UNPKG

tensorflow-helpers

Version:

Helper functions to use tensorflow in nodejs for transfer learning, image classification, and more

97 lines (96 loc) 3.6 kB
"use strict"; var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { if (k2 === undefined) k2 = k; var desc = Object.getOwnPropertyDescriptor(m, k); if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { desc = { enumerable: true, get: function() { return m[k]; } }; } Object.defineProperty(o, k2, desc); }) : (function(o, m, k, k2) { if (k2 === undefined) k2 = k; o[k2] = m[k]; })); var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { Object.defineProperty(o, "default", { enumerable: true, value: v }); }) : function(o, v) { o["default"] = v; }); var __importStar = (this && this.__importStar) || (function () { var ownKeys = function(o) { ownKeys = Object.getOwnPropertyNames || function (o) { var ar = []; for (var k in o) if (Object.prototype.hasOwnProperty.call(o, k)) ar[ar.length] = k; return ar; }; return ownKeys(o); }; return function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k = ownKeys(mod), i = 0; i < k.length; i++) if (k[i] !== "default") __createBinding(result, mod, k[i]); __setModuleDefault(result, mod); return result; }; })(); Object.defineProperty(exports, "__esModule", { value: true }); exports.getImageTensorShape = getImageTensorShape; exports.calcCropBox = calcCropBox; exports.cropAndResizeImageTensor = cropAndResizeImageTensor; const tf = __importStar(require("@tensorflow/tfjs-core")); const tensor_1 = require("./tensor"); function getImageTensorShape(imageTensor) { return imageTensor.shape.length === 3 ? { width: imageTensor.shape[1], height: imageTensor.shape[0], } : { width: imageTensor.shape[2], height: imageTensor.shape[1], }; } /** * @description calculate center-crop box * @returns [top,left,bottom,right], values range: 0..1 */ function calcCropBox(options) { let { sourceShape, targetShape } = options; let top = 0; let left = 0; let bottom = 1; let right = 1; if (sourceShape.width > sourceShape.height == targetShape.width > targetShape.height) { let targetHeightInRatio = (sourceShape.height / sourceShape.width) * targetShape.width; top = Math.abs(targetHeightInRatio - targetShape.height) / targetHeightInRatio / 2; bottom = 1 - top; } else { let targetWidthInRatio = (sourceShape.width / sourceShape.height) * targetShape.height; left = Math.abs(targetWidthInRatio - targetShape.width) / targetWidthInRatio / 2; right = 1 - left; } return [top, left, bottom, right]; } function cropAndResizeImageTensor(options) { let { imageTensor, width, height } = options; let croppedImageTensor = tf.tidy(() => { let imageShape = getImageTensorShape(imageTensor); let cropBox = options.aspectRatio != 'center-crop' ? [0, 0, 1, 1] : calcCropBox({ sourceShape: imageShape, targetShape: { width, height }, }); const crop = tf.image.cropAndResize( // Expand image input dimensions to add a batch dimension of size 1. (0, tensor_1.toTensor4D)(imageTensor), [cropBox], [0], [height, width]); return crop.div(255); }); imageTensor.dispose(); return croppedImageTensor; }