UNPKG

svg-pathdata

Version:

Manipulate SVG path data (path[d] attribute content) simply and efficiently.

317 lines (277 loc) 9.07 kB
import { SVGPathData } from './SVGPathData.js'; import { type CommandA, type CommandC } from './types.js'; export type Point = [x: number, y: number]; export function rotate([x, y]: Point, rad: number) { return [ x * Math.cos(rad) - y * Math.sin(rad), x * Math.sin(rad) + y * Math.cos(rad), ]; } const DEBUG_CHECK_NUMBERS = true; export function assertNumbers(...numbers: number[]) { if (DEBUG_CHECK_NUMBERS) { for (let i = 0; i < numbers.length; i++) { if ('number' !== typeof numbers[i]) { throw new Error( `assertNumbers arguments[${i}] is not a number. ${typeof numbers[i]} == typeof ${numbers[i]}`, ); } } } return true; } const PI = Math.PI; /** * https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes * Fixes rX and rY. * Ensures lArcFlag and sweepFlag are 0 or 1 * Adds center coordinates: command.cX, command.cY (relative or absolute, depending on command.relative) * Adds start and end arc parameters (in degrees): command.phi1, command.phi2; phi1 < phi2 iff. c.sweepFlag == true */ export function annotateArcCommand(c: CommandA, x1: number, y1: number) { c.lArcFlag = 0 === c.lArcFlag ? 0 : 1; c.sweepFlag = 0 === c.sweepFlag ? 0 : 1; // tslint:disable-next-line let { rX, rY } = c; const { x, y } = c; if (Math.abs(rX) < 1e-10 || Math.abs(rY) < 1e-10) { c.rX = 0; c.rY = 0; c.cX = (x1 + x) / 2; c.cY = (y1 + y) / 2; c.phi1 = 0; c.phi2 = 0; return; } rX = Math.abs(c.rX); rY = Math.abs(c.rY); const xRotRad = (c.xRot / 180) * PI; const [x1_, y1_] = rotate([(x1 - x) / 2, (y1 - y) / 2], -xRotRad); const testValue = Math.pow(x1_, 2) / Math.pow(rX, 2) + Math.pow(y1_, 2) / Math.pow(rY, 2); if (1 < testValue) { rX *= Math.sqrt(testValue); rY *= Math.sqrt(testValue); } c.rX = rX; c.rY = rY; const c_ScaleTemp = Math.pow(rX, 2) * Math.pow(y1_, 2) + Math.pow(rY, 2) * Math.pow(x1_, 2); const c_Scale = (c.lArcFlag !== c.sweepFlag ? 1 : -1) * Math.sqrt( Math.max( 0, (Math.pow(rX, 2) * Math.pow(rY, 2) - c_ScaleTemp) / c_ScaleTemp, ), ); const cx_ = ((rX * y1_) / rY) * c_Scale; const cy_ = ((-rY * x1_) / rX) * c_Scale; const cRot = rotate([cx_, cy_], xRotRad); c.cX = cRot[0] + (x1 + x) / 2; c.cY = cRot[1] + (y1 + y) / 2; c.phi1 = Math.atan2((y1_ - cy_) / rY, (x1_ - cx_) / rX); c.phi2 = Math.atan2((-y1_ - cy_) / rY, (-x1_ - cx_) / rX); if (0 === c.sweepFlag && c.phi2 > c.phi1) { c.phi2 -= 2 * PI; } if (1 === c.sweepFlag && c.phi2 < c.phi1) { c.phi2 += 2 * PI; } c.phi1 *= 180 / PI; c.phi2 *= 180 / PI; } /** * Solves a quadratic system of equations of the form * a * x + b * y = c * x² + y² = 1 * This can be understood as the intersection of the unit circle with a line. * => y = (c - a x) / b * => x² + (c - a x)² / b² = 1 * => x² b² + c² - 2 c a x + a² x² = b² * => (a² + b²) x² - 2 a c x + (c² - b²) = 0 */ export function intersectionUnitCircleLine( a: number, b: number, c: number, ): [number, number][] { assertNumbers(a, b, c); // cf. pqFormula const termSqr = a * a + b * b - c * c; if (0 > termSqr) { return []; } else if (0 === termSqr) { return [[(a * c) / (a * a + b * b), (b * c) / (a * a + b * b)]]; } const term = Math.sqrt(termSqr); return [ [ (a * c + b * term) / (a * a + b * b), (b * c - a * term) / (a * a + b * b), ], [ (a * c - b * term) / (a * a + b * b), (b * c + a * term) / (a * a + b * b), ], ]; } export const DEG = Math.PI / 180; export function lerp(a: number, b: number, t: number) { return (1 - t) * a + t * b; } export function arcAt(c: number, x1: number, x2: number, phiDeg: number) { return ( c + Math.cos((phiDeg / 180) * PI) * x1 + Math.sin((phiDeg / 180) * PI) * x2 ); } export function bezierRoot(x0: number, x1: number, x2: number, x3: number) { const EPS = 1e-6; // Coefficients for the derivative of a cubic Bezier curve // B'(t) = 3(1-t)²(P₁-P₀) + 6(1-t)t(P₂-P₁) + 3t²(P₃-P₂) // When rearranged to at² + bt + c: const x01 = x1 - x0; const x12 = x2 - x1; const x23 = x3 - x2; const a = 3 * x01 + 3 * x23 - 6 * x12; const b = (x12 - x01) * 6; const c = 3 * x01; // solve a * t² + b * t + c = 0 if (Math.abs(a) < EPS) { // For near-zero a, it becomes a