ear = cureLocalIntersections(ear, triangles, dim);
earcutLinked(ear, triangles, dim, minX, minY, invSize, 2);
// as a last resort, try splitting the remaining polygon into two
} else if (pass === 2) {
splitEarcut(ear, triangles, dim, minX, minY, invSize);
}
break;
}
}
}
// check whether a polygon node forms a valid ear with adjacent nodes
function isEar(ear) {
var a = ear.prev,
b = ear,
c = ear.next;
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
// now make sure we don't have other points inside the potential ear
var p = ear.next.next;
while (p !== ear.prev) {
if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) &&
area(p.prev, p, p.next) >= 0) return false;
p = p.next;
}
return true;
}
function isEarHashed(ear, minX, minY, invSize) {
var a = ear.prev,
b = ear,
c = ear.next;
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
// triangle bbox; min & max are calculated like this for speed
var minTX = a.x < b.x ? (a.x < c.x ? a.x : c.x) : (b.x < c.x ? b.x : c.x),
minTY = a.y < b.y ? (a.y < c.y ? a.y : c.y) : (b.y < c.y ? b.y : c.y),
maxTX = a.x > b.x ? (a.x > c.x ? a.x : c.x) : (b.x > c.x ? b.x : c.x),
maxTY = a.y > b.y ? (a.y > c.y ? a.y : c.y) : (b.y > c.y ? b.y : c.y);
// z-order range for the current triangle bbox;
var minZ = zOrder(minTX, minTY, minX, minY, invSize),
maxZ = zOrder(maxTX, maxTY, minX, minY, invSize);
var p = ear.prevZ,
n = ear.nextZ;
// look for points inside the triangle in both directions
while (p && p.z >= minZ && n && n.z <= maxZ) {
if (p !== ear.prev && p !== ear.next &&
pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) &&
area(p.prev, p, p.next) >= 0) return false;
p = p.prevZ;
if (n !== ear.prev && n !== ear.next &&
pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) &&
area(n.prev, n, n.next) >= 0) return false;
n = n.nextZ;
}
// look for remaining points in decreasing z-order
while (p && p.z >= minZ) {
if (p !== ear.prev && p !== ear.next &&
pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) &&
area(p.prev, p, p.next) >= 0) return false;
p = p.prevZ;
}
// look for remaining points in increasing z-order
while (n && n.z <= maxZ) {
if (n !== ear.prev && n !== ear.next &&
pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) &&
area(n.prev, n, n.next) >= 0) return false;
n = n.nextZ;
}
return true;
}
// go through all polygon nodes and cure small local self-intersections
function cureLocalIntersections(start, triangles, dim) {
var p = start;
do {
var a = p.prev,
b = p.next.next;
if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) {
triangles.push(a.i / dim);
triangles.push(p.i / dim);
triangles.push(b.i / dim);
// remove two nodes involved
removeNode(p);
removeNode(p.next);
p = start = b;
}
p = p.next;
} while (p !== start);
return p;
}
// try splitting polygon into two and triangulate them independently
function splitEarcut(start, triangles, dim, minX, minY, invSize) {
// look for a valid diagonal that divides the polygon into two
var a = start;
do {
var b = a.next.next;
while (b !== a.prev) {
if (a.i !== b.i && isValidDiagonal(a, b)) {
// split the polygon in two by the diagonal
var c = splitPolygon(a, b);
// filter colinear points around the cuts
a = filterPoints(a, a.next);
c = filterPoints(c, c.next);
// run earcut on each half
earcutLinked(a, triangles, dim, minX, minY, invSize);
earcutLinked(c, triangles, dim, minX, minY, invSize);
return;
}
b = b.next;
}
a = a.next;
} while (a !== start);
}
// link every hole into the outer loop, producing a single-ring polygon without holes
function eliminateHoles(data, holeIndices, outerNode, dim) {
var queue = [],
i, len, start, end, list;
for (i = 0, len = holeIndices.length; i < len; i++) {
start = holeIndices[i] * dim;
end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
list = linkedList(data, start, end, dim, false);
if (list === list.next) list.steiner = true;
queue.push(getLeftmost(list));
}
queue.sort(compareX);
// process holes from left to right
for (i = 0; i < queue.length; i++) {
eliminateHole(queue[i], outerNode);
outerNode = filterPoints(outerNode, outerNode.next);
}
return outerNode;
}
function compareX(a, b) {
return a.x - b.x;
}
// find a bridge between vertices that connects hole with an outer ring and and link it
function eliminateHole(hole, outerNode) {
outerNode = findHoleBridge(hole, outerNode);
if (outerNode) {
var b = splitPolygon(outerNode, hole);
filterPoints(b, b.next);
}
}
// David Eberly's algorithm for finding a bridge between hole and outer polygon
function findHoleBridge(hole, outerNode) {
var p = outerNode,
hx = hole.x,
hy = hole.y,
qx = -Infinity,
m;
// find a segment intersected by a ray from the hole's leftmost point to the left;
// segment's endpoint with lesser x will be potential connection point
do {
if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) {
