svg-pathdata
Version:
Manipulate SVG path data (path[d] attribute content) simply and efficiently.
317 lines (277 loc) • 9.07 kB
text/typescript
import { SVGPathData } from './SVGPathData.js';
import { type CommandA, type CommandC } from './types.js';
export type Point = [x: number, y: number];
export function rotate([x, y]: Point, rad: number) {
return [
x * Math.cos(rad) - y * Math.sin(rad),
x * Math.sin(rad) + y * Math.cos(rad),
];
}
const DEBUG_CHECK_NUMBERS = true;
export function assertNumbers(...numbers: number[]) {
if (DEBUG_CHECK_NUMBERS) {
for (let i = 0; i < numbers.length; i++) {
if ('number' !== typeof numbers[i]) {
throw new Error(
`assertNumbers arguments[${i}] is not a number. ${typeof numbers[i]} == typeof ${numbers[i]}`,
);
}
}
}
return true;
}
const PI = Math.PI;
/**
* https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
* Fixes rX and rY.
* Ensures lArcFlag and sweepFlag are 0 or 1
* Adds center coordinates: command.cX, command.cY (relative or absolute, depending on command.relative)
* Adds start and end arc parameters (in degrees): command.phi1, command.phi2; phi1 < phi2 iff. c.sweepFlag == true
*/
export function annotateArcCommand(c: CommandA, x1: number, y1: number) {
c.lArcFlag = 0 === c.lArcFlag ? 0 : 1;
c.sweepFlag = 0 === c.sweepFlag ? 0 : 1;
// tslint:disable-next-line
let { rX, rY } = c;
const { x, y } = c;
if (Math.abs(rX) < 1e-10 || Math.abs(rY) < 1e-10) {
c.rX = 0;
c.rY = 0;
c.cX = (x1 + x) / 2;
c.cY = (y1 + y) / 2;
c.phi1 = 0;
c.phi2 = 0;
return;
}
rX = Math.abs(c.rX);
rY = Math.abs(c.rY);
const xRotRad = (c.xRot / 180) * PI;
const [x1_, y1_] = rotate([(x1 - x) / 2, (y1 - y) / 2], -xRotRad);
const testValue =
Math.pow(x1_, 2) / Math.pow(rX, 2) + Math.pow(y1_, 2) / Math.pow(rY, 2);
if (1 < testValue) {
rX *= Math.sqrt(testValue);
rY *= Math.sqrt(testValue);
}
c.rX = rX;
c.rY = rY;
const c_ScaleTemp =
Math.pow(rX, 2) * Math.pow(y1_, 2) + Math.pow(rY, 2) * Math.pow(x1_, 2);
const c_Scale =
(c.lArcFlag !== c.sweepFlag ? 1 : -1) *
Math.sqrt(
Math.max(
0,
(Math.pow(rX, 2) * Math.pow(rY, 2) - c_ScaleTemp) / c_ScaleTemp,
),
);
const cx_ = ((rX * y1_) / rY) * c_Scale;
const cy_ = ((-rY * x1_) / rX) * c_Scale;
const cRot = rotate([cx_, cy_], xRotRad);
c.cX = cRot[0] + (x1 + x) / 2;
c.cY = cRot[1] + (y1 + y) / 2;
c.phi1 = Math.atan2((y1_ - cy_) / rY, (x1_ - cx_) / rX);
c.phi2 = Math.atan2((-y1_ - cy_) / rY, (-x1_ - cx_) / rX);
if (0 === c.sweepFlag && c.phi2 > c.phi1) {
c.phi2 -= 2 * PI;
}
if (1 === c.sweepFlag && c.phi2 < c.phi1) {
c.phi2 += 2 * PI;
}
c.phi1 *= 180 / PI;
c.phi2 *= 180 / PI;
}
/**
* Solves a quadratic system of equations of the form
* a * x + b * y = c
* x² + y² = 1
* This can be understood as the intersection of the unit circle with a line.
* => y = (c - a x) / b
* => x² + (c - a x)² / b² = 1
* => x² b² + c² - 2 c a x + a² x² = b²
* => (a² + b²) x² - 2 a c x + (c² - b²) = 0
*/
export function intersectionUnitCircleLine(
a: number,
b: number,
c: number,
): [number, number][] {
assertNumbers(a, b, c);
// cf. pqFormula
const termSqr = a * a + b * b - c * c;
if (0 > termSqr) {
return [];
} else if (0 === termSqr) {
return [[(a * c) / (a * a + b * b), (b * c) / (a * a + b * b)]];
}
const term = Math.sqrt(termSqr);
return [
[
(a * c + b * term) / (a * a + b * b),
(b * c - a * term) / (a * a + b * b),
],
[
(a * c - b * term) / (a * a + b * b),
(b * c + a * term) / (a * a + b * b),
],
];
}
export const DEG = Math.PI / 180;
export function lerp(a: number, b: number, t: number) {
return (1 - t) * a + t * b;
}
export function arcAt(c: number, x1: number, x2: number, phiDeg: number) {
return (
c + Math.cos((phiDeg / 180) * PI) * x1 + Math.sin((phiDeg / 180) * PI) * x2
);
}
export function bezierRoot(x0: number, x1: number, x2: number, x3: number) {
const EPS = 1e-6;
// Coefficients for the derivative of a cubic Bezier curve
// B'(t) = 3(1-t)²(P₁-P₀) + 6(1-t)t(P₂-P₁) + 3t²(P₃-P₂)
// When rearranged to at² + bt + c:
const x01 = x1 - x0;
const x12 = x2 - x1;
const x23 = x3 - x2;
const a = 3 * x01 + 3 * x23 - 6 * x12;
const b = (x12 - x01) * 6;
const c = 3 * x01;
// solve a * t² + b * t + c = 0
if (Math.abs(a) < EPS) {
// For near-zero a, it becomes a linear equation: b * t + c = 0
return Math.abs(b) < EPS ? [] : [-c / b];
}
return pqFormula(b / a, c / a, EPS);
}
export function bezierAt(
x0: number,
x1: number,
x2: number,
x3: number,
t: number,
) {
// Calculates a point on a cubic Bezier curve at parameter t.