linear equation: b * t + c = 0 return Math.abs(b) < EPS ? [] : [-c / b]; } return pqFormula(b / a, c / a, EPS); } export function bezierAt( x0: number, x1: number, x2: number, x3: number, t: number, ) { // Calculates a point on a cubic Bezier curve at parameter t. // B(t) = (1-t)³P₀ + 3(1-t)²tP₁ + 3(1-t)t²P₂ + t³P₃ // Which is equivalent to: // B(t) = (s³)P₀ + (3s²t)P₁ + (3st²)P₂ + (t³)P₃ where s = 1-t const s = 1 - t; const c0 = s * s * s; const c1 = 3 * s * s * t; const c2 = 3 * s * t * t; const c3 = t * t * t; return x0 * c0 + x1 * c1 + x2 * c2 + x3 * c3; } function pqFormula(p: number, q: number, PRECISION = 1e-6) { // 4 times the discriminant:in const discriminantX4 = (p * p) / 4 - q; if (discriminantX4 < -PRECISION) { return []; } else if (discriminantX4 <= PRECISION) { return [-p / 2]; } const root = Math.sqrt(discriminantX4); return [-(p / 2) - root, -(p / 2) + root]; } export function a2c(arc: CommandA, x0: number, y0: number): CommandC[] { if (!arc.cX) { annotateArcCommand(arc, x0, y0); } // Convert xRot to radians const xRotRad = (arc.xRot / 180) * PI; // Handle zero radius case - convert to a straight line represented as a curve if (Math.abs(arc.rX) < 1e-10 || Math.abs(arc.rY) < 1e-10) { return [ { relative: arc.relative, type: SVGPathData.CURVE_TO, x1: x0 + (arc.x - x0) / 3, y1: y0 + (arc.y - y0) / 3, x2: x0 + (2 * (arc.x - x0)) / 3, y2: y0 + (2 * (arc.y - y0)) / 3, x: arc.x, y: arc.y, }, ]; } const phiMin = Math.min(arc.phi1!, arc.phi2!), phiMax = Math.max(arc.phi1!, arc.phi2!), deltaPhi = phiMax - phiMin; const partCount = Math.ceil(deltaPhi / 90); const result: CommandC[] = new Array(partCount); let prevX = x0; let prevY = y0; const transform = (x: number, y: number): Point => { const [xTemp, yTemp] = rotate([x * arc.rX, y * arc.rY], xRotRad); return [arc.cX! + xTemp, arc.cY! + yTemp]; }; for (let i = 0; i < partCount; i++) { const phiStart = lerp(arc.phi1!, arc.phi2!, i / partCount); const phiEnd = lerp(arc.phi1!, arc.phi2!, (i + 1) / partCount); const deltaPhi = phiEnd - phiStart; const f = (4 / 3) * Math.tan((deltaPhi * DEG) / 4); // x1/y1, x2/y2 and x/y coordinates on the unit circle for phiStart/phiEnd const x1 = Math.cos(phiStart * DEG) - f * Math.sin(phiStart * DEG); const y1 = Math.sin(phiStart * DEG) + f * Math.cos(phiStart * DEG); const x = Math.cos(phiEnd * DEG); const y = Math.sin(phiEnd * DEG); const x2 = x + f * y; const y2 = y - f * x; const cp1 = transform(x1, y1); const cp2 = transform(x2, y2); const end = transform(x, y); const command: CommandC = { relative: arc.relative, type: SVGPathData.CURVE_TO, x: end[0], y: end[1], x1: cp1[0], y1: cp1[1], x2: cp2[0], y2: cp2[1], }; if (arc.relative) { command.x1 -= prevX; command.y1 -= prevY; command.x2 -= prevX; command.y2 -= prevY; command.x -= prevX; command.y -= prevY; } prevX = end[0]; prevY = end[1]; result[i] = command; } return result; } /** * Determines if three points are collinear (lie on the same straight line) * and the middle point is on the line segment between the first and third points * * @param p1 First point [x, y] * @param p2 Middle point that might be removed * @param p3 Last point [x, y] * @returns true if the points are collinear and p2 is on the segment p1-p3 */ export function arePointsCollinear(p1: Point, p2: Point, p3: Point): boolean { // Create vectors const v1x = p2[0] - p1[0]; const v1y = p2[1] - p1[1]; const v2x = p3[0] - p1[0]; const v2y = p3[1] - p1[1]; // Cross product: v1 × v2 = v1x * v2y - v1y * v2x // If cross product is close to zero, points are collinear const cross = v1x * v2y - v1y * v2x; const isCollinear = Math.abs(cross) < 1e-10; if (!isCollinear) return false; // Now check if p2 is on the segment p1-p3 // For this we check if the projection of v1 onto v2 is between 0 and |v2| // Calculate dot product const dot = v1x * v2x + v1y * v2y; // Calculate squared lengths const lenSqV1 = v1x * v1x + v1y * v1y; const lenSqV2 = v2x * v2x + v2y * v2y; // p2 is on segment p1-p3 if: // 1. 0 ≤ dot(v1,v2) ≤ dot(v2,v2) - this checks if projection is within segment // 2. |v1| ≤ |v2| - this checks if p2 is not beyond p3 return 0 <= dot && dot <= lenSqV2 && lenSqV1 <= lenSqV2; }