UNPKG

tensorflow-helpers

Version:

Helper functions to use tensorflow in nodejs for transfer learning, image classification, and more

76 lines (75 loc) 3.36 kB
"use strict"; var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { if (k2 === undefined) k2 = k; var desc = Object.getOwnPropertyDescriptor(m, k); if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { desc = { enumerable: true, get: function() { return m[k]; } }; } Object.defineProperty(o, k2, desc); }) : (function(o, m, k, k2) { if (k2 === undefined) k2 = k; o[k2] = m[k]; })); var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { Object.defineProperty(o, "default", { enumerable: true, value: v }); }) : function(o, v) { o["default"] = v; }); var __importStar = (this && this.__importStar) || (function () { var ownKeys = function(o) { ownKeys = Object.getOwnPropertyNames || function (o) { var ar = []; for (var k in o) if (Object.prototype.hasOwnProperty.call(o, k)) ar[ar.length] = k; return ar; }; return ownKeys(o); }; return function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k = ownKeys(mod), i = 0; i < k.length; i++) if (k[i] !== "default") __createBinding(result, mod, k[i]); __setModuleDefault(result, mod); return result; }; })(); Object.defineProperty(exports, "__esModule", { value: true }); exports.cropAndResizeImageTensor = exports.calcCropBox = exports.getImageTensorShape = void 0; exports.loadImageFile = loadImageFile; exports.cropAndResizeImageFile = cropAndResizeImageFile; const promises_1 = require("fs/promises"); const tf = __importStar(require("@tensorflow/tfjs-node")); const tensor_1 = require("./tensor"); const image_utils_1 = require("./image-utils"); var image_utils_2 = require("./image-utils"); Object.defineProperty(exports, "getImageTensorShape", { enumerable: true, get: function () { return image_utils_2.getImageTensorShape; } }); Object.defineProperty(exports, "calcCropBox", { enumerable: true, get: function () { return image_utils_2.calcCropBox; } }); Object.defineProperty(exports, "cropAndResizeImageTensor", { enumerable: true, get: function () { return image_utils_2.cropAndResizeImageTensor; } }); async function loadImageFile(file, options) { let content = await (0, promises_1.readFile)(file); let tensor = options ? tf.node.decodeImage(content, options.channels, options.dtype, options.expandAnimations ?? false) : tf.node.decodeImage(content); if (options?.crop) { tensor = (0, image_utils_1.cropAndResizeImageTensor)({ imageTensor: tensor, width: options.crop.width, height: options.crop.height, aspectRatio: options.crop.aspectRatio, }); } return tensor; } async function cropAndResizeImageFile(options) { let imageTensor = await loadImageFile(options.srcFile, { crop: { width: options.width, height: options.height, aspectRatio: options.aspectRatio, }, }); let tensor3D = tf.tidy(() => (0, tensor_1.toTensor3D)(imageTensor).mul(255)); let content = await tf.node.encodeJpeg(tensor3D); tf.image.cropAndResize; tensor3D.dispose(); await (0, promises_1.writeFile)(options.destFile, content); }