tflite-react-native-alternative
Version:
Updated version of tflite-react-native for personal use.
253 lines (205 loc) • 4.92 kB
Markdown
# tflite-react-native-alternative
A React Native library for accessing TensorFlow Lite API. Supports Classification, Object Detection, Deeplab and PoseNet on both iOS and Android.
### Table of Contents
- [Installation](#Installation)
- [Usage](#Usage)
- [Image Classification](#Image-Classification)
- [Object Detection](#Object-Detection)
- [SSD MobileNet](#SSD-MobileNet)
- [YOLO](#Tiny-YOLOv2)
- [Deeplab](#Deeplab)
- [PoseNet](#PoseNet)
- [Example](#Example)
## Installation
`$ npm install tflite-react-native-alternative --save`
## Add models to the project
### iOS
In XCode, right click on the project folder, click **Add Files to "xxx"...**, select the model and label files.
### Android
1. In Android Studio (1.0 & above), right-click on the `app` folder and go to **New > Folder > Assets Folder**. Click **Finish** to create the assets folder.
2. Place the model and label files at `app/src/main/assets`.
2. In `android/app/build.gradle`, add the following setting in `android` block.
```
aaptOptions {
noCompress 'tflite'
}
```
## Usage
```javascript
import Tflite from 'tflite-react-native';
let tflite = new Tflite();
```
### Load model:
```javascript
tflite.loadModel({
model: 'models/mobilenet_v1_1.0_224.tflite',// required
labels: 'models/mobilenet_v1_1.0_224.txt', // required
numThreads: 1, // defaults to 1
},
(err, res) => {
if(err)
console.log(err);
else
console.log(res);
});
```
### Image classification:
```javascript
tflite.runModelOnImage({
path: imagePath, // required
imageMean: 128.0, // defaults to 127.5
imageStd: 128.0, // defaults to 127.5
numResults: 3, // defaults to 5
threshold: 0.05 // defaults to 0.1
},
(err, res) => {
if(err)
console.log(err);
else
console.log(res);
});
```
- Output fomart:
```
{
index: 0,
label: "person",
confidence: 0.629
}
```
### Object detection:
#### SSD MobileNet
```javascript
tflite.detectObjectOnImage({
path: imagePath,
model: 'SSDMobileNet',
imageMean: 127.5,
imageStd: 127.5,
threshold: 0.3, // defaults to 0.1
numResultsPerClass: 2,// defaults to 5
},
(err, res) => {
if(err)
console.log(err);
else
console.log(res);
});
```
#### Tiny YOLOv2
```javascript
tflite.detectObjectOnImage({
path: imagePath,
model: 'YOLO',
imageMean: 0.0,
imageStd: 255.0,
threshold: 0.3, // defaults to 0.1
numResultsPerClass: 2, // defaults to 5
anchors: [...], // defaults to [0.57273,0.677385,1.87446,2.06253,3.33843,5.47434,7.88282,3.52778,9.77052,9.16828]
blockSize: 32, // defaults to 32
},
(err, res) => {
if(err)
console.log(err);
else
console.log(res);
});
```
- Output fomart:
`x, y, w, h` are between [0, 1]. You can scale `x, w` by the width and `y, h` by the height of the image.
```
{
detectedClass: "hot dog",
confidenceInClass: 0.123,
rect: {
x: 0.15,
y: 0.33,
w: 0.80,
h: 0.27
}
}
```
### Deeplab
```javascript
tflite.runSegmentationOnImage({
path: imagePath,
imageMean: 127.5, // defaults to 127.5
imageStd: 127.5, // defaults to 127.5
labelColors: [...], // defaults to https://github.com/shaqian/tflite-react-native/blob/master/index.js#L59
outputType: "png", // defaults to "png"
},
(err, res) => {
if(err)
console.log(err);
else
console.log(res);
});
```
- Output format:
The output of Deeplab inference is Uint8List type. Depending on the `outputType` used, the output is:
- (if outputType is png) byte array of a png image
- (otherwise) byte array of r, g, b, a values of the pixels
### PoseNet
> Model is from [StackOverflow thread](https://stackoverflow.com/a/55288616).
```javascript
tflite.runPoseNetOnImage({
path: imagePath,
imageMean: 127.5, // defaults to 127.5
imageStd: 127.5, // defaults to 127.5
numResults: 3, // defaults to 5
threshold: 0.8, // defaults to 0.5
nmsRadius: 20, // defaults to 20
},
(err, res) => {
if(err)
console.log(err);
else
console.log(res);
});
```
- Output format:
`x, y` are between [0, 1]. You can scale `x` by the width and `y` by the height of the image.
```
[ // array of poses/persons
{ // pose #1
score: 0.6324902,
keypoints: {
0: {
x: 0.250,
y: 0.125,
part: nose,
score: 0.9971070
},
1: {
x: 0.230,
y: 0.105,
part: leftEye,
score: 0.9978438
}
......
}
},
{ // pose #2
score: 0.32534285,
keypoints: {
0: {
x: 0.402,
y: 0.538,
part: nose,
score: 0.8798978
},
1: {
x: 0.380,
y: 0.513,
part: leftEye,
score: 0.7090239
}
......
}
},
......
]
```
### Release resources:
```
tflite.close();
```