thoughtmcp
Version:
AI that thinks more like humans do - MCP server with human-like cognitive architecture for enhanced reasoning, memory, and self-monitoring
108 lines • 3.41 kB
TypeScript
/**
* Sensory Processing Layer Implementation
*
* Implements the first layer of cognitive processing that handles:
* - Input tokenization and normalization
* - Attention filtering (thalamic gating)
* - Pattern detection
* - Salience computation
* - Semantic chunking
*/
import { ComponentStatus, ISensoryProcessor, Pattern, SalienceMap } from "../interfaces/cognitive.js";
import { Token } from "../types/core.js";
export interface SensoryInput {
raw_input: string;
timestamp: number;
context_markers: Map<string, unknown>;
attention_weights: Float32Array;
}
export interface ProcessedInput {
tokens: Token[];
patterns: Pattern[];
salience_map: SalienceMap;
semantic_chunks: SemanticChunk[];
attention_filtered: boolean;
}
export interface SemanticChunk {
tokens: Token[];
coherence_score: number;
semantic_category: string;
importance: number;
}
export interface AttentionGate {
threshold: number;
focus_areas: string[];
suppression_areas: string[];
}
/**
* SensoryProcessor implements the sensory processing layer of cognitive architecture
* Mimics biological sensory processing with attention filtering and pattern detection
*/
export declare class SensoryProcessor implements ISensoryProcessor {
private attention_threshold;
private context_buffer;
private buffer_size;
private pattern_cache;
private semantic_categories;
private status;
/**
* Initialize the sensory processor with configuration
*/
initialize(config: Record<string, unknown>): Promise<void>;
/**
* Main processing method - implements the sensory processing pipeline
*/
process(input: string): Promise<ProcessedInput>;
/**
* Tokenize input with semantic awareness
* Implements biological-inspired tokenization similar to cortical processing
*/
tokenize(input: string): Token[];
/**
* Apply attention filtering - mimics thalamic gating
* Filters tokens based on relevance and attention scores
*/
filterAttention(tokens: Token[], threshold: number): Token[];
/**
* Detect patterns in filtered tokens
* Implements pattern recognition similar to visual cortex processing
*/
detectPatterns(tokens: Token[]): Pattern[];
/**
* Compute salience map for tokens
* Determines which tokens deserve attention focus
*/
computeSalience(tokens: Token[]): SalienceMap;
/**
* Reset processor state
*/
reset(): void;
/**
* Get current component status
*/
getStatus(): ComponentStatus;
private initializePatternModels;
private computeSemanticWeight;
private computeInitialAttention;
private extractContextTags;
private computeDynamicThreshold;
private isHighImportanceToken;
private detectSequentialPatterns;
private detectSemanticPatterns;
private detectSyntacticPatterns;
private detectRepetitionPatterns;
private computeTokenSalience;
private createSemanticChunks;
private updateContextBuffer;
private computeSequenceConfidence;
private computeSequenceSalience;
private computeContextRelevance;
private getRelatedWords;
private isContentWord;
private isFunctionWord;
private isNoun;
private isVerb;
private isAdjective;
private classifySemanticCategory;
}
//# sourceMappingURL=SensoryProcessor.d.ts.map