// B(t) = (1-t)³P₀ + 3(1-t)²tP₁ + 3(1-t)t²P₂ + t³P₃
// Which is equivalent to:
// B(t) = (s³)P₀ + (3s²t)P₁ + (3st²)P₂ + (t³)P₃ where s = 1-t
const s = 1 - t;
const c0 = s * s * s;
const c1 = 3 * s * s * t;
const c2 = 3 * s * t * t;
const c3 = t * t * t;
return x0 * c0 + x1 * c1 + x2 * c2 + x3 * c3;
}
function pqFormula(p: number, q: number, PRECISION = 1e-6) {
// 4 times the discriminant:in
const discriminantX4 = (p * p) / 4 - q;
if (discriminantX4 < -PRECISION) {
return [];
} else if (discriminantX4 <= PRECISION) {
return [-p / 2];
}
const root = Math.sqrt(discriminantX4);
return [-(p / 2) - root, -(p / 2) + root];
}
export function a2c(arc: CommandA, x0: number, y0: number): CommandC[] {
if (!arc.cX) {
annotateArcCommand(arc, x0, y0);
}
// Convert xRot to radians
const xRotRad = (arc.xRot / 180) * PI;
// Handle zero radius case - convert to a straight line represented as a curve
if (Math.abs(arc.rX) < 1e-10 || Math.abs(arc.rY) < 1e-10) {
return [
{
relative: arc.relative,
type: SVGPathData.CURVE_TO,
x1: x0 + (arc.x - x0) / 3,
y1: y0 + (arc.y - y0) / 3,
x2: x0 + (2 * (arc.x - x0)) / 3,
y2: y0 + (2 * (arc.y - y0)) / 3,
x: arc.x,
y: arc.y,
},
];
}
const phiMin = Math.min(arc.phi1!, arc.phi2!),
phiMax = Math.max(arc.phi1!, arc.phi2!),
deltaPhi = phiMax - phiMin;
const partCount = Math.ceil(deltaPhi / 90);
const result: CommandC[] = new Array(partCount);
let prevX = x0;
let prevY = y0;
const transform = (x: number, y: number): Point => {
const [xTemp, yTemp] = rotate([x * arc.rX, y * arc.rY], xRotRad);
return [arc.cX! + xTemp, arc.cY! + yTemp];
};
for (let i = 0; i < partCount; i++) {
const phiStart = lerp(arc.phi1!, arc.phi2!, i / partCount);
const phiEnd = lerp(arc.phi1!, arc.phi2!, (i + 1) / partCount);
const deltaPhi = phiEnd - phiStart;
const f = (4 / 3) * Math.tan((deltaPhi * DEG) / 4);
// x1/y1, x2/y2 and x/y coordinates on the unit circle for phiStart/phiEnd
const x1 = Math.cos(phiStart * DEG) - f * Math.sin(phiStart * DEG);
const y1 = Math.sin(phiStart * DEG) + f * Math.cos(phiStart * DEG);
const x = Math.cos(phiEnd * DEG);
const y = Math.sin(phiEnd * DEG);
const x2 = x + f * y;
const y2 = y - f * x;
const cp1 = transform(x1, y1);
const cp2 = transform(x2, y2);
const end = transform(x, y);
const command: CommandC = {
relative: arc.relative,
type: SVGPathData.CURVE_TO,
x: end[0],
y: end[1],
x1: cp1[0],
y1: cp1[1],
x2: cp2[0],
y2: cp2[1],
};
if (arc.relative) {
command.x1 -= prevX;
command.y1 -= prevY;
command.x2 -= prevX;
command.y2 -= prevY;
command.x -= prevX;
command.y -= prevY;
}
prevX = end[0];
prevY = end[1];
result[i] = command;
}
return result;
}
/**
* Determines if three points are collinear (lie on the same straight line)
* and the middle point is on the line segment between the first and third points
*
* @param p1 First point [x, y]
* @param p2 Middle point that might be removed
* @param p3 Last point [x, y]
* @returns true if the points are collinear and p2 is on the segment p1-p3
*/
export function arePointsCollinear(p1: Point, p2: Point, p3: Point): boolean {
// Create vectors
const v1x = p2[0] - p1[0];
const v1y = p2[1] - p1[1];
const v2x = p3[0] - p1[0];
const v2y = p3[1] - p1[1];
// Cross product: v1 × v2 = v1x * v2y - v1y * v2x
// If cross product is close to zero, points are collinear
const cross = v1x * v2y - v1y * v2x;
const isCollinear = Math.abs(cross) < 1e-10;
if (!isCollinear) return false;
// Now check if p2 is on the segment p1-p3
// For this we check if the projection of v1 onto v2 is between 0 and |v2|
// Calculate dot product
const dot = v1x * v2x + v1y * v2y;
// Calculate squared lengths
const lenSqV1 = v1x * v1x + v1y * v1y;
const lenSqV2 = v2x * v2x + v2y * v2y;
// p2 is on segment p1-p3 if:
// 1. 0 ≤ dot(v1,v2) ≤ dot(v2,v2) - this checks if projection is within segment
// 2. |v1| ≤ |v2| - this checks if p2 is not beyond p3
return 0 <= dot && dot <= lenSqV2 && lenSqV1 <= lenSqV2;
}