thoughtmcp
Version:
AI that thinks more like humans do - MCP server with human-like cognitive architecture for enhanced reasoning, memory, and self-monitoring
138 lines • 4.02 kB
TypeScript
/**
* Stochastic Neural Processing Implementation
*
* Implements biological-like neural variability and probabilistic processing:
* - Gaussian noise addition to simulate neural variability
* - Stochastic resonance for weak signal enhancement
* - Probabilistic decision sampling mechanisms
* - Temperature-controlled randomness
*/
import { ComponentStatus, IStochasticNeuralProcessor } from "../interfaces/cognitive.js";
export interface NeuralSignal {
values: number[];
strength: number;
timestamp: number;
metadata?: Record<string, unknown>;
}
export interface EnhancedSignal {
original: number[];
enhanced: number[];
noise_added: number[];
enhancement_factor: number;
signal_to_noise_ratio: number;
}
export interface StochasticOutput {
processed_signal: number[];
noise_level: number;
enhancement_applied: boolean;
sampling_temperature: number;
processing_metadata: {
original_strength: number;
final_strength: number;
noise_contribution: number;
resonance_detected: boolean;
};
}
export interface ProbabilisticSample {
value: number;
probability: number;
temperature: number;
distribution_type: string;
}
/**
* StochasticNeuralProcessor implements biological-like neural processing
* with noise, variability, and probabilistic decision making
*/
export declare class StochasticNeuralProcessor implements IStochasticNeuralProcessor {
private noise_level;
private temperature;
private resonance_threshold;
private max_noise_level;
private status;
private rng;
/**
* Initialize the stochastic neural processor with configuration
*/
initialize(config: Record<string, unknown>): Promise<void>;
/**
* Main processing method - applies stochastic neural processing
*/
process(input: NeuralSignal): Promise<StochasticOutput>;
/**
* Add Gaussian noise to signal - simulates biological neural variability
*/
addNoise(signal: number[], noiseLevel: number): number[];
/**
* Apply stochastic resonance - noise can enhance weak signal detection
*/
applyStochasticResonance(signal: number[], noiseLevel: number): number[];
/**
* Sample from probability distribution - implements probabilistic decisions
*/
sampleFromDistribution(distribution: number[]): number;
/**
* Adjust temperature parameter for randomness control
*/
adjustTemperature(temperature: number): void;
/**
* Reset processor state
*/
reset(): void;
/**
* Get current component status
*/
getStatus(): ComponentStatus;
/**
* Generate Gaussian noise using Box-Muller transform
*/
private generateGaussianNoise;
/**
* Compute optimal noise level for stochastic resonance
*/
private computeOptimalNoise;
/**
* Apply threshold detection with noise enhancement
*/
private thresholdDetection;
/**
* Compute adaptive threshold based on signal characteristics
*/
private computeAdaptiveThreshold;
/**
* Detect if stochastic resonance occurred
*/
private detectResonance;
/**
* Compute signal strength (RMS)
*/
private computeSignalStrength;
/**
* Compute noise contribution to signal
*/
private computeNoiseContribution;
/**
* Apply temperature scaling to probability distribution
*/
private applyTemperatureScaling;
/**
* Apply probabilistic sampling to signal values
*/
private applySampling;
/**
* Set random number generator (for testing)
*/
setRandomNumberGenerator(rng: () => number): void;
/**
* Get current noise level
*/
getNoiseLevel(): number;
/**
* Get current temperature
*/
getTemperature(): number;
/**
* Set noise level with bounds checking
*/
setNoiseLevel(level: number): void;
}
//# sourceMappingURL=StochasticNeuralProcessor.d.ts.map