UNPKG

three-fbx-loader

Version:

@ckddbs's three.js fbx-loader as a node module

1,997 lines (1,216 loc) 87.8 kB
/** * @author Kyle-Larson https://github.com/Kyle-Larson * @author Takahiro https://github.com/takahirox * * Loader loads FBX file and generates Group representing FBX scene. * Requires FBX file to be >= 7.0 and in ASCII or to be any version in Binary format. * * Supports: * Mesh Generation (Positional Data) * Normal Data (Per Vertex Drawing Instance) * UV Data (Per Vertex Drawing Instance) * Skinning * Animation * - Separated Animations based on stacks. * - Skeletal & Non-Skeletal Animations * NURBS (Open, Closed and Periodic forms) * * Needs Support: * Indexed Buffers * PreRotation support. */ var pako = require('pako'); var THREE = require('three'); module.exports = (function () { FBXLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; Object.assign( FBXLoader.prototype, { load: function ( url, onLoad, onProgress, onError ) { var self = this; var resourceDirectory = THREE.LoaderUtils.extractUrlBase( url ); var loader = new THREE.FileLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( buffer ) { try { var scene = self.parse( buffer, resourceDirectory ); onLoad( scene ); } catch ( error ) { setTimeout( function () { if ( onError ) onError( error ); self.manager.itemError( url ); }, 0 ); } }, onProgress, onError ); }, parse: function ( FBXBuffer, resourceDirectory ) { var FBXTree; if ( isFbxFormatBinary( FBXBuffer ) ) { FBXTree = new BinaryParser().parse( FBXBuffer ); } else { var FBXText = convertArrayBufferToString( FBXBuffer ); if ( ! isFbxFormatASCII( FBXText ) ) { throw new Error( 'FBXLoader: Unknown format.' ); } if ( getFbxVersion( FBXText ) < 7000 ) { throw new Error( 'FBXLoader: FBX version not supported, FileVersion: ' + getFbxVersion( FBXText ) ); } FBXTree = new TextParser().parse( FBXText ); } // console.log( FBXTree ); var connections = parseConnections( FBXTree ); var images = parseImages( FBXTree ); var textures = parseTextures( FBXTree, new THREE.TextureLoader( this.manager ).setPath( resourceDirectory ), images, connections ); var materials = parseMaterials( FBXTree, textures, connections ); var skeletons = parseDeformers( FBXTree, connections ); var geometryMap = parseGeometries( FBXTree, connections, skeletons ); var sceneGraph = parseScene( FBXTree, connections, skeletons, geometryMap, materials ); return sceneGraph; } } ); // Parses FBXTree.Connections which holds parent-child connections between objects (e.g. material -> texture, model->geometry ) // and details the connection type function parseConnections( FBXTree ) { var connectionMap = new Map(); if ( 'Connections' in FBXTree ) { var rawConnections = FBXTree.Connections.properties.connections; rawConnections.forEach( function ( rawConnection ) { var fromID = rawConnection[ 0 ]; var toID = rawConnection[ 1 ]; var relationship = rawConnection[ 2 ]; if ( ! connectionMap.has( fromID ) ) { connectionMap.set( fromID, { parents: [], children: [] } ); } var parentRelationship = { ID: toID, relationship: relationship }; connectionMap.get( fromID ).parents.push( parentRelationship ); if ( ! connectionMap.has( toID ) ) { connectionMap.set( toID, { parents: [], children: [] } ); } var childRelationship = { ID: fromID, relationship: relationship }; connectionMap.get( toID ).children.push( childRelationship ); } ); } return connectionMap; } // Parse FBXTree.Objects.subNodes.Video for embedded image data // These images are connected to textures in FBXTree.Objects.subNodes.Textures // via FBXTree.Connections. Note that images can be duplicated here, in which case only one // may have a .Content field - we'll check for this and duplicate the data in the imageMap function parseImages( FBXTree ) { var imageMap = new Map(); var names = {}; var duplicates = []; if ( 'Video' in FBXTree.Objects.subNodes ) { var videoNodes = FBXTree.Objects.subNodes.Video; for ( var nodeID in videoNodes ) { var videoNode = videoNodes[ nodeID ]; var id = parseInt( nodeID ); // check whether the file name is used by another videoNode // and if so keep a record of both ids as a duplicate pair [ id1, id2 ] if ( videoNode.properties.fileName in names ) { duplicates.push( [ id, names[ videoNode.properties.fileName ] ] ); } names[ videoNode.properties.fileName ] = id; // raw image data is in videoNode.properties.Content if ( 'Content' in videoNode.properties && videoNode.properties.Content !== '' ) { var image = parseImage( videoNodes[ nodeID ] ); imageMap.set( id, image ); } } } // check each duplicate pair - if only one is in the image map then // create an entry for the other id containing the same image data // Note: it seems to be possible for entries to have the same file name but different // content, we won't overwrite these duplicates.forEach( function ( duplicatePair ) { if ( imageMap.has( duplicatePair[ 0 ] ) && ! imageMap.has( duplicatePair[ 1 ] ) ) { var image = imageMap.get( duplicatePair[ 0 ] ); imageMap.set( duplicatePair[ 1 ], image ); } else if ( imageMap.has( duplicatePair[ 1 ] ) && ! imageMap.has( duplicatePair[ 0 ] ) ) { var image = imageMap.get( duplicatePair[ 1 ] ); imageMap.set( duplicatePair[ 0 ], image ); } } ); return imageMap; } // Parse embedded image data in FBXTree.Video.properties.Content function parseImage( videoNode ) { var content = videoNode.properties.Content; var fileName = videoNode.properties.RelativeFilename || videoNode.properties.Filename; var extension = fileName.slice( fileName.lastIndexOf( '.' ) + 1 ).toLowerCase(); var type; switch ( extension ) { case 'bmp': type = 'image/bmp'; break; case 'jpg': case 'jpeg': type = 'image/jpeg'; break; case 'png': type = 'image/png'; break; case 'tif': type = 'image/tiff'; break; default: console.warn( 'FBXLoader: Image type "' + extension + '" is not supported.' ); return; } if ( typeof content === 'string' ) { // ASCII format return 'data:' + type + ';base64,' + content; } else { // Binary Format var array = new Uint8Array( content ); return window.URL.createObjectURL( new Blob( [ array ], { type: type } ) ); } } // Parse nodes in FBXTree.Objects.subNodes.Texture // These contain details such as UV scaling, cropping, rotation etc and are connected // to images in FBXTree.Objects.subNodes.Video function parseTextures( FBXTree, loader, imageMap, connections ) { var textureMap = new Map(); if ( 'Texture' in FBXTree.Objects.subNodes ) { var textureNodes = FBXTree.Objects.subNodes.Texture; for ( var nodeID in textureNodes ) { var texture = parseTexture( textureNodes[ nodeID ], loader, imageMap, connections ); textureMap.set( parseInt( nodeID ), texture ); } } return textureMap; } // Parse individual node in FBXTree.Objects.subNodes.Texture function parseTexture( textureNode, loader, imageMap, connections ) { var texture = loadTexture( textureNode, loader, imageMap, connections ); texture.ID = textureNode.id; texture.name = textureNode.attrName; var wrapModeU = textureNode.properties.WrapModeU; var wrapModeV = textureNode.properties.WrapModeV; var valueU = wrapModeU !== undefined ? wrapModeU.value : 0; var valueV = wrapModeV !== undefined ? wrapModeV.value : 0; // http://download.autodesk.com/us/fbx/SDKdocs/FBX_SDK_Help/files/fbxsdkref/class_k_fbx_texture.html#889640e63e2e681259ea81061b85143a // 0: repeat(default), 1: clamp texture.wrapS = valueU === 0 ? THREE.RepeatWrapping : THREE.ClampToEdgeWrapping; texture.wrapT = valueV === 0 ? THREE.RepeatWrapping : THREE.ClampToEdgeWrapping; if ( 'Scaling' in textureNode.properties ) { var values = textureNode.properties.Scaling.value; texture.repeat.x = values[ 0 ]; texture.repeat.y = values[ 1 ]; } return texture; } // load a texture specified as a blob or data URI, or via an external URL using THREE.TextureLoader function loadTexture( textureNode, loader, imageMap, connections ) { var fileName; var filePath = textureNode.properties.FileName; var relativeFilePath = textureNode.properties.RelativeFilename; var children = connections.get( textureNode.id ).children; if ( children !== undefined && children.length > 0 && imageMap.has( children[ 0 ].ID ) ) { fileName = imageMap.get( children[ 0 ].ID ); } // check that relative path is not an actually an absolute path and if so use it to load texture else if ( relativeFilePath !== undefined && relativeFilePath[ 0 ] !== '/' && relativeFilePath.match( /^[a-zA-Z]:/ ) === null ) { fileName = relativeFilePath; } // texture specified by absolute path else { var split = filePath.split( /[\\\/]/ ); if ( split.length > 0 ) { fileName = split[ split.length - 1 ]; } else { fileName = filePath; } } var currentPath = loader.path; if ( fileName.indexOf( 'blob:' ) === 0 || fileName.indexOf( 'data:' ) === 0 ) { loader.setPath( undefined ); } var texture = loader.load( fileName ); loader.setPath( currentPath ); return texture; } // Parse nodes in FBXTree.Objects.subNodes.Material function parseMaterials( FBXTree, textureMap, connections ) { var materialMap = new Map(); if ( 'Material' in FBXTree.Objects.subNodes ) { var materialNodes = FBXTree.Objects.subNodes.Material; for ( var nodeID in materialNodes ) { var material = parseMaterial( FBXTree, materialNodes[ nodeID ], textureMap, connections ); if ( material !== null ) materialMap.set( parseInt( nodeID ), material ); } } return materialMap; } // Parse single node in FBXTree.Objects.subNodes.Material // Materials are connected to texture maps in FBXTree.Objects.subNodes.Textures // FBX format currently only supports Lambert and Phong shading models function parseMaterial( FBXTree, materialNode, textureMap, connections ) { var ID = materialNode.id; var name = materialNode.attrName; var type = materialNode.properties.ShadingModel; //Case where FBX wraps shading model in property object. if ( typeof type === 'object' ) { type = type.value; } // Ignore unused materials which don't have any connections. if ( ! connections.has( ID ) ) return null; var parameters = parseParameters( FBXTree, materialNode.properties, textureMap, ID, connections ); var material; switch ( type.toLowerCase() ) { case 'phong': material = new THREE.MeshPhongMaterial(); break; case 'lambert': material = new THREE.MeshLambertMaterial(); break; default: console.warn( 'FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type ); material = new THREE.MeshPhongMaterial( { color: 0x3300ff } ); break; } material.setValues( parameters ); material.name = name; return material; } // Parse FBX material and return parameters suitable for a three.js material // Also parse the texture map and return any textures associated with the material function parseParameters( FBXTree, properties, textureMap, ID, connections ) { var parameters = {}; if ( properties.BumpFactor ) { parameters.bumpScale = properties.BumpFactor.value; } if ( properties.Diffuse ) { parameters.color = parseColor( properties.Diffuse ); } if ( properties.DisplacementFactor ) { parameters.displacementScale = properties.DisplacementFactor.value; } if ( properties.ReflectionFactor ) { parameters.reflectivity = properties.ReflectionFactor.value; } if ( properties.Specular ) { parameters.specular = parseColor( properties.Specular ); } if ( properties.Shininess ) { parameters.shininess = properties.Shininess.value; } if ( properties.Emissive ) { parameters.emissive = parseColor( properties.Emissive ); } if ( properties.EmissiveFactor ) { parameters.emissiveIntensity = parseFloat( properties.EmissiveFactor.value ); } if ( properties.Opacity ) { parameters.opacity = parseFloat( properties.Opacity.value ); } if ( parameters.opacity < 1.0 ) { parameters.transparent = true; } connections.get( ID ).children.forEach( function ( child ) { var type = child.relationship; switch ( type ) { case 'Bump': parameters.bumpMap = textureMap.get( child.ID ); break; case 'DiffuseColor': parameters.map = getTexture( FBXTree, textureMap, child.ID, connections ); break; case 'DisplacementColor': parameters.displacementMap = getTexture( FBXTree, textureMap, child.ID, connections ); break; case 'EmissiveColor': parameters.emissiveMap = getTexture( FBXTree, textureMap, child.ID, connections ); break; case 'NormalMap': parameters.normalMap = getTexture( FBXTree, textureMap, child.ID, connections ); break; case 'ReflectionColor': parameters.envMap = getTexture( FBXTree, textureMap, child.ID, connections ); parameters.envMap.mapping = THREE.EquirectangularReflectionMapping; break; case 'SpecularColor': parameters.specularMap = getTexture( FBXTree, textureMap, child.ID, connections ); break; case 'TransparentColor': parameters.alphaMap = getTexture( FBXTree, textureMap, child.ID, connections ); parameters.transparent = true; break; case 'AmbientColor': case 'ShininessExponent': // AKA glossiness map case 'SpecularFactor': // AKA specularLevel case 'VectorDisplacementColor': // NOTE: Seems to be a copy of DisplacementColor default: console.warn( 'FBXLoader: %s map is not supported in three.js, skipping texture.', type ); break; } } ); return parameters; } // get a texture from the textureMap for use by a material. function getTexture( FBXTree, textureMap, id, connections ) { // if the texture is a layered texture, just use the first layer and issue a warning if ( 'LayeredTexture' in FBXTree.Objects.subNodes && id in FBXTree.Objects.subNodes.LayeredTexture ) { console.warn( 'FBXLoader: layered textures are not supported in three.js. Discarding all but first layer.' ); id = connections.get( id ).children[ 0 ].ID; } return textureMap.get( id ); } // Parse nodes in FBXTree.Objects.subNodes.Deformer // Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here // Generates map of Skeleton-like objects for use later when generating and binding skeletons. function parseDeformers( FBXTree, connections ) { var skeletons = {}; if ( 'Deformer' in FBXTree.Objects.subNodes ) { var DeformerNodes = FBXTree.Objects.subNodes.Deformer; for ( var nodeID in DeformerNodes ) { var deformerNode = DeformerNodes[ nodeID ]; if ( deformerNode.attrType === 'Skin' ) { var relationships = connections.get( parseInt( nodeID ) ); var skeleton = parseSkeleton( relationships, DeformerNodes ); skeleton.ID = nodeID; if ( relationships.parents.length > 1 ) console.warn( 'FBXLoader: skeleton attached to more than one geometry is not supported.' ); skeleton.geometryID = relationships.parents[ 0 ].ID; skeletons[ nodeID ] = skeleton; } } } return skeletons; } // Parse single nodes in FBXTree.Objects.subNodes.Deformer // The top level deformer nodes have type 'Skin' and subDeformer nodes have type 'Cluster' // Each skin node represents a skeleton and each cluster node represents a bone function parseSkeleton( connections, deformerNodes ) { var rawBones = []; connections.children.forEach( function ( child ) { var subDeformerNode = deformerNodes[ child.ID ]; if ( subDeformerNode.attrType !== 'Cluster' ) return; var rawBone = { ID: child.ID, indices: [], weights: [], // the global initial transform of the geometry node this bone is connected to transform: new THREE.Matrix4().fromArray( subDeformerNode.subNodes.Transform.properties.a ), // the global initial transform of this bone transformLink: new THREE.Matrix4().fromArray( subDeformerNode.subNodes.TransformLink.properties.a ), }; if ( 'Indexes' in subDeformerNode.subNodes ) { rawBone.indices = subDeformerNode.subNodes.Indexes.properties.a; rawBone.weights = subDeformerNode.subNodes.Weights.properties.a; } rawBones.push( rawBone ); } ); return { rawBones: rawBones, bones: [] }; } // Parse nodes in FBXTree.Objects.subNodes.Geometry function parseGeometries( FBXTree, connections, skeletons ) { var geometryMap = new Map(); if ( 'Geometry' in FBXTree.Objects.subNodes ) { var geometryNodes = FBXTree.Objects.subNodes.Geometry; for ( var nodeID in geometryNodes ) { var relationships = connections.get( parseInt( nodeID ) ); var geo = parseGeometry( FBXTree, relationships, geometryNodes[ nodeID ], skeletons ); geometryMap.set( parseInt( nodeID ), geo ); } } return geometryMap; } // Parse single node in FBXTree.Objects.subNodes.Geometry function parseGeometry( FBXTree, relationships, geometryNode, skeletons ) { switch ( geometryNode.attrType ) { case 'Mesh': return parseMeshGeometry( FBXTree, relationships, geometryNode, skeletons ); break; case 'NurbsCurve': return parseNurbsGeometry( geometryNode ); break; } } // Parse single node mesh geometry in FBXTree.Objects.subNodes.Geometry function parseMeshGeometry( FBXTree, relationships, geometryNode, skeletons ) { var modelNodes = relationships.parents.map( function ( parent ) { return FBXTree.Objects.subNodes.Model[ parent.ID ]; } ); // don't create geometry if it is not associated with any models if ( modelNodes.length === 0 ) return; var skeleton = relationships.children.reduce( function ( skeleton, child ) { if ( skeletons[ child.ID ] !== undefined ) skeleton = skeletons[ child.ID ]; return skeleton; }, null ); var preTransform = new THREE.Matrix4(); // TODO: if there is more than one model associated with the geometry, AND the models have // different geometric transforms, then this will cause problems // if ( modelNodes.length > 1 ) { } // For now just assume one model and get the preRotations from that var modelNode = modelNodes[ 0 ]; if ( 'GeometricRotation' in modelNode.properties ) { var array = modelNode.properties.GeometricRotation.value.map( THREE.Math.degToRad ); array[ 3 ] = 'ZYX'; preTransform.makeRotationFromEuler( new THREE.Euler().fromArray( array ) ); } if ( 'GeometricTranslation' in modelNode.properties ) { preTransform.setPosition( new THREE.Vector3().fromArray( modelNode.properties.GeometricTranslation.value ) ); } return genGeometry( FBXTree, relationships, geometryNode, skeleton, preTransform ); } // Generate a THREE.BufferGeometry from a node in FBXTree.Objects.subNodes.Geometry function genGeometry( FBXTree, relationships, geometryNode, skeleton, preTransform ) { var subNodes = geometryNode.subNodes; var vertexPositions = subNodes.Vertices.properties.a; var vertexIndices = subNodes.PolygonVertexIndex.properties.a; // create arrays to hold the final data used to build the buffergeometry var vertexBuffer = []; var normalBuffer = []; var colorsBuffer = []; var uvsBuffer = []; var materialIndexBuffer = []; var vertexWeightsBuffer = []; var weightsIndicesBuffer = []; if ( subNodes.LayerElementColor ) { var colorInfo = getColors( subNodes.LayerElementColor[ 0 ] ); } if ( subNodes.LayerElementMaterial ) { var materialInfo = getMaterials( subNodes.LayerElementMaterial[ 0 ] ); } if ( subNodes.LayerElementNormal ) { var normalInfo = getNormals( subNodes.LayerElementNormal[ 0 ] ); } if ( subNodes.LayerElementUV ) { var uvInfo = []; var i = 0; while ( subNodes.LayerElementUV[ i ] ) { uvInfo.push( getUVs( subNodes.LayerElementUV[ i ] ) ); i ++; } } var weightTable = {}; if ( skeleton !== null ) { skeleton.rawBones.forEach( function ( rawBone, i ) { // loop over the bone's vertex indices and weights rawBone.indices.forEach( function ( index, j ) { if ( weightTable[ index ] === undefined ) weightTable[ index ] = []; weightTable[ index ].push( { id: i, weight: rawBone.weights[ j ], } ); } ); } ); } var polygonIndex = 0; var faceLength = 0; var displayedWeightsWarning = false; // these will hold data for a single face var vertexPositionIndexes = []; var faceNormals = []; var faceColors = []; var faceUVs = []; var faceWeights = []; var faceWeightIndices = []; vertexIndices.forEach( function ( vertexIndex, polygonVertexIndex ) { var endOfFace = false; // Face index and vertex index arrays are combined in a single array // A cube with quad faces looks like this: // PolygonVertexIndex: *24 { // a: 0, 1, 3, -3, 2, 3, 5, -5, 4, 5, 7, -7, 6, 7, 1, -1, 1, 7, 5, -4, 6, 0, 2, -5 // } // Negative numbers mark the end of a face - first face here is 0, 1, 3, -3 // to find index of last vertex multiply by -1 and subtract 1: -3 * - 1 - 1 = 2 if ( vertexIndex < 0 ) { vertexIndex = vertexIndex ^ - 1; // equivalent to ( x * -1 ) - 1 vertexIndices[ polygonVertexIndex ] = vertexIndex; endOfFace = true; } var weightIndices = []; var weights = []; vertexPositionIndexes.push( vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2 ); if ( colorInfo ) { var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, colorInfo ); faceColors.push( data[ 0 ], data[ 1 ], data[ 2 ] ); } if ( skeleton ) { if ( weightTable[ vertexIndex ] !== undefined ) { weightTable[ vertexIndex ].forEach( function ( wt ) { weights.push( wt.weight ); weightIndices.push( wt.id ); } ); } if ( weights.length > 4 ) { if ( ! displayedWeightsWarning ) { console.warn( 'FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights.' ); displayedWeightsWarning = true; } var wIndex = [ 0, 0, 0, 0 ]; var Weight = [ 0, 0, 0, 0 ]; weights.forEach( function ( weight, weightIndex ) { var currentWeight = weight; var currentIndex = weightIndices[ weightIndex ]; Weight.forEach( function ( comparedWeight, comparedWeightIndex, comparedWeightArray ) { if ( currentWeight > comparedWeight ) { comparedWeightArray[ comparedWeightIndex ] = currentWeight; currentWeight = comparedWeight; var tmp = wIndex[ comparedWeightIndex ]; wIndex[ comparedWeightIndex ] = currentIndex; currentIndex = tmp; } } ); } ); weightIndices = wIndex; weights = Weight; } // if the weight array is shorter than 4 pad with 0s while ( weights.length < 4 ) { weights.push( 0 ); weightIndices.push( 0 ); } for ( var i = 0; i < 4; ++ i ) { faceWeights.push( weights[ i ] ); faceWeightIndices.push( weightIndices[ i ] ); } } if ( normalInfo ) { var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, normalInfo ); faceNormals.push( data[ 0 ], data[ 1 ], data[ 2 ] ); } if ( materialInfo && materialInfo.mappingType !== 'AllSame' ) { var materialIndex = getData( polygonVertexIndex, polygonIndex, vertexIndex, materialInfo )[ 0 ]; } if ( uvInfo ) { uvInfo.forEach( function ( uv, i ) { var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, uv ); if ( faceUVs[ i ] === undefined ) { faceUVs[ i ] = []; } faceUVs[ i ].push( data[ 0 ] ); faceUVs[ i ].push( data[ 1 ] ); } ); } faceLength ++; // we have reached the end of a face - it may have 4 sides though // in which case the data is split to represent two 3 sided faces if ( endOfFace ) { for ( var i = 2; i < faceLength; i ++ ) { vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ 0 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ 1 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ 2 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ ( i - 1 ) * 3 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ ( i - 1 ) * 3 + 1 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ ( i - 1 ) * 3 + 2 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ i * 3 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ i * 3 + 1 ] ] ); vertexBuffer.push( vertexPositions[ vertexPositionIndexes[ i * 3 + 2 ] ] ); if ( skeleton ) { vertexWeightsBuffer.push( faceWeights[ 0 ] ); vertexWeightsBuffer.push( faceWeights[ 1 ] ); vertexWeightsBuffer.push( faceWeights[ 2 ] ); vertexWeightsBuffer.push( faceWeights[ 3 ] ); vertexWeightsBuffer.push( faceWeights[ ( i - 1 ) * 4 ] ); vertexWeightsBuffer.push( faceWeights[ ( i - 1 ) * 4 + 1 ] ); vertexWeightsBuffer.push( faceWeights[ ( i - 1 ) * 4 + 2 ] ); vertexWeightsBuffer.push( faceWeights[ ( i - 1 ) * 4 + 3 ] ); vertexWeightsBuffer.push( faceWeights[ i * 4 ] ); vertexWeightsBuffer.push( faceWeights[ i * 4 + 1 ] ); vertexWeightsBuffer.push( faceWeights[ i * 4 + 2 ] ); vertexWeightsBuffer.push( faceWeights[ i * 4 + 3 ] ); weightsIndicesBuffer.push( faceWeightIndices[ 0 ] ); weightsIndicesBuffer.push( faceWeightIndices[ 1 ] ); weightsIndicesBuffer.push( faceWeightIndices[ 2 ] ); weightsIndicesBuffer.push( faceWeightIndices[ 3 ] ); weightsIndicesBuffer.push( faceWeightIndices[ ( i - 1 ) * 4 ] ); weightsIndicesBuffer.push( faceWeightIndices[ ( i - 1 ) * 4 + 1 ] ); weightsIndicesBuffer.push( faceWeightIndices[ ( i - 1 ) * 4 + 2 ] ); weightsIndicesBuffer.push( faceWeightIndices[ ( i - 1 ) * 4 + 3 ] ); weightsIndicesBuffer.push( faceWeightIndices[ i * 4 ] ); weightsIndicesBuffer.push( faceWeightIndices[ i * 4 + 1 ] ); weightsIndicesBuffer.push( faceWeightIndices[ i * 4 + 2 ] ); weightsIndicesBuffer.push( faceWeightIndices[ i * 4 + 3 ] ); } if ( colorInfo ) { colorsBuffer.push( faceColors[ 0 ] ); colorsBuffer.push( faceColors[ 1 ] ); colorsBuffer.push( faceColors[ 2 ] ); colorsBuffer.push( faceColors[ ( i - 1 ) * 3 ] ); colorsBuffer.push( faceColors[ ( i - 1 ) * 3 + 1 ] ); colorsBuffer.push( faceColors[ ( i - 1 ) * 3 + 2 ] ); colorsBuffer.push( faceColors[ i * 3 ] ); colorsBuffer.push( faceColors[ i * 3 + 1 ] ); colorsBuffer.push( faceColors[ i * 3 + 2 ] ); } if ( materialInfo && materialInfo.mappingType !== 'AllSame' ) { materialIndexBuffer.push( materialIndex ); materialIndexBuffer.push( materialIndex ); materialIndexBuffer.push( materialIndex ); } if ( normalInfo ) { normalBuffer.push( faceNormals[ 0 ] ); normalBuffer.push( faceNormals[ 1 ] ); normalBuffer.push( faceNormals[ 2 ] ); normalBuffer.push( faceNormals[ ( i - 1 ) * 3 ] ); normalBuffer.push( faceNormals[ ( i - 1 ) * 3 + 1 ] ); normalBuffer.push( faceNormals[ ( i - 1 ) * 3 + 2 ] ); normalBuffer.push( faceNormals[ i * 3 ] ); normalBuffer.push( faceNormals[ i * 3 + 1 ] ); normalBuffer.push( faceNormals[ i * 3 + 2 ] ); } if ( uvInfo ) { uvInfo.forEach( function ( uv, j ) { if ( uvsBuffer[ j ] === undefined ) uvsBuffer[ j ] = []; uvsBuffer[ j ].push( faceUVs[ j ][ 0 ] ); uvsBuffer[ j ].push( faceUVs[ j ][ 1 ] ); uvsBuffer[ j ].push( faceUVs[ j ][ ( i - 1 ) * 2 ] ); uvsBuffer[ j ].push( faceUVs[ j ][ ( i - 1 ) * 2 + 1 ] ); uvsBuffer[ j ].push( faceUVs[ j ][ i * 2 ] ); uvsBuffer[ j ].push( faceUVs[ j ][ i * 2 + 1 ] ); } ); } } polygonIndex ++; endOfFace = false; faceLength = 0; // reset arrays for the next face vertexPositionIndexes = []; faceNormals = []; faceColors = []; faceUVs = []; faceWeights = []; faceWeightIndices = []; } } ); var geo = new THREE.BufferGeometry(); geo.name = geometryNode.name; var positionAttribute = new THREE.Float32BufferAttribute( vertexBuffer, 3 ); preTransform.applyToBufferAttribute( positionAttribute ); geo.addAttribute( 'position', positionAttribute ); if ( colorsBuffer.length > 0 ) { geo.addAttribute( 'color', new THREE.Float32BufferAttribute( colorsBuffer, 3 ) ); } if ( skeleton ) { geo.addAttribute( 'skinIndex', new THREE.Float32BufferAttribute( weightsIndicesBuffer, 4 ) ); geo.addAttribute( 'skinWeight', new THREE.Float32BufferAttribute( vertexWeightsBuffer, 4 ) ); // used later to bind the skeleton to the model geo.FBX_Deformer = skeleton; } if ( normalBuffer.length > 0 ) { geo.addAttribute( 'normal', new THREE.Float32BufferAttribute( normalBuffer, 3 ) ); } uvsBuffer.forEach( function ( uvBuffer, i ) { // subsequent uv buffers are called 'uv1', 'uv2', ... var name = 'uv' + ( i + 1 ).toString(); // the first uv buffer is just called 'uv' if ( i === 0 ) { name = 'uv'; } geo.addAttribute( name, new THREE.Float32BufferAttribute( uvsBuffer[ i ], 2 ) ); } ); if ( materialInfo && materialInfo.mappingType !== 'AllSame' ) { // Convert the material indices of each vertex into rendering groups on the geometry. var prevMaterialIndex = materialIndexBuffer[ 0 ]; var startIndex = 0; materialIndexBuffer.forEach( function ( currentIndex, i ) { if ( currentIndex !== prevMaterialIndex ) { geo.addGroup( startIndex, i - startIndex, prevMaterialIndex ); prevMaterialIndex = currentIndex; startIndex = i; } } ); // the loop above doesn't add the last group, do that here. if ( geo.groups.length > 0 ) { var lastGroup = geo.groups[ geo.groups.length - 1 ]; var lastIndex = lastGroup.start + lastGroup.count; if ( lastIndex !== materialIndexBuffer.length ) { geo.addGroup( lastIndex, materialIndexBuffer.length - lastIndex, prevMaterialIndex ); } } // case where there are multiple materials but the whole geometry is only // using one of them if ( geo.groups.length === 0 ) { geo.addGroup( 0, materialIndexBuffer.length, materialIndexBuffer[ 0 ] ); } } return geo; } // Parse normal from FBXTree.Objects.subNodes.Geometry.subNodes.LayerElementNormal if it exists function getNormals( NormalNode ) { var mappingType = NormalNode.properties.MappingInformationType; var referenceType = NormalNode.properties.ReferenceInformationType; var buffer = NormalNode.subNodes.Normals.properties.a; var indexBuffer = []; if ( referenceType === 'IndexToDirect' ) { if ( 'NormalIndex' in NormalNode.subNodes ) { indexBuffer = NormalNode.subNodes.NormalIndex.properties.a; } else if ( 'NormalsIndex' in NormalNode.subNodes ) { indexBuffer = NormalNode.subNodes.NormalsIndex.properties.a; } } return { dataSize: 3, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse UVs from FBXTree.Objects.subNodes.Geometry.subNodes.LayerElementUV if it exists function getUVs( UVNode ) { var mappingType = UVNode.properties.MappingInformationType; var referenceType = UVNode.properties.ReferenceInformationType; var buffer = UVNode.subNodes.UV.properties.a; var indexBuffer = []; if ( referenceType === 'IndexToDirect' ) { indexBuffer = UVNode.subNodes.UVIndex.properties.a; } return { dataSize: 2, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse Vertex Colors from FBXTree.Objects.subNodes.Geometry.subNodes.LayerElementColor if it exists function getColors( ColorNode ) { var mappingType = ColorNode.properties.MappingInformationType; var referenceType = ColorNode.properties.ReferenceInformationType; var buffer = ColorNode.subNodes.Colors.properties.a; var indexBuffer = []; if ( referenceType === 'IndexToDirect' ) { indexBuffer = ColorNode.subNodes.ColorIndex.properties.a; } return { dataSize: 4, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse mapping and material data in FBXTree.Objects.subNodes.Geometry.subNodes.LayerElementMaterial if it exists function getMaterials( MaterialNode ) { var mappingType = MaterialNode.properties.MappingInformationType; var referenceType = MaterialNode.properties.ReferenceInformationType; if ( mappingType === 'NoMappingInformation' ) { return { dataSize: 1, buffer: [ 0 ], indices: [ 0 ], mappingType: 'AllSame', referenceType: referenceType }; } var materialIndexBuffer = MaterialNode.subNodes.Materials.properties.a; // Since materials are stored as indices, there's a bit of a mismatch between FBX and what // we expect.So we create an intermediate buffer that points to the index in the buffer, // for conforming with the other functions we've written for other data. var materialIndices = []; for ( var i = 0; i < materialIndexBuffer.length; ++ i ) { materialIndices.push( i ); } return { dataSize: 1, buffer: materialIndexBuffer, indices: materialIndices, mappingType: mappingType, referenceType: referenceType }; } // Functions use the infoObject and given indices to return value array of geometry. // Parameters: // - polygonVertexIndex - Index of vertex in draw order (which index of the index buffer refers to this vertex). // - polygonIndex - Index of polygon in geometry. // - vertexIndex - Index of vertex inside vertex buffer (used because some data refers to old index buffer that we don't use anymore). // - infoObject: can be materialInfo, normalInfo, UVInfo or colorInfo // Index type: // - Direct: index is same as polygonVertexIndex // - IndexToDirect: infoObject has it's own set of indices var dataArray = []; var GetData = { ByPolygonVertex: { Direct: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var from = ( polygonVertexIndex * infoObject.dataSize ); var to = ( polygonVertexIndex * infoObject.dataSize ) + infoObject.dataSize; return slice( dataArray, infoObject.buffer, from, to ); }, IndexToDirect: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var index = infoObject.indices[ polygonVertexIndex ]; var from = ( index * infoObject.dataSize ); var to = ( index * infoObject.dataSize ) + infoObject.dataSize; return slice( dataArray, infoObject.buffer, from, to ); } }, ByPolygon: { Direct: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var from = polygonIndex * infoObject.dataSize; var to = polygonIndex * infoObject.dataSize + infoObject.dataSize; return slice( dataArray, infoObject.buffer, from, to ); }, IndexToDirect: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var index = infoObject.indices[ polygonIndex ]; var from = index * infoObject.dataSize; var to = index * infoObject.dataSize + infoObject.dataSize; return slice( dataArray, infoObject.buffer, from, to ); } }, ByVertice: { Direct: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var from = ( vertexIndex * infoObject.dataSize ); var to = ( vertexIndex * infoObject.dataSize ) + infoObject.dataSize; return slice( dataArray, infoObject.buffer, from, to ); } }, AllSame: { IndexToDirect: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var from = infoObject.indices[ 0 ] * infoObject.dataSize; var to = infoObject.indices[ 0 ] * infoObject.dataSize + infoObject.dataSize; return slice( dataArray, infoObject.buffer, from, to ); } } }; function getData( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { return GetData[ infoObject.mappingType ][ infoObject.referenceType ]( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ); } // Generate a NurbGeometry from a node in FBXTree.Objects.subNodes.Geometry function parseNurbsGeometry( geometryNode ) { if ( THREE.NURBSCurve === undefined ) { console.error( 'FBXLoader: The loader relies on THREE.NURBSCurve for any nurbs present in the model. Nurbs will show up as empty geometry.' ); return new THREE.BufferGeometry(); } var order = parseInt( geometryNode.properties.Order ); if ( isNaN( order ) ) { console.error( 'FBXLoader: Invalid Order %s given for geometry ID: %s', geometryNode.properties.Order, geometryNode.id ); return new THREE.BufferGeometry(); } var degree = order - 1; var knots = geometryNode.subNodes.KnotVector.properties.a; var controlPoints = []; var pointsValues = geometryNode.subNodes.Points.properties.a; for ( var i = 0, l = pointsValues.length; i < l; i += 4 ) { controlPoints.push( new THREE.Vector4().fromArray( pointsValues, i ) ); } var startKnot, endKnot; if ( geometryNode.properties.Form === 'Closed' ) { controlPoints.push( controlPoints[ 0 ] ); } else if ( geometryNode.properties.Form === 'Periodic' ) { startKnot = degree; endKnot = knots.length - 1 - startKnot; for ( var i = 0; i < degree; ++ i ) { controlPoints.push( controlPoints[ i ] ); } } var curve = new THREE.NURBSCurve( degree, knots, controlPoints, startKnot, endKnot ); var vertices = curve.getPoints( controlPoints.length * 7 ); var positions = new Float32Array( vertices.length * 3 ); vertices.forEach( function ( vertex, i ) { vertex.toArray( positions, i * 3 ); } ); var geometry = new THREE.BufferGeometry(); geometry.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) ); return geometry; } // create the main THREE.Group() to be returned by the loader function parseScene( FBXTree, connections, skeletons, geometryMap, materialMap ) { var sceneGraph = new THREE.Group(); var modelMap = parseModels( FBXTree, skeletons, geometryMap, materialMap, connections ); var modelNodes = FBXTree.Objects.subNodes.Model; modelMap.forEach( function ( model ) { var modelNode = modelNodes[ model.ID ]; setLookAtProperties( FBXTree, model, modelNode, connections, sceneGraph ); var parentConnections = connections.get( model.ID ).parents; parentConnections.forEach( function ( connection ) { var parent = modelMap.get( connection.ID ); if ( parent !== undefined ) parent.add( model ); } ); if ( model.parent === null ) { sceneGraph.add( model ); } } ); bindSkeleton( FBXTree, skeletons, geometryMap, modelMap, connections, sceneGraph ); addAnimations( FBXTree, connections, sceneGraph, modelMap ); createAmbientLight( FBXTree, sceneGraph ); return sceneGraph; } // parse nodes in FBXTree.Objects.subNodes.Model function parseModels( FBXTree, skeletons, geometryMap, materialMap, connections ) { var modelMap = new Map(); var modelNodes = FBXTree.Objects.subNodes.Model; for ( var nodeID in modelNodes ) { var id = parseInt( nodeID ); var node = modelNodes[ nodeID ]; var relationships = connections.get( id ); var model = buildSkeleton( relationships, skeletons, id, node.attrName ); if ( ! model ) { switch ( node.attrType ) { case 'Camera': model = createCamera( FBXTree, relationships ); break; case 'Light': model = createLight( FBXTree, relationships ); break; case 'Mesh': model = createMesh( FBXTree, relationships, geometryMap, materialMap ); break; case 'NurbsCurve': model = createCurve( relationships, geometryMap ); break; case 'LimbNode': // usually associated with a Bone, however if a Bone was not created we'll make a Group instead case 'Null': default: model = new THREE.Group(); break; } model.name = THREE.PropertyBinding.sanitizeNodeName( node.attrName ); model.ID = id; } setModelTransforms( FBXTree, model, node ); modelMap.set( id, model ); } return modelMap; } function buildSkeleton( relationships, skeletons, id, name ) { var bone = null; relationships.parents.forEach( function ( parent ) { for ( var ID in skeletons ) { var skeleton = skeletons[ ID ]; skeleton.rawBones.forEach( function ( rawBone, i ) { if ( rawBone.ID === parent.ID ) { var subBone = bone; bone = new THREE.Bone(); // set name and id here - otherwise in cases where "subBone" is created it will not have a name / id bone.name = THREE.PropertyBinding.sanitizeNodeName( name ); bone.ID = id; skeleton.bones[ i ] = bone; // In cases where a bone is shared between multiple meshes // duplicate the bone here and and it as a child of the first bone if ( subBone !== null ) { bone.add( subBone ); } } } ); } } ); return bone; } // create a THREE.PerspectiveCamera or THREE.OrthographicCamera function createCamera( FBXTree, relationships ) { var model; var cameraAttribute; relationships.children.forEach( function ( child ) { var attr = FBXTree.Objects.subNodes.NodeAttribute[ child.ID ]; if ( attr !== undefined && attr.properties !== undefined ) { cameraAttribute = attr.properties; } } ); if ( cameraAttribute === undefined ) { model = new THREE.Object3D(); } else { var type = 0; if ( cameraAttribute.CameraProjectionType !== undefined && cameraAttribute.CameraProjectionType.value === 1 ) { type = 1; } var nearClippingPlane = 1; if ( cameraAttribute.NearPlane !== undefined ) { nearClippingPlane = cameraAttribute.NearPlane.value / 1000; } var farClippingPlane = 1000; if ( cameraAttribute.FarPlane !== undefined ) { farClippingPlane = cameraAttribute.FarPlane.value / 1000; } var width = window.innerWidth; var height = window.innerHeight; if ( cameraAttribute.AspectWidth !== undefined && cameraAttribute.AspectHeight !== undefined ) { width = cameraAttribute.AspectWidth.value; height = cameraAttribute.AspectHeight.value; } var aspect = width / height; var fov = 45; if ( cameraAttribute.FieldOfView !== undefined ) { fov = cameraAttribute.FieldOfView.value; } switch ( type ) { case 0: // Perspective model = new THREE.PerspectiveCamera( fov, aspect, nearClippingPlane, farClippingPlane ); break; case 1: // Orthographic model = new THREE.OrthographicCamera( - width / 2, width / 2, height / 2, - height / 2, nearClippingPlane, farClippingPlane ); break; default: console.warn( 'FBXLoader: Unknown camera type ' + type + '.' ); model = new THREE.Object3D(); break; } } return model; } // Create a THREE.DirectionalLight, THREE.PointLight or THREE.SpotLight function createLight( FBXTree, relationships ) { var model; var lightAttribute; relationships.children.forEach( function ( child ) { var attr = FBXTree.Objects.subNodes.NodeAttribute[ child.ID ]; if ( attr !== undefined && attr.properties !== undefined ) { lightAttribute = attr.properties; } } ); if ( lightAttribute === undefined ) { model = new THREE.Object3D(); } else { var type; // LightType can be undefined for Point lights if ( lightAttribute.LightType === undefined ) { type = 0; } else { type = lightAttribute.LightType.value; } var color = 0xffffff; if ( lightAttribute.Color !== undefined ) { color = parseColor( lightAttribute.Color ); } var intensity = ( lightAttribute.Intensity === undefined ) ? 1 : lightAttribute.Intensity.value / 100; // light disabled if ( lightAttribute.CastLightOnObject !== undefined && lightAttribute.CastLightOnObject.value === 0 ) { intensity = 0; } var distance = 0; if ( lightAttribute.FarAttenuationEnd !== undefined ) { if ( lightAttribute.EnableFarAttenuation !== undefined && lightAttribute.EnableFarAttenuation.value === 0 ) { distance = 0; } else { distance = lightAttribute.FarAttenuationEnd.value / 1000; } } // TODO: could this be calculated linearly from FarAttenuationStart to FarAttenuationEnd? var decay = 1; switch ( type ) { case 0: // Point model = new THREE.PointLight( color, intensity, distance, decay ); break; case 1: // Directional model = new THREE.DirectionalLight( color, intensity ); break; case 2: // Spot var angle = Math.PI / 3; if ( lightAttribute.InnerAngle !== undefined ) { angle = THREE.Math.degToRad( lightAttribute.InnerAngle.value ); } var penumbra = 0; if ( lightAttribute.OuterAngle !== undefined ) { // TODO: this is not correct - FBX calculates outer and inner angle in degrees // with OuterAngle > InnerAngle && OuterAngle <= Math.PI // while three.js uses a penumbra between (0, 1) to attenuate the inner angle penumbra = THREE.Math.degToRad( lightAttribute.OuterAngle.value ); penumbra = Math.max( penumbra, 1 ); } model = new THREE.SpotLight( color, intensity, distance, angle, penumbra, decay ); break; default: console.warn( 'FBXLoader: Unknown light type ' + lightAttribute.LightType.value + ', defaulting to a THREE.PointLight.' ); model = new THREE.PointLight( color, intensity ); break; } if ( lightAttribute.CastShadows !== undefined && lightAttribute.CastShadows.value === 1 ) { model.castShadow = true; } } return model; } function createMesh( FBXTree, relationships, geometryMap, materialMap ) { var model; var geometry = null; var material = null; var materials = []; // get geometry and materials(s) from connections relationships.children.forEach( function ( child ) { if ( geometryMap.has( child.ID ) ) { geometry = geometryMap.get( child.ID ); } if ( materialMap.has( child.ID ) ) { materials.push( materialMap.get( child.ID ) ); } } ); if ( materials.length > 1 ) { material = materials; } else if ( materials.length > 0 ) { material = materials[ 0 ]; } else { material = new THREE.MeshPhongMaterial( { color: 0xcccccc } ); materials.push( material ); } if ( 'color' in geometry.attributes ) { materials.forEach( function ( material ) { material.vertexColors = THREE.VertexColors; } ); } if ( geometry.FBX_Deformer ) { materials.forEach( function ( material ) { material.skinning = true; } ); model = new THREE.SkinnedMesh( geometry, material ); } else { model = new THREE.Mesh( geometry, material ); } return model; } function createCurve( relationships, geometryMap ) { var geometry = relationships.children.reduce( function ( geo, child ) { if ( geometryMap.has( child.ID ) ) geo = geometryMap.get( child.ID ); return geo; }, null ); // FBX does not list materials for Nurbs lines, so we'll just put our own in here. var material = new THREE.LineBasicMaterial( { color: 0x3300ff, linewidth: 1 } ); return new THREE.Line( geometry, material ); } // Parse ambient color in FBXTree.GlobalSettings.properties - if it's not set to black (default), create an ambient light function createAmbientLight( FBXTree, sceneGraph ) { if ( 'GlobalSettings' in FBXTree && 'AmbientColor' in FBXTree.GlobalSettings.properties ) { var ambientColor = FBXTree.GlobalSettings.properties.AmbientColor.value; var r = ambientColor[ 0 ]; var g = ambientColor[ 1 ]; var b = ambientColor[ 2 ]; if ( r !== 0 || g !== 0 || b !== 0 ) { var color = new THREE.Color( r, g, b ); sceneGraph.add( new THREE.AmbientLight( color, 1 ) ); } } } function setLookAtProperties( FBXTree, model, modelNode, connections, sceneGraph ) { if ( 'LookAtProperty' in modelNode.properties ) { var children = connections.get( model.ID ).children; children.forEach( function ( child ) { if ( child.relationship === 'LookAtProperty' ) { var lookAtTarget = FBXTree.Objects.subNodes.Model[ child.ID ]; if ( 'Lcl_Translation' in lookAtTarget.properties ) { var pos = lookAtTarget.properties.Lcl_Translation.value; // DirectionalLight, SpotLight if ( model.target !== undefined ) { model.target.position.fromArray( pos ); sceneGraph.add( model.target ); } else { // Cameras and other Object3Ds model.lookAt( new THREE.Vector3().fromArray( pos ) ); } } } } ); } } // parse the model node for transform details and apply them to the model function setModelTransforms( FBXTree, model, modelNode ) { // http://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_euler_html if ( 'RotationOrder' in modelNode.properties ) { var enums = [ 'XYZ', // default 'XZY', 'YZX', 'ZXY', 'YXZ', 'ZYX', 'SphericXYZ', ]; var value = parseInt( modelNode.properties.RotationOrder.value, 10 ); if ( value > 0 && value < 6 ) { // model.rotation.order = enums[ value ]; // Note: Euler order other