var x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y);
if (x <= hx && x > qx) {
qx = x;
if (x === hx) {
if (hy === p.y) return p;
if (hy === p.next.y) return p.next;
}
m = p.x < p.next.x ? p : p.next;
}
}
p = p.next;
} while (p !== outerNode);
if (!m) return null;
if (hx === qx) return m.prev; // hole touches outer segment; pick lower endpoint
// look for points inside the triangle of hole point, segment intersection and endpoint;
// if there are no points found, we have a valid connection;
// otherwise choose the point of the minimum angle with the ray as connection point
var stop = m,
mx = m.x,
my = m.y,
tanMin = Infinity,
tan;
p = m.next;
while (p !== stop) {
if (hx >= p.x && p.x >= mx && hx !== p.x &&
pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) {
tan = Math.abs(hy - p.y) / (hx - p.x); // tangential
if ((tan < tanMin || (tan === tanMin && p.x > m.x)) && locallyInside(p, hole)) {
m = p;
tanMin = tan;
}
}
p = p.next;
}
return m;
}
// interlink polygon nodes in z-order
function indexCurve(start, minX, minY, invSize) {
var p = start;
do {
if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize);
p.prevZ = p.prev;
p.nextZ = p.next;
p = p.next;
} while (p !== start);
p.prevZ.nextZ = null;
p.prevZ = null;
sortLinked(p);
}
// Simon Tatham's linked list merge sort algorithm
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
function sortLinked(list) {
var i, p, q, e, tail, numMerges, pSize, qSize,
inSize = 1;
do {
p = list;
list = null;
tail = null;
numMerges = 0;
while (p) {
numMerges++;
q = p;
pSize = 0;
for (i = 0; i < inSize; i++) {
pSize++;
q = q.nextZ;
if (!q) break;
}
qSize = inSize;
while (pSize > 0 || (qSize > 0 && q)) {
if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) {
e = p;
p = p.nextZ;
pSize--;
} else {
e = q;
q = q.nextZ;
qSize--;
}
if (tail) tail.nextZ = e;
else list = e;
e.prevZ = tail;
tail = e;
}
p = q;
}
tail.nextZ = null;
inSize *= 2;
} while (numMerges > 1);
return list;
}
// z-order of a point given coords and inverse of the longer side of data bbox
function zOrder(x, y, minX, minY, invSize) {
// coords are transformed into non-negative 15-bit integer range
x = 32767 * (x - minX) * invSize;
y = 32767 * (y - minY) * invSize;
x = (x | (x << 8)) & 0x00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F;
x = (x | (x << 2)) & 0x33333333;
x = (x | (x << 1)) & 0x55555555;
y = (y | (y << 8)) & 0x00FF00FF;
y = (y | (y << 4)) & 0x0F0F0F0F;
y = (y | (y << 2)) & 0x33333333;
y = (y | (y << 1)) & 0x55555555;
return x | (y << 1);
}
// find the leftmost node of a polygon ring
function getLeftmost(start) {
var p = start,
leftmost = start;
do {
if (p.x < leftmost.x || (p.x === leftmost.x && p.y < leftmost.y)) leftmost = p;
p = p.next;
} while (p !== start);
return leftmost;
}
// check if a point lies within a convex triangle
function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) {
return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
(ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
(bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
}
// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
function isValidDiagonal(a, b) {
return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) &&
locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b);
}
// signed area of a triangle
function area(p, q, r) {
return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
}
// check if two points are equal
function equals(p1, p2) {
return p1.x === p2.x && p1.y === p2.y;
}
// check if two segments intersect
function intersects(p1, q1, p2, q2) {
if ((equals(p1, q1) && equals(p2, q2)) ||
(equals(p1, q2) && equals(p2, q1))) return true;
return area(p1, q1, p2) > 0 !== area(p1, q1, q2) > 0 &&
area(p2, q2, p1) > 0 !== area(p2, q2, q1) > 0;
}
// check if a polygon diagonal intersects any polygon segments
function intersectsPolygon(a, b) {
var p = a;
do {
if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i &&
intersects(p, p.next, a, b)) return true;
p = p.next;
} while (p !== a);
return false;
}
// check if a polygon diagonal is locally inside the polygon
function locallyInside(a, b) {
return area(a.prev, a, a.next) < 0 ?
area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 :
area(a, b, a.prev) < 0 || area(a, a.next, b) < 0;
}
// check if the middle point of a polygon diagonal is inside the polygon
function middleInside(a, b) {
var p = a,
inside = false,
px = (a.x + b.x) / 2,
py = (a.y + b.y) / 2;
do {
if (((p.y > py) !== (p.next.y > py)) && p.next.y !== p.y &&
(px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x))
inside = !inside;
p = p.next;
} while (p !== a);
return inside;
}
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
// if one belongs to the outer ring and another to a hole, it merges it into a sin