UNPKG

thoughtmcp

Version:

AI that thinks more like humans do - MCP server with human-like cognitive architecture for enhanced reasoning, memory, and self-monitoring

120 lines 3.87 kB
/** * Predictive Processing Implementation * * Implements predictive processing mechanisms inspired by the predictive brain hypothesis: * - Top-down prediction generation based on current context * - Prediction error computation and model updating * - Bayesian belief updating mechanisms * - Hierarchical predictive models */ import { ComponentStatus, IPredictiveProcessor, Prediction } from "../interfaces/cognitive.js"; import { Context } from "../types/core.js"; export interface PredictionError { magnitude: number; direction: "positive" | "negative"; confidence: number; source: string; timestamp: number; } export interface GenerativeModel { id: string; parameters: Map<string, number>; prior_beliefs: Map<string, number>; confidence: number; last_updated: number; prediction_accuracy: number; } export interface HierarchicalLevel { level: number; predictions: Prediction[]; errors: PredictionError[]; model: GenerativeModel; parent_level?: HierarchicalLevel; child_levels: HierarchicalLevel[]; } export interface BayesianUpdate { prior: number; likelihood: number; evidence: number; posterior: number; confidence_change: number; } /** * PredictiveProcessor implements predictive processing mechanisms * Based on the predictive brain hypothesis and hierarchical temporal memory */ export declare class PredictiveProcessor implements IPredictiveProcessor { private generative_models; private hierarchical_levels; private prediction_history; private error_history; private max_history_size; private prediction_error_threshold; private learning_rate; private confidence_decay; private status; /** * Initialize the predictive processor with configuration */ initialize(config: Record<string, unknown>): Promise<void>; /** * Main processing method - implements predictive processing pipeline */ process(input: unknown): Promise<{ predictions: Prediction[]; errors: PredictionError[]; model_updates: GenerativeModel[]; }>; /** * Generate top-down predictions based on current context */ generatePredictions(context: Context): Prediction[]; /** * Compute prediction error between prediction and actual input */ computePredictionError(prediction: Prediction, actual: unknown): number; /** * Update generative model based on prediction error */ updateModel(error: number, prediction: Prediction): void; /** * Perform Bayesian belief updating */ getBayesianUpdate(prior: number, likelihood: number, evidence: number): number; /** * Reset processor state */ reset(): void; /** * Get current component status */ getStatus(): ComponentStatus; private initializeHierarchicalLevels; private initializeGenerativeModels; private createDefaultModel; private extractContext; private generateLevelPredictions; private generateModelPredictions; private computePredictionErrors; private updateModelsFromErrors; private updateHistory; private extractFeatures; private computeFeatureErrors; private aggregateErrors; private getModelIdFromPrediction; private getContextKey; private updateModelParameters; private generateSensoryPredictions; private generatePerceptualPredictions; private generateConceptualPredictions; private generateAbstractPredictions; private generateLinguisticPrediction; private generateTemporalPrediction; private generateCausalPrediction; private generateSpatialPrediction; private computeTextComplexity; private computeSentiment; private computeObjectDepth; private areContentTypesVeryDifferent; } //# sourceMappingURL=PredictiveProcessor.d.ts